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Abstract

The severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging, highly

pathogenic bunyavirus against which neither antivirals nor vaccines are available. The

SFTSV glycoproteins, Gn and Gc, facilitate viral entry into host cells. Gn and Gc are gener-

ated from a precursor protein, Gn/Gc, but it is currently unknown how the precursor is con-

verted into the single proteins and whether this process is required for viral infectivity.

Employing a rhabdoviral pseudotyping system, we demonstrate that a predicted signal

sequence at the N-terminus of Gc is required for Gn/Gc processing and viral infectivity while

potential proprotein convertase cleavage sites in Gc are dispensable. Moreover, we show

that expression of Gn or Gc alone is not sufficient for host cell entry while particles bearing

both proteins are infectious, and we provide evidence that Gn facilitates Golgi transport and

virion incorporation of Gc. Collectively, these results suggest that signal peptidase liberates

mature Gc from the Gn/Gc precursor and that this process is essential for viral infectivity

and thus constitutes a potential target for antiviral intervention.

Introduction

Bunyaviruses constitute the largest RNA virus family and infect a wide range of hosts, includ-

ing humans, arthropods and plants. Several emerging bunyaviruses pose a considerable threat

to human health as exemplified by Rift Valley fever virus (RVFV) [1], Crimean Congo hemor-

rhagic fever virus (CCHFV) [2] and severe fever with thrombocytopenia syndrome virus

(SFTSV) [3,4], which can cause severe disease in afflicted patients. SFTSV, a novel member of

the phlebovirus genus, emerged in 2007 in Central and Eastern China [5,6]. The virus is trans-

mitted from ticks to humans, with human to human transmission occurring on rare instances

[7–9], and can induce a severe disease characterized by fever, gastrointestinal symptoms and

thrombocytopenia. The case-fatality rate is approximately 10% in China, with the elderly being
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Pöhlmann S (2016) Evidence that Processing of

the Severe Fever with Thrombocytopenia

Syndrome Virus Gn/Gc Polyprotein Is Critical for

Viral Infectivity and Requires an Internal Gc Signal

Peptide. PLoS ONE 11(11): e0166013.

doi:10.1371/journal.pone.0166013

Editor: Zheng Xing, University of Minnesota

College of Veterinary Medicine, UNITED STATES

Received: May 27, 2016

Accepted: October 21, 2016

Published: November 17, 2016

Copyright: © 2016 Plegge et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: SP was supported by the Leibniz

Association (Graduate School Emerging Infectious

Diseases). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0166013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


disproportionately affected, but higher rates have been observed upon SFTSV outbreaks in

South Korea [10] and Japan [11]. Moreover, a virus closely related to SFTSV, Heartland virus,

has been identified in the US and infection was associated with severe disease [12]. Thus,

SFTSV and related viruses are important emerging agents against which at present neither spe-

cific antivirals nor vaccines are available.

Bunyaviruses contain a tripartite RNA genome consisting of three single stranded RNA

segments of negative polarity termed L, M and S. The M segment encodes for the viral enve-

lope proteins Gn and Gc, which facilitate viral entry into target cells and are the major targets

for neutralizing antibodies [13,14]. In addition, the M segments of some bunyaviruses encode

a non-structural protein (NSm) but no NSm open reading frame was identified in the M seg-

ment of SFTSV. The Gn and Gc proteins of SFTSV have been shown to mediate entry into sev-

eral cell lines as well as primary dendritic cells and macrophages [15,16]. Entry into dendritic

cells depends on the cellular lectin DC-SIGN [15], which can interact with pathogens in a gly-

can-dependent manner. Moreover, Gn binds to non-muscle myosin heavy chain IIA and

expression of this protein is required for efficient SFTSV infection of cell lines [17]. Thus,

SFTSV employs the Gn and Gc proteins as keys for entry into target cells and elucidating the

processing and function of these proteins might reveal targets for antiviral intervention.

Bunyavirus Gn and Gc are generated from a precursor polyprotein, frequently termed Gn/

Gc, which is proteolytically processed into the single Gn and Gc proteins and, in case of

CCHFV and several other bunyaviruses, into additional viral glycoproteins and a non-struc-

tural protein, NSm [18]. For some bunyaviruses, a role of signal peptidase in Gn/Gc processing

has been reported [19–21]. In addition, the activity of a proprotein convertase, subtilisin/

kexin-isozyme 1 (SKI-1, also known as site-1 protease (S1P)), was shown to be required for

conversion of a precursor form of CCHFV Gn into the mature Gn protein [22,23]. How the

SFTSV Gn/Gc precursor is converted into Gn and Gc proteins and whether this process is

required for viral infectivity is at present unclear.

Here, we show that processing of the Gn/Gc precursor into Gn and Gc is a prerequisite to

infectious viral entry and we provide evidence that Gn promotes virion incorporation of Gc.

Moreover, we demonstrate that potential proprotein convertase cleavage sites in Gc are dis-

pensable for processing of the Gn/Gc precursor, while the integrity of a predicted signal

sequence at the N-terminus of Gc is essential. These findings indicate that the cellular enzyme

signal peptidase liberates Gc from the Gn/Gc precursor and that this process is required for

viral infectivity.

Materials and Methods

Cell culture

Human embryonic kidney 293T cells (ATCC CRL-3216) and African green monkey COS-7

(ATCC CRL-1651) kidney cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM; PAN Biotech) supplemented with 10% fetal bovine serum (FBS; Biochrome), 100 U/

ml penicillin and 100 μg/ml streptomycin (PAN Biotech), and 1% L-glutamine (PAN Biotech).

The cells were grown in a humidified atmosphere at 37˚C and 5% CO2. The cells were

obtained from collaborators and their identity was confirmed by STR DNA typing employing

a published protocol [24].

Plasmids

Expression plasmids encoding severe fever and thrombocytopenia syndrome virus glyco-

protein (SFTSV-Gn/Gc) [15], Rift valley fever virus glycoprotein (RVFV-Gn/Gc) [15], La

Crosse virus glycoprotein (LACV-Gn/Gc) [15], Lassa virus glycoprotein (LASV-GPC) [25],
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Ebola virus GP (EBOV-GP) and Middle East respiratory syndrome coronavirus spike pro-

tein (MERS-S) with and without C-terminal V5 tag [26] have been described previously. A

plasmid encoding the vesicular stomatitis virus glycoprotein (VSV-G) has also been

described previously [25]. The SFTSV-Gn/Gc-V5 sequence inserted into plasmid pCAGGS

served as basis for the generation of further constructs. Expression plasmids for SFTSV-Gn

(aa 1–543) and SFTSV-Gc (aa 536–1073) with and without C-terminal V5- or myc-tag were

generated by polymerase chain reaction (PCR) and cloning of PCR products into plasmid

pCAGGS using Asp718 and XhoI restriction sites. The start codon of Gc within the Gn/Gc

precursor sequence was mutated by PCR using the primers 5‘-GATCGGTACCACCATGAT
GAAAGT GATCTGGTTCAGCAGCC-3‘ and 5‘-CAGTGCCGCACGCGTCTAGGTCTGGCTGC
CTCGATCCG-3‘ (CAT to TGC mutation underlined). The PCR product was inserted into

plasmid pCAGGS using Asp718 and MluI restriction sites, resulting in mutant

mutATG-Gc. To mutate RRxR motifs within Gc, overlap extension PCR was employed.

Specifically, primers 5‘-CCAGTGCACCACGGCTGCAGGTCTGGCCATCTCGATCC-3‘ and

5‘-GCCAGACCTGCAGCCGTGGTGCACTGGATGTACAGCCCAGTGATCC-3‘were used as

inner primers to generate mutant mutRRxR-1 (540-AAVV-543) while 5‘-
CCAGCGTGGCGGCATGTGCATGGGCAGGCGATTGCCAGAGCGG-3‘ and 5‘-TGCACATGCC
GCCACGCTGGTACATCTGGACCGGGCGTCGGGC-3‘ served as inner primers for generation

of mutant mutRRxR-2 (648-AACA-651). To generate mutant mutATG-Gc-RRxR-1, the

inner primers 5‘-GCCAGACCTGCAGCCGTGGTGCACTGGATGTACAGCCCAGTGATCC-3’
and 5‘-CCAGTGCACCACGGCTGCAGGTCTGGCTGCCTCGATCCGCACG-3‘were used.

The PCR product encoding mutRRxR-2 was directly inserted into pCAGGS using MluI and

XhoI restriction sites. In contrast, the PCR products encoding mutRRxR-1 and

mutATG-Gc-RRxR-1 were first inserted into pcDNA3.1zeo containing a partial SFTSV

fragment followed by insertion of the entire coding sequence into pCAGGS via Asp718 and

XhoI restriction sites. The PCR and cloning strategy used for generation of mutants

mutRRxR-1 and mutATG-Gc-RRxR-1 was also employed to generate mutants ΔSigP-V5

(Δ536–560) and ΔLAIGLAEG-V5 (Δ555–562). Specifically, primers 5‘-GGCAACCAGGAC
GACGTGCGGATCGAGGGCTGTGACGAAATGGTGCACGCCGAC-3’ and 5‘-GTCGGCGTG
CACCATTTCGTCACAGCCCTCGATCCGCACGTCGTCCTGGTTGCC-3‘ were used as inner

primers to generate SFTSVΔSigP-V5 (Δ536–560) while inner primers 5’-CCAGTGATCCT
GACCATCTGTGACGAAATGGTGCAC-3’ and 5’-GTGCACCATTTCGTCACAGATGGTCAG
GATCACTGG-3’were employed for constructing SFTSVΔLAIGLAEG-V5 (Δ555–562).

The integrity of all PCR-amplified sequences was confirmed by in house (German Primate

Center) automated sequence analysis (Sanger method). Plasmids pE-GFP-ER, which

encodes calreticulin fused to GFP [27], and pE-GFP-Golgi, which encodes beta-1,4-galacto-

syltransferase fused to GFP [28], were used to visualize the endoplasmic reticulum and the

Golgi apparatus, respectively.

Analysis of glycoprotein expression and cleavage

293T cells were seeded in 6-well plates at 250,000 cells per well, incubated for 24 h and then

calcium-phosphate-transfected with 2 μg of the respective glycoprotein expression plasmids.

After incubation for 6 h, the cells were washed twice with warm phosphate buffered saline

(PBS) and new culture medium was added. At 48 h post transfection, cells were harvested and

lysed in 2 x sodium dodecyl sulfate (SDS)-lysis buffer (1.5 ml 1M Tris pH 6.8, 6 ml 80% Glyc-

erol, 10 ml 10 x SDS, 2.5 ml β-mercaptoethanol, 5 ml 1% bromphenol blue, 50 μl 1M EDTA).

For analysis of N-glycosylation, PNGase F digest was employed, using commercially available

reagents (New England BioLabs, Ipswich, MA, USA). For this, transfected cells were
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resuspended in denaturing buffer, incubated at 100˚C for 10 minutes and then exposed to 500

units PNGase F at 37˚C for 1 hour.

For Western blot analysis, cell lysates were separated by SDS polyacrylamide gel electropho-

resis (PAGE) and blotted onto nitrocellulose membranes (GE Healthcare, Life Sciences, Frei-

burg, Germany). Prior to antibody staining, membranes were blocked with 5% milk in PBS

with 0.1% Tween. Expression of viral glycoproteins was analyzed with mouse monoclonal anti-

bodies directed against the V5 tag (Invitrogen, Karlsruhe, Germany) or the myc tag [29]. As

loading control, β-actin expression was detected using a mouse monoclonal antibody (Sigma-

Aldrich, Taufkirchen, Germany). A horseradish peroxidase-(HRP)-conjugated secondary anti-

body (Dianova, Hamburg, Germany) and a chemiluminescence-based commercially available

kit (GE Healthcare Life Sciences, Freiburg, Germany) were used for visualization of bound

antibodies. Signals were detected with Intas ChemoCam Image 3.2. Quantification of signal

intensities was performed using Fiji/ImageJ 1.51g software.

Inhibition of glycoprotein cleavage

For inhibition of cellular proteases, the following compounds were used: Proprotein conver-

tase inhibitor (Merck Millipore, Darmstadt, Germany), AEBSF (4-(2-aminoethyl)-benzenesul-

fonylfluoride hydrochloride) and PF-429242 dihydrochloride (4-[(Diethylamino)methyl]-N-

[2-(2-methoxyphenyl)ethyl]-N-(3R)-3-pyrrolidinyl-benzamide dihydrochloride) (both Sigma-

Aldrich, Taufkirchen, Germany). All inhibitors were diluted in solvent as recommended by

the manufacturers and applied in the indicated concentrations. Target cells were treated with

the inhibitors from 6 h post transfection until cells were harvested.

Analysis of SFTSV-Gn/Gc-driven host cell entry

For analysis of viral entry a previously described rhabdoviral pseudotyping system was used

[15]. In brief, 293T cells were seeded in T-25 cell culture flasks at 500,000 cells/flask and cal-

cium-phosphate-transfected with 6 μg of the glycoprotein expression plasmid. After a 6 h incu-

bation period, the cells were washed twice with warm PBS and fresh culture medium was

added. At 30 h post transfection, the cells were transduced at an MOI of 0.2 with a replication-

defective vesicular stomatitis virus (VSVΔG) pseudotyped with VSV-G and encoding lucifer-

ase and green fluorescent protein (GFP). After a 1 h incubation step, the cells were washed five

times with PBS and fresh culture medium was added. Twenty-four hours post transduction

rhabdoviral pseudotypes were harvested from the culture supernatants via sterile-filtration

through 0.45 μm filters and stored at -80˚C. For analysis of infectivity, 293T cells were seeded

in 96-well plates at 30,000 cells/well. At 24 h post seeding, cells were incubated with 50 μl pseu-

dotyped virus for 1 h followed by replacement of the medium by fresh culture medium. Trans-

duction efficiency was quantified at 24 h post inoculation by determining luciferase activity in

cell lysates using a commercially available beetle-juice luciferase assay kit (p.j.k., Kleinblitters-

dorf, Germany). For analysis of particle incorporation of viral glycoproteins, sterile-filtered

virus stocks were concentrated by centrifugation through a 20% sucrose cushion (17,000 g,

2 h), lysed and analyzed by SDS-PAGE and Western blotting, as described above. A monoclo-

nal anti-VSV-M antibody (Kerafast, Boston, MA, USA) was used to detect the presence of M-

protein in viral particles.

Immunofluorescence and confocal microscopy

COS-7 cells were seeded on glass coverslips in 24-well plates at 40,000 cells per well and incu-

bated for 24 h at 37˚C. Subsequently, the cells were calcium-phosphate cotransfected with

0.5 μg of plasmids encoding viral glycoproteins (SFTSV-Gn-myc and/or SFTSV-Gc-V5 or

Proteolytic Processing of SFTSV Gn/Gc
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SFTSV-Gn/Gc-V5) and marker proteins localized to the endoplasmic reticulum (calreticulin

fused to GFP, [27]) or Golgi apparatus (β-1,4-galactosyltransferase fused to GFP, [28]). Trans-

fection of empty pCAGGS plasmid served as negative control. After 6 h of incubation at 37˚C,

cells were washed twice with PBS and fresh culture medium was added. At 48 h post transfec-

tion, the glass coverslips were washed once with PBS followed by fixation in 4% paraformalde-

hyde for 10 min at RT. After washing three times with PBS, the glass coverslips were incubated

in 0.2% Triton X-100 in PBS for 10 min at RT and washed three times with PBS. Prior to anti-

body staining, samples were blocked for 30 min at 37˚C with PBS containing 0.5% Tween and

1% bovine serum albumin (BSA). The primary antibodies mouse monoclonal IgG2a anti-V5

(Invitrogen, Karlsruhe, Germany) and rabbit polyclonal anti-c-Myc (Sigma-Aldrich, Tauf-

kirchen, Germany) were diluted 1:500 in PBS containing 0.5% Tween and 1% BSA and glass

coverslips were placed upside down on 25 μl droplets of the antibody dilutions and incubated

at RT for 1 h. Glass coverslips were washed three times with PBS and again incubated upside

down on 25 μL droplets containing secondary antibodies, Alexa fluor 647 donkey anti-mouse

IgG (Life Technologies, Eugene, OR, USA) and Alexa fluor 546 donkey anti-rabbit IgG (Life

Technologies, Eugene, OR, USA) diluted 1:1,000 in PBS supplemented with 0.5% Tween and

1% BSA in PBS. After 1 h incubation at RT in the dark, the glass coverslips were washed three

times with PBS followed by two washes with distilled H2O prior to mounting onto a micro-

scope slide with mowiol. Fluorescence images were acquired with the confocal laser scanning

microscope LSM 5 Pascal Axioskop 2 MOT plus (Carl Zeiss Microimaging GmbH, Göttingen,

Germany) using a 63x, NA1.4 Zeiss Plan Apochromat objective and LSM Pascal 5 software

version 3. Confocal images were colored and converted to JPEG using the software AxioVision

Rel. 4.8 (Carl Zeiss Microimaging GmbH). All images were cropped to 70% of the original

image for presentation purposes. No further image modifications were performed.

Statistical analysis

Statistical analysis was performed by Welch’s t-test [30].

Results

The SFTSV-Gn/Gc precursor is efficiently processed into Gn and Gc

We first asked whether expression of the SFTSV-Gn/Gc precursor protein results in produc-

tion of mature Gn and Gc proteins in 293T cells, a highly transfectable cell line previously used

to generate infectious SFTSV-Gn/Gc-bearing vectors [15]. For this, cells were transfected with

plasmid encoding the Gn/Gc precursor protein of SFTSV. For comparison, Gn/Gc of RVFV

and LACV, other members of the bunyavirus family, were also studied. In addition, the glyco-

proteins of Ebola virus (EBOV-GP) and Lassa virus (LASV-GPC) were analyzed as positive

controls for glycoprotein processing, since they are known to be cleaved by proprotein conver-

tases [31,32]. All glycoproteins studied contained a C-terminal V5 antigenic tag for convenient

detection by Western blot.

For EBOV-GP and LASV-GPC, the expected C-terminal processing products of 20 kDa

and 35 kDa were detected in addition to the precursor proteins (Fig 1A), indicating that these

glycoproteins were processed by host cell proteases. Similarly, signals corresponding to the

molecular weight expected for mature Gc were detected in cells expressing SFTSV, RVFV and

LACV Gn/Gc proteins (Fig 1A). In addition, a weak signal of the molecular weight expected

for the SFTSV-Gn/Gc precursor (116 kDa) was detected. These results indicate that

SFTSV-Gn/Gc and other bunyavirus Gn/Gc precursor proteins were efficiently processed into

mature proteins under the conditions studied.

Proteolytic Processing of SFTSV Gn/Gc
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Fig 1. Gn and Gc proteins are efficiently expressed from separate plasmids. (A) 293T cells were

transfected with empty pCAGGS plasmid or pCAGGS encoding the indicated viral glycoproteins with a C-

terminal V5 antigenic tag. Glycoprotein expression was analyzed by Western blotting using a V5-specific

monoclonal antibody (top panel). Detection of β-actin served as loading control (bottom). Unprocessed

glycoprotein precursor proteins are marked with filled triangles while asterisks indicate processed Gc

(SFTSV, RVFV, LACV) or GP2 (EBOV, LASV). A single representative blot is shown from which irrelevant

lanes were excised. Similar results were obtained in three independent experiments. (B) The experiment was

conducted as described for panel A but plasmids encoding both the Gn/Gc precursor and single proteins (all

Proteolytic Processing of SFTSV Gn/Gc
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SFTSV-Gn and Gc are both required for infectious entry

We next asked whether Gn and Gc proteins can be expressed separately and whether expres-

sion of both proteins is required for host cell entry. Mature Gn and Gc are predicted to exhibit

almost identical molecular weights of 60 kDa and 58 kDa, respectively, and the corresponding

bands were indeed detected in cells transfected with separate expression plasmids encoding

these proteins (Fig 1B). For at present unclear reasons, expression of Gc from a plasmid encod-

ing only the Gc ORF was more efficient than expression from a Gn/Gc encoding plasmid, and

Gn was expressed to higher levels than Gc (Fig 1B). Digestion with PNGase F revealed that Gn

and Gc expressed from separate plasmids were N-glycosylated (Gn harbors two consensus

sequences for N-glycosylation while three consensus sequences are present in Gc), indicating

that these proteins enter the secretory pathway (Fig 1C), as expected.

Based on our finding that separate expression of Gn and Gc is feasible, we next asked whether

both proteins are required for infectious entry. For this, we employed a vesicular stomatitis virus

(VSV)-based pseudotyping system previously shown to be suitable for analysis of SFTSV-Gn/

Gc-driven entry [15]. Particles produced in cells transfected with Gn/Gc encoding plasmid

incorporated mature Gc (we did not have the means to analyse Gn incorporation) and were

readily able to transduce cells (Fig 2A and 2B), although with roughly 100-fold reduced effi-

ciency compared to VSV-G bearing particles, in line with our previous findings [15]. In contrast,

expression of Gn alone was not sufficient to render particles infectious, despite efficient particle

incorporation of the protein (Fig 2A and 2B). Moreover, particles produced in the presence of

Gc did not harbor Gc and were not infectious. Finally, particles produced in cells cotransfected

with separate Gn and Gc plasmids were able to transduce cells, although with slightly reduced

efficiency as compared to particles from Gn/Gc expressing cells (Fig 2A and 2B). These results

suggest that both Gn and Gc are required for infectious SFTSV entry and demonstrate that

simultaneous expression of these proteins from separate plasmids is compatible with infectivity.

Gn is required for particle incorporation of Gc

Mature Gc was incorporated into particles upon expression of the Gn/Gc precursor protein

but not upon expression of Gc alone, as discussed above. These findings posed the question

whether Gn facilitates virion incorporation of Gc. To investigate this possibility, particle incor-

poration of the viral glycoproteins and infectivity were analyzed upon coexpression of vector

with combinations of Gn and Gc proteins harboring either the V5 or the myc antigenic tag.

These studies confirmed that expression of Gc alone is not compatible with particle incorpo-

ration and infectivity (Fig 2C and 2D). In addition, they demonstrated that Gc is incorporated

into particles upon coexpression of Gn and showed that simultaneous particle incorporation

of both Gn and Gc is associated with infectivity (Fig 2C and 2D).

Gn facilitates transport of Gc from the endoplasmic reticulum into the

Golgi apparatus

The finding that Gn is required for virion incorporation of Gc raised the question whether Gn

might facilitate the transport of Gc to the site of viral budding, the Golgi apparatus. To address

containing a V5 tag) were transfected. A single representative blot is shown from which irrelevant lanes were

excised. Similar results were obtained in three independent experiments. (C) The experiment was conducted

as described for panel B but cell lysates were treated with PNGaseF to remove N-glycans or Mock treated. As

a control for successful removal of N-glycans, cells expressing the spike protein of MERS-CoV were PNGase

F treated. The results were confirmed in three independent experiments.

doi:10.1371/journal.pone.0166013.g001
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Fig 2. Gn facilitates virion incorporation of Gc and both proteins are required for host cell entry. (A-B)

Rhabdoviral vectors encoding luciferase and pseudotyped with the indicated glycoproteins with V5 tag were

analyzed for incorporation of glycoprotein and VSV matrix (M) protein (panel A) and for transduction of 293T

cells (panel B). Transduction efficiency was analyzed by determining luciferase activities in lysates of

transduced cells. Transduction measured with particles generated in Gn/Gc expressing cells was set as 1.

Particles harboring no glycoprotein (pCAGGS) were used as a control. (C-D) The experiment was carried out

Proteolytic Processing of SFTSV Gn/Gc
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this question, we analyzed the cellular localization of epitope tagged Gn, Gc and Gn/Gc via

confocal laser scanning microscopy. Cellular proteins fused to GFP and known to localize to

the endoplasmic reticulum (calreticulin) and the Golgi apparatus (β-1,4-galactosyltransferase),

respectively, were employed as organelle markers. We found that Gn and Gn/Gc were pre-

dominantly localized to the Golgi apparatus while Gc alone was mainly found in the ER (Fig

3A). Moreover, coexpression of Gn with Gc resulted in accumulation of Gc in the Golgi appa-

ratus (Fig 3B), indicating that Gn facilitates transport of Gc into this organelle.

RRxR motifs in Gc are dispensable for Gn/Gc processing

We next asked which protease is responsible for Gn/Gc processing into mature Gn and Gc. In

silico analyses predicted signal peptides at the N-termini of Gn and Gc (Fig 4A). Moreover, an

RRxR motif, a potential cleavage site for proprotein convertases or related enzymes, was

detected at position 5 within Gc (Fig 4A). Cleavage at this motif would be compatible with the

observed molecular weight of Gc (Fig 1B). Therefore, we determined whether mutation of this

motif impacts Gn/Gc cleavage (mutant RRxR-1). Mutation of an internal RRxR motif (posi-

tion 113) within Gc served as control (mutant RRxR-2). Moreover, we addressed whether the

N-terminal methionine of Gc is required for Gc expression (mutant mutATG-Gc), which

would be expected if Gc was translated separately from Gn, potentially due to an unidentified

IRES element. Finally, the effect of combined mutation of the first RRxR motif and the AUG

was studied (mutant mutATG-Gc-RRxR-1).

None of the mutations tested interfered with processing of the Gn/Gc precursor protein

(Fig 4B), although mutation of the second RRxR motif reduced protein expression (Fig 4B).

Moreover, mutation of either of two RRxR motifs reduced virion incorporation (Fig 4C) of Gc

and particle infectivity (Fig 4D). In contrast, mutation of the ATG did not interfere with

expression and virion incorporation of Gc or with particle infectivity (Fig 4C and 4D). These

results suggest that the RRxR motifs in Gc do not constitute cleavage sites for proprotein con-

vertases or other cellular proteases. Indeed, blockade of proprotein convertases inhibited pro-

cessing of the LASV-GPC and EBOV-GP (Fig 5A and 5B), as expected [31,32], but had no

impact on processing of SFTSV-Gn/Gc (Fig 5C). Similarly, blockade of a serine protease activ-

ity previously shown to be required in target cells for efficient Gn/Gc-driven entry [15] was

dispensable for Gn/Gc processing (Fig 5). Collectively, our observations indicate that Gn/Gc

processing is independent of proprotein convertase activity and RRxR motifs in Gc. Moreover,

they suggest that the ATG of the Gc ORF does not serve as a start codon for translation in the

context of the Gn/Gc mRNA.

The predicted signal peptide in Gc is essential for Gn/Gc processing

Evidence has been reported that the Gn/Gc proteins of certain bunyaviruses can be processed

by signal peptidase during ER import [19–21] and in silico analysis (SignalP 4.0, [33]) also pre-

dicted the presence of a signal sequence at the N-terminus of Gc. Moreover, the sequences

near the predicted cleavage site in the signal peptide of Gc proteins of other phleboviruses

showed high similarity to the corresponding sequences of signal peptides deposited in the

as described for panels A-B but the indicated V5- and myc-tagged glycoproteins were used. For infectivity

assays (panels B and D), the average of three independent experiments performed with triplicate samples are

shown. Error bars indicate standard error of the mean (SEM). Asterisks indicate a statistical significant

increase (p<0.05) of relative infectivity with respect to the control (pCAGGS). The virion incorporation data

were confirmed in at least four independent experiments. Representative blots are shown in panel C from

which irrelevant lanes were excised.

doi:10.1371/journal.pone.0166013.g002
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Fig 3. Gn facilitates Gc transport into the Golgi apparatus. COS-7 cells seeded on glass coverslips were

cotransfected with plasmids encoding the indicated glycoproteins (panel A: SFTSV-Gn-myc, SFTSV-Gc-V5

or SFTSV-Gn/Gc-V5; panel B: SFTSV-Gn-myc and SFTSV-Gc-V5) and markers for the endoplasmic

reticulum and the Golgi apparatus, respectively. At 48 h post transfection, immunofluorescence staining was

performed using antibodies directed against the antigenic tags as primary antibodies and Alexa fluor 647- and

Alexa fluor 546-labelled antibodies as secondary antibodies. Fluorescence images were taken at 63x

Proteolytic Processing of SFTSV Gn/Gc
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MEROPS database (Fig 6A). To investigate the role of the predicted Gc signal peptide in

SFTSV-Gn/Gc processing, we deleted the predicted signal peptide or the sequence immedi-

ately preceding the predicted cleavage site. Notably, both deletions completely abrogated Gn/

Gc processing (Fig 6B) and particle infectivity (Fig 6C) although they were compatible with

robust expression and particle incorporation of the unprocessed Gn/Gc precursor (Fig 6C and

6D). Thus, processing of Gn/Gc into mature Gn and Gc proteins depends on the integrity of

the predicted signal sequence in Gc and is required for viral infectivity.

Discussion

Bunyavirus entry into cells is the first essential step in viral replication and the choice of entry

factors can constitute a pathogenic molecular signature [34,35]. The M segment of bunyavi-

ruses encodes the proteins required for viral entry into target cells, Gn and Gc but many

aspects regarding their biosynthesis and function are poorly understood. The present study

focused on Gn and Gc of SFTSV, an emerging bunyavirus. It provides evidence that signal

peptidase liberates Gc from the Gn/Gc precursor protein and it demonstrates that both Gn

and Gc are required for infectious entry.

SFTSV is a member of the genus phlebovirus and is most closely related to the Bhanja ser-

ogroup viruses [36]. The M segment of SFTSV is predicted to encode the canonical Gn/Gc

protein while an open reading frame for a NSm protein has not been identified. Our previous

work indicated that Gc protein is efficiently expressed from an mRNA encoding Gn/Gc [15].

These findings were confirmed in the present study and raised the question how mature Gn

and Gc are generated and whether production of the mature proteins is required for viral

infectivity.

We first considered the possibility that two RRxR motifs located at positions 5 and 113,

respectively, in SFTSV-Gc might constitute target sites for proprotein convertases, which are

known to recognize the following consensus motif, (R/K)-2nX-R2 (with n 0–3 amino acids)

[37–39]. Such considerations were supported by the well-established role of the proprotein

convertase SKI-1 in the generation of Gn of CCHFV [22,23]. However, neither mutation of

the RRxR motifs in the context of Gn/Gc nor inhibition of proprotein convertase activity

reduced processing of Gn/Gc. Transduction efficiency was diminished upon mutation of the

RRxR motifs but this effect was likely due to reduced virion incorporation of the Gc mutants.

These results argue against a role of proprotein convertases in the generation of mature Gc.

The impact of the methionine at position 1 of Gc on generation of Gc from Gn/Gc encoding

mRNA was also examined. A role for the methionine in Gc expression would have been

expected if Gn and Gc were separate translation products, with the first codon of Gc serving as

a start codon. Such a scenario would apply, for instance, in case of an undetected IRES element

in the Gn/Gc mRNA. However, mutation of the Gc methionine did not interfere with produc-

tion of Gc from mRNA encoding Gn/Gc. These results indicate that proprotein convertase

activity, RRxR motifs within Gc as well as the Gc methionine are dispensable for generation of

mature Gc from its precursor, Gn/Gc.

We next asked whether signal peptidase might liberate Gc from Gn/Gc. This question was

instigated by sequence analysis, which predicted the presence of a signal sequence at the N-ter-

minus of Gc. Notably, the four amino acid residues preceding the predicted cleavage site in

SFTSV-Gc (positions -4 to -1) as well as the amino acid residue at position +1 were found to

resolution and cropped to 70% of the original image for presentation purposes. No further image modifications

were performed. Similar results were obtained in a separate experiment.

doi:10.1371/journal.pone.0166013.g003
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Fig 4. RRxR motifs and methionine at position 1 within Gc are dispensable for Gn/Gc processing. (A)

Schematic overview of the SFTSV-Gn/Gc glycoprotein. Domains within Gn and Gc are indicated, the

sequences of the putative signal peptide of Gc and internal sequences in Gc surrounding a RRxR motif are

shown. Mutations introduced into the Gn/Gc precursor are shown in roman numerals. I., mutant mutATG-Gc,

in which the methionine at position 1 was changed to an alanine. II. and III, mutants mutRRxR-1 and

mutRRxR-2, in which RRxR motifs within the Gc signal peptide and in the Gc ectodomain were mutated as

Proteolytic Processing of SFTSV Gn/Gc
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be highly conserved among phleboviruses and residues -4 to -1 matched those most frequently

found in signal peptides of cellular proteins. These findings are in line with previous reports

documenting a role for signal peptidase in production of the Gc proteins of Uukuniemi virus,

RVFV and Hantaan virus [19–21]. The deletion of the predicted Gc signal peptide in the con-

text of SFTSV-Gn/Gc or the removal of the amino acids preceding the predicted cleavage site

abrogated Gn/Gc processing, suggesting that signal peptidase might indeed generate the N-ter-

minus of mature Gc. Although formal proof for this conclusion remains to be provided, our

data are most compatible with the concept that SFTSV hijacks signal peptidase for liberation

of Gc from its precursor, Gn/Gc.

The availability of SFTSV-Gn/Gc mutants allowed us to investigate whether Gn/Gc pro-

cessing is required for infectivity. Unprocessed Gn/Gc was incorporated into particles but

failed to facilitate transduction of target cells, demonstrating that unprocessed SFTSV-Gn/Gc

is inactive. This finding is in line with the observation that expression of Gn or Gc alone in par-

ticle producing cells was not sufficient for particle infectivity, while particles generated in the

presence of both proteins were infectious. This finding raised the question how Gn and Gc

contributed to particle infectivity. Based on in silico analyses and the X-ray structure of the Rift

valley fever virus Gc, bunyavirus Gc proteins were identified as class II membrane fusion pro-

teins.[40]. Therefore, a requirement for SFTSV-Gc for particle infectivity was expected while

the contribution of SFTSV-Gn was less clear. The observation that Gn expression was required

for particle incorporation of Gc suggested that Gn might function as a chaperon, which facili-

tates appropriate trafficking of Gc. Indeed, immunofluorescence analysis revealed that Gc was

mainly localized in the ER when expressed alone while coexpression of Gn resulted in accumu-

lation of Gc in the Golgi apparatus, the site of bunyavirus assembly and budding. These obser-

vations are in keeping with previous studies, which ascribed a chaperon function to the Gn

protein of Bunyamwera and Uukuniemi virus [41–43]. One can speculate that a hydrophobic

domain in the SFTSV-Gn cytoplasmic tail is responsible for the Golgi localization of the pro-

tein, since such a domain is also present in the Gn proteins of other phleboviruses and is

known to serve as a Golgi retention signal [44–46]. Moreover, it is conceivable that the long

cytoplasmic tail of SFTSV-Gn masks a lysine at position -3 in the cytoplasmic tail of

SFTSV-Gc, which is conserved between diverse bunyaviruses and is required for ER localiza-

tion [46]. The chaperon activity of Gn might depend on Gn-Gc interactions formed with high

efficiency only after proteolytic separation of these proteins from the Gn/Gc precursor during

glycoprotein biogenesis. Such a scenario might explain why particles generated in Gn/Gc

expressing cells incorporated more Gc and were more infectious than their counterparts pro-

duced in cells transfected with separate Gn and Gc expression plasmids, despite increased Gn

indicated. IV, mutant ΔSigP, in which the signal peptide of Gc was deleted. V. ΔLAIGLAEG, deletion of the

eight amino acids upstream of the internal signal peptidase cleavage site. Numbering of the sequence cutout

starts at the first amino acid of the internal Gc signal peptide. (B) 293T cells were transfected with empty

plasmid (pCAGGS) or pCAGGS encoding the indicated glycoproteins. Glycoprotein expression was analyzed

by Western blotting using a V5-specific antibody (top) or a β-actin antibody (bottom) as loading control. Similar

results were obtained in at least three independent experiments. (C) Equal volumes of rhabdoviral vectors

pseudotyped with SFTSV Gn/Gc wt or the indicated Gn/Gc mutants were pelleted through a sucrose cushion

and pellets were analyzed by Western blot for incorporation of glycoproteins and matrix protein M. A single

representative blot is shown from which irrelevant lanes were excised. The results were confirmed in three

independent experiments and relative quantification of signal intensities was performed. Numbers represent

the mean values of relative V5/VSV-M signal intensity ratios ± SEM. Asterisks denote a statistically significant

decrease (p<0.05) of V5/VSV-M ratios with respect to the V5/VSV-M ratio of Gn/Gc wt. (D) The rhabdoviral

pseudotypes analyzed in panel C were used for transduction of 293T cells. The average of three independent

experiments performed with triplicate samples is shown. Transduction measured with particles generated in

Gn/Gc expressing cells was set as 1. Error bars indicate SEM. Asterisks denote a statistical significant

decrease (p<0.05) of relative infectivity with respect to particles bearing Gn/Gc.

doi:10.1371/journal.pone.0166013.g004
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Fig 5. Proprotein convertase activity is dispensable for processing of SFTSV Gn/Gc. 293T cells were

transfected with plasmid pCAGGS encoding SFTSV-Gn/Gc, EBOV-GP or LASV-GPC. At 6 h post

transfection the indicated concentrations of the furin inhibitor PCI, the serine protease inhibitor AEBSF and

the SKI-1 inhibitor PF-429242 were added or the cells were mock treated. Cells were lysed 48 h post

transfection and cell lysates were analyzed for LASV-GPC (panel A), EBOV-GP (panel B) or SFTSV-Gn/Gc

(panel C) expression by Western blotting using a V5-specific antibody. Expression of β-actin was determined

as loading control. Unprocessed glycoprotein precursor proteins are marked with filled triangles while

asterisks indicate processing products. Similar results were obtained in at least three independent

experiments.

doi:10.1371/journal.pone.0166013.g005
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Fig 6. Deletion of the Gc signal peptide abrogates Gn/Gc processing and Gn/Gc-driven entry. (A)

Predicted signal peptidase recognition and cleavage sites found in SFTSV-Gc variants (derived from Pubmed

Acc. No. BAQ59274, AFK08659, JX462459, JX462462, KC392317). Depicted are the amino acid residues

before (-4 to -1) and after (+1) the putative signal peptidase cleavage site. In comparison, the three most

frequent amino acid residues for each position found in 103 phlebovirus Gn/Gc sequences and in the 1878

signal peptidase cleavage sites stored in the MEROPS database (http://merops.sanger.ac.uk/cgi-bin/

pepsum?id=XS26-001;type=P) are shown. For the phlebovirus and MEROPS sequences the size of the

letters corresponds to the frequency in percent of the respective amino acid found in this position. (B) 293T

cells were transfected with empty plasmid (pCAGGS) or pCAGGS encoding SFTSV Gn/Gc wt or Gn/Gc with

signal peptide deletions. Glycoprotein expression in cell lysates was analyzed by Western blotting using a

V5-specific antibody (top) or a β-actin antibody (bottom). A single representative blot is shown from which

irrelevant lanes were excised. Similar results were obtained in at least three independent experiments. (C)

Rhabdoviral pseudotypes harboring the glycoproteins analyzed in panel A were used for transduction of 293T

cells. The average of four independent experiments performed with triplicate samples is shown. Transduction

measured with particles generated in Gn/Gc expressing cells was set as 1. Error bars indicate SEM. Asterisks

denote a statistical significant decrease (p<0.05) of relative infectivity with respect to particles bearing Gn/Gc.

(D) Western blot analysis of the pseudotypes analyzed in panel C employing V5-specific antibody (top) or a

VSV M-specific antibody (bottom). Unprocessed glycoprotein precursor proteins are marked with filled

triangles while asterisks indicate processing products.

doi:10.1371/journal.pone.0166013.g006
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expression and particle incorporation under the latter conditions. However, the role of Gn in

SFTSV infection might not be limited to that of a chaperon, since a previous study reported

that SFTSV-Gn binds to susceptible cells and interacts with the entry factor non-muscle myo-

sin heavy chain IIA [17]. It is therefore conceivable that SFTSV-Gn facilitates trafficking and

maybe folding of Gc and binds to entry factors while Gc drives fusion of viral and cellular

membranes, a possibility supported by the recent findings that the Gc proteins of RVFV and

SFTSV possess a class II membrane fusion protein architecture [47,48].

In sum, the present study highlights similarities between the biogenesis and biological func-

tions of the Gn and Gc proteins of SFTSV and other bunyaviruses and reports an experimental

system which allows the convenient analysis of these proteins.

Acknowledgments

We thank M. Winkler for STR DNA typing and F. van Kuppeveld for plasmids pE-GFP-ER

and pE-GFP-Golgi.

Author Contributions

Conceptualization: MS HHW SP.

Formal analysis: MS.

Funding acquisition: SP.

Investigation: TP.

Methodology: MS HHW SP.

Project administration: SP.

Supervision: HHW MS SP.

Validation: MS SP.

Visualization: MS SP.

Writing – original draft: MS SP.

Writing – review & editing: TP MS SP.

References
1. Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernandez-Triana LM, et al. (2015)

Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe.

Vaccine 33: 5520–5531. doi: 10.1016/j.vaccine.2015.08.020 PMID: 26296499

2. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. (2013) Crimean-Congo hem-

orrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral

Res 100: 159–189. doi: 10.1016/j.antiviral.2013.07.006 PMID: 23906741

3. Xu B, Liu L, Huang X, Ma H, Zhang Y, Du Y, et al. (2011) Metagenomic analysis of fever, thrombocyto-

penia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus.

PLoS Pathog 7: e1002369. doi: 10.1371/journal.ppat.1002369 PMID: 22114553

4. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. (2011) Fever with thrombocytopenia associated

with a novel bunyavirus in China. N Engl J Med 364: 1523–1532. doi: 10.1056/NEJMoa1010095 PMID:

21410387

5. Liu Q, He B, Huang SY, Wei F, Zhu XQ. (2014) Severe fever with thrombocytopenia syndrome, an

emerging tick-borne zoonosis. Lancet Infect Dis 14: 763–772. doi: 10.1016/S1473-3099(14)70718-2

PMID: 24837566

Proteolytic Processing of SFTSV Gn/Gc

PLOS ONE | DOI:10.1371/journal.pone.0166013 November 17, 2016 16 / 19

http://dx.doi.org/10.1016/j.vaccine.2015.08.020
http://www.ncbi.nlm.nih.gov/pubmed/26296499
http://dx.doi.org/10.1016/j.antiviral.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/23906741
http://dx.doi.org/10.1371/journal.ppat.1002369
http://www.ncbi.nlm.nih.gov/pubmed/22114553
http://dx.doi.org/10.1056/NEJMoa1010095
http://www.ncbi.nlm.nih.gov/pubmed/21410387
http://dx.doi.org/10.1016/S1473-3099(14)70718-2
http://www.ncbi.nlm.nih.gov/pubmed/24837566


6. Liu S, Chai C, Wang C, Amer S, Lv H, He H, et al. (2014) Systematic review of severe fever with throm-

bocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol 24: 90–102.

doi: 10.1002/rmv.1776 PMID: 24310908

7. Bao CJ, Guo XL, Qi X, Hu JL, Zhou MH, Varma JK, et al. (2011) A family cluster of infections by a newly

recognized bunyavirus in eastern China, 2007: further evidence of person-to-person transmission. Clin

Infect Dis 53: 1208–1214. doi: 10.1093/cid/cir732 PMID: 22028437

8. Liu Y, Li Q, Hu W, Wu J, Wang Y, Mei L, et al. (2012) Person-to-person transmission of severe fever

with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis 12: 156–160. doi: 10.1089/vbz.

2011.0758 PMID: 21955213

9. Tang X, Wu W, Wang H, Du Y, Liu L, Kang K, et al. (2013) Human-to-human transmission of severe

fever with thrombocytopenia syndrome bunyavirus through contact with infectious blood. J Infect Dis

207: 736–739. doi: 10.1093/infdis/jis748 PMID: 23225899

10. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. (2013) Severe fever with thrombocytopenia syn-

drome, South Korea, 2012. Emerg Infect Dis 19: 1892–1894. doi: 10.3201/eid1911.130792 PMID:

24206586

11. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. (2014) The first identification

and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis 209:

816–827. doi: 10.1093/infdis/jit603 PMID: 24231186

12. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, et al. (2012) A new phlebo-

virus associated with severe febrile illness in Missouri. N Engl J Med 367: 834–841. doi: 10.1056/

NEJMoa1203378 PMID: 22931317

13. Elliott RM, Schmaljohn CS. (2013) Bunyaviruses. In: Knipe DM, Howley PM, editors. Fields Virology.

5th edition ed. Lipincott Williams &Wilkins.

14. Elliott RM, Brennan B. (2014) Emerging phleboviruses. Curr Opin Virol 5: 50–57. doi: 10.1016/j.coviro.

2014.01.011 PMID: 24607799

15. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, et al. (2013) Severe fever with thrombocytopenia

virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-

dependent entry into human and animal cell lines. J Virol 87: 4384–4394. doi: 10.1128/JVI.02628-12

PMID: 23388721

16. Tani H, Shimojima M, Fukushi S, Yoshikawa T, Fukuma A, Taniguchi S, et al. (2016) Characterization

of Glycoprotein-Mediated Entry of Severe Fever with Thrombocytopenia Syndrome Virus. J Virol 90:

5292–5301. doi: 10.1128/JVI.00110-16 PMID: 26984731

17. Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, et al. (2014) Nonmuscle myosin heavy chain IIA is a critical

factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome

virus. J Virol 88: 237–248. doi: 10.1128/JVI.02141-13 PMID: 24155382

18. Walter CT, Barr JN. (2011) Recent advances in the molecular and cellular biology of bunyaviruses. J

Gen Virol 92: 2467–2484. doi: 10.1099/vir.0.035105-0 PMID: 21865443

19. Andersson AM, Melin L, Persson R, Raschperger E, Wikstrom L, Pettersson RF. (1997) Processing

and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus. J Virol 71: 218–225.

PMID: 8985341

20. Gerrard SR, Nichol ST. (2007) Synthesis, proteolytic processing and complex formation of N-terminally

nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology 357: 124–133. doi: 10.

1016/j.virol.2006.08.002 PMID: 16963099

21. Lober C, Anheier B, Lindow S, Klenk HD, Feldmann H. (2001) The Hantaan virus glycoprotein precursor

is cleaved at the conserved pentapeptide WAASA. Virology 289: 224–229. doi: 10.1006/viro.2001.

1171 PMID: 11689045

22. Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST. (2006) Crimean-congo hemorrhagic fever virus gly-

coprotein precursor is cleaved by Furin-like and SKI-1 proteases to generate a novel 38-kilodalton gly-

coprotein. J Virol 80: 514–525. doi: 10.1128/JVI.80.1.514-525.2006 PMID: 16352575

23. Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, et al. (2003) Crimean-Congo

hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77: 8640–8649.

doi: 10.1128/JVI.77.16.8640-8649.2003 PMID: 12885882

24. Dirks WG, Drexler HG. (2013) STR DNA typing of human cell lines: detection of intra- and interspecies

cross-contamination. Methods Mol Biol 946: 27–38. doi: 10.1007/978-1-62703-128-8_3 PMID:

23179824

25. Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, et al. (2003) DC-

SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial

cells. Virology 305: 115–123. PMID: 12504546

Proteolytic Processing of SFTSV Gn/Gc

PLOS ONE | DOI:10.1371/journal.pone.0166013 November 17, 2016 17 / 19

http://dx.doi.org/10.1002/rmv.1776
http://www.ncbi.nlm.nih.gov/pubmed/24310908
http://dx.doi.org/10.1093/cid/cir732
http://www.ncbi.nlm.nih.gov/pubmed/22028437
http://dx.doi.org/10.1089/vbz.2011.0758
http://dx.doi.org/10.1089/vbz.2011.0758
http://www.ncbi.nlm.nih.gov/pubmed/21955213
http://dx.doi.org/10.1093/infdis/jis748
http://www.ncbi.nlm.nih.gov/pubmed/23225899
http://dx.doi.org/10.3201/eid1911.130792
http://www.ncbi.nlm.nih.gov/pubmed/24206586
http://dx.doi.org/10.1093/infdis/jit603
http://www.ncbi.nlm.nih.gov/pubmed/24231186
http://dx.doi.org/10.1056/NEJMoa1203378
http://dx.doi.org/10.1056/NEJMoa1203378
http://www.ncbi.nlm.nih.gov/pubmed/22931317
http://dx.doi.org/10.1016/j.coviro.2014.01.011
http://dx.doi.org/10.1016/j.coviro.2014.01.011
http://www.ncbi.nlm.nih.gov/pubmed/24607799
http://dx.doi.org/10.1128/JVI.02628-12
http://www.ncbi.nlm.nih.gov/pubmed/23388721
http://dx.doi.org/10.1128/JVI.00110-16
http://www.ncbi.nlm.nih.gov/pubmed/26984731
http://dx.doi.org/10.1128/JVI.02141-13
http://www.ncbi.nlm.nih.gov/pubmed/24155382
http://dx.doi.org/10.1099/vir.0.035105-0
http://www.ncbi.nlm.nih.gov/pubmed/21865443
http://www.ncbi.nlm.nih.gov/pubmed/8985341
http://dx.doi.org/10.1016/j.virol.2006.08.002
http://dx.doi.org/10.1016/j.virol.2006.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16963099
http://dx.doi.org/10.1006/viro.2001.1171
http://dx.doi.org/10.1006/viro.2001.1171
http://www.ncbi.nlm.nih.gov/pubmed/11689045
http://dx.doi.org/10.1128/JVI.80.1.514-525.2006
http://www.ncbi.nlm.nih.gov/pubmed/16352575
http://dx.doi.org/10.1128/JVI.77.16.8640-8649.2003
http://www.ncbi.nlm.nih.gov/pubmed/12885882
http://dx.doi.org/10.1007/978-1-62703-128-8_3
http://www.ncbi.nlm.nih.gov/pubmed/23179824
http://www.ncbi.nlm.nih.gov/pubmed/12504546


26. Gierer S, Muller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, et al. (2015) Inhibition of proprotein

convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike pro-

tein in infected cells but does not reduce viral infectivity. J Infect Dis 211: 889–897. doi: 10.1093/infdis/

jiu407 PMID: 25057042

27. de Jong AS, de MF, Van Dommelen MM, Lanke K, Melchers WJ, Willems PH, et al. (2008) Functional

analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking.

J Virol 82: 3782–3790. doi: 10.1128/JVI.02076-07 PMID: 18216106

28. de Jong AS, Visch HJ, de MF, Van Dommelen MM, Swarts HG, Luyten T, et al. (2006) The coxsackie-

virus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting

protein trafficking through the Golgi. J Biol Chem 281: 14144–14150. doi: 10.1074/jbc.M511766200

PMID: 16540472

29. Mueller SM, Jung R, Weiler S, Lang SM. (2004) Vpx proteins of SIVmac239 and HIV-2ROD interact

with the cytoskeletal protein alpha-actinin 1. J Gen Virol 85: 3291–3303. doi: 10.1099/vir.0.80198-0

PMID: 15483243

30. Welch BL. (1947) The generalisation of student’s problems when several different population variances

are involved. Biometrika 34: 28–35. PMID: 20287819

31. Lenz O, ter MJ, Klenk HD, Seidah NG, Garten W. (2001) The Lassa virus glycoprotein precursor GP-C

is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98: 12701–12705. doi:

10.1073/pnas.221447598 PMID: 11606739

32. Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. (1998) Processing of the Ebola virus glycoprotein

by the proprotein convertase furin. Proc Natl Acad Sci U S A 95: 5762–5767. PMID: 9576958

33. Petersen TN, Brunak S, von HG, Nielsen H. (2011) SignalP 4.0: discriminating signal peptides from

transmembrane regions. Nat Methods 8: 785–786. doi: 10.1038/nmeth.1701 PMID: 21959131

34. Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow ER. (1998) beta3 Integrins mediate the

cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95: 7074–7079.

PMID: 9618541

35. Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER. (1999) Cellular entry of hantaviruses which

cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol 73: 3951–3959.

PMID: 10196290

36. Matsuno K, Weisend C, Travassos da Rosa AP, Anzick SL, Dahlstrom E, Porcella SF, et al. (2013)

Characterization of the Bhanja serogroup viruses (Bunyaviridae): a novel species of the genus Phlebo-

virus and its relationship with other emerging tick-borne phleboviruses. J Virol 87: 3719–3728. doi: 10.

1128/JVI.02845-12 PMID: 23325688

37. Seidah NG, Sadr MS, Chretien M, Mbikay M. (2013) The multifaceted proprotein convertases: their

unique, redundant, complementary, and opposite functions. J Biol Chem 288: 21473–21481. doi: 10.

1074/jbc.R113.481549 PMID: 23775089

38. Seidah NG, Prat A. (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev

Drug Discov 11: 367–383. PMID: 22679642

39. Rawlings ND, Barrett AJ, Finn R. (2016) Twenty years of the MEROPS database of proteolytic

enzymes, their substrates and inhibitors. Nucleic Acids Res 44: D343–D350. doi: 10.1093/nar/gkv1118

PMID: 26527717
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