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Abstract

The insulinoma-associated 1 (insm1) gene is involved in the differentiation of several neuronal and 

endoderm derived cell types. insm1 is expressed in the retina and brain of several vertebrates 

including Xenopus laevis. We report the detailed expression pattern of insm1 in the X. laevis 
tadpole retina and brain. X. laevis insm1 is expressed in most of the ciliary marginal zone of the 

mature retina and the optic tectum, dorsal pallium, hypothalamus and preoptic areas of the 

developing tadpole brain. Overall, insm1 is expressed in regions of the tadpole brain and retina 

harboring populations of progenitor cells.
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INTRODUCTION

The insulinoma-associated 1(insm1 or IA-1) gene is a conserved gene encoding a DNA-

binding zinc finger transcription factor. insm1 has been studied in several model organisms. 

Insm1 proteins include seven N-terminal SNAG transcriptional repressor motifs, five C-

terminal Cys2-His2 zinc fingers and a putative nuclear localization signal (Parlier et al. 

2008). In the mouse nervous system, insm1 is involved in the differentiation or transition of 

progenitors into neurons or neurogenic progenitors. In mouse, it is expressed in all 

proliferating neural cells, including retina, spinal cord, and fore- mid-, and hindbrain and 

thought to be expressed late in progenitor cell development, during the final cell division as 

late progenitors give rise to neurons (Duggan et al. 2008). Regulation of mouse insm1 by 
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ascl1 is important in the differentiation of central serotonergic and noradrenergic 

monoaminergic neurons (Jacob et al. 2009). In insm1 null mice serotonergic precursors 

begin to differentiate but fail to produce serotonin due lack of tryptophan hydroxylase 2, 

which is coordinately regulated by insm1 and asc1. The olfactory epithelium of embryonic 

insm1 null mice exhibits a decrease in basal progenitors and an increase in apical 

progenitors as well as fewer terminally dividing progenitors, suggesting that insm1 is 

involved in the transition of progenitors to a basal position, which favors neurogenic and 

terminal division (Rosenbaum et al. 2011).

In the zebrafish retina, insm1 regulates cell cycle kinetics of the rod progenitor cells, is 

needed for the differentiation of rod and cone photoreceptors, and, as in mice, is negatively 

regulated by Notch-Delta signaling (Forbes-Osborne et al. 2013). Zebrafish insm1 in the 

retina is genetically upstream of neuroD as well as ath5/atoh7 and photoreceptor 

specification genes, crx and nr2e3. insm1 was also studied in zebrafish retinal regeneration 

where, in the event of retinal damage, insm1a is necessary for müller glia dedifferentiation 

by suppressing ascl1a and itself (Ramachandran et al. 2012). Furthermore, Insm1 defines the 

zone of Müller glia activity via suppression of hb-efga expression and stimulation of Müller 

glia progenitor cell cycle exit. In the mouse retina, insm1 expression was upregulated upon 

inhibition of notch signaling by application of the inhibitor DAPT (Nelson et al. 2007). An 

Insm1:LacZ transgene was expressed almost exclusively in non-proliferating cells in the 

retina. These cells were primarily found at the ventricular surface, although some were 

found in the ganglion cell layer. The authors concluded that cells expressing the transgene 

were primarily nascent photoreceptors.

insm1 is normally expressed during development and is regulated by a heterodimer of 

neuroD and E47, which binds to an E-box found in the promoter (Breslin et al. 2003). 

However, insm1 expression can be reactivated in cancer. insm1 is strongly expressed in 

tumors of neuroendocrine origin (Goto et al. 1992; Lan et al. 1993; Wang et al. 2009). This, 

combined with the absence of insm1 in adult tissues, has lead to the evaluation of the insm1 
promoter in gene therapy against small-cell lung cancer, pediatric medulloblastoma, 

neuroblastoma, and retinoblastoma tumors (Pedersen et al. 2006; Wang et al. 2009; 

Christensen et al. 2010; Akerstrom et al. 2013).

Xenopus insm1 has been mainly studied in endoderm-derived cells. It is expressed in all 

endocrine cells and acts downstream of ngn3 and upstream of pax6 and neuroD in the 

transcriptional cascade for differentiation, suggesting that insm1 gene hierarchy found in the 

zebrafish retina is conserved and utilized in other species and organ systems (Gierl et al. 

2006; Mellitzer et al. 2006; Pearl et al. 2009). insm1 has also been studied in the Xenopus 
nervous system where it functions downstream of Xash1 (ascl1) in the formation of the 

noradrenergic primary neurons in the developing heart field near the cement gland (Parlier et 

al. 2008). Although insm1 has been studied in the Xenopus nervous system, there are few 

reports on insm1 expression in the Xenopus brain and no reports on insm1 expression in the 

mature Xenopus retina.

We have a long-standing interest in the development of progenitor cells in the mature and 

regenerating X. laevis retina (Bailey et al. 2004; Kelly et al. 2007; Martinez-De Luna et al. 
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2011) and in gene expression in the developing brain (El-Hodiri et al. 2003; Kelly et al. 

2007). Therefore, we sought to characterize insm1 expression in retinal progenitor cells. 

Here, we report that X. laevis insm1 is expressed in a subset of the progenitor cell 

population in the tadpole retina and brain.

RESULTS AND DISCUSSION

Expression in retinal progenitor cells

Xenopus laevis insm1 is expressed in the developing eye (Parlier et al. 2008). In order to 

more precisely characterize insm1 expression in the retina, we performed in situ 
hybridization using retinal sections from X. laevis embyros at stages 38 to 45 (Figure 1). 

insm1 is expressed in the ciliary marginal zone (CMZ) of the tadpole retina, a region of the 

peripheral retina containing retinal progenitor and stem cells (RPCs and RSCs, respectively). 

The CMZ can be divided into 4 zones, based on state of retinal neural development (Perron 

et al. 1998). The zones contain RPCs of increasing development in a distal – proximal 

arrangement (Figure 1A). At stage 38, insm1 is expressed in the retinal progenitor cells 

(RPCs) but absent from the retinal stem cells (RSCs) at the distal edge (zone 1) of the CMZ. 

insm1 expression is also seen in the undifferentiated neuroepithelium adjacent to the ventral 

CMZ (Figure 1A). Similar to stage 38, retinal insm1 expression in stage 41 and 45 embryos 

is restricted to the CMZ (Figure 1B-D). Further examination of stage 41 embryos 

demonstrates that insm1 expression begins distally in zone 2 of the CMZ similar to zone 2 

marker, notch1 (compare Figure 1 C and H to F and I). insm1 expression expands 

proximally to zones 3 and 4 of the CMZ comparable to neuroD expression(compare Figure 

1 C and H to G and J), which marks those zones (Perron et al., 1998). This pattern of 

expression in the CMZ is similar to that of zebrafish insm1a. insm1a expression is also 

observed outside the CMZ in the regenerating zebrafish retina (Morris et al. 2011), in the 

ONL and INL, in rod progenitors and glia-derived progenitors, respectively. The X. laevis 
expression pattern is markedly different from that of the mouse retina (Nelson et al. 2007) in 

that expression is not observed in the frog ONL. Retinal regeneration in Xenopus involves 

the recruitment of progenitor cells, primarily from dedifferentiated retinal pigmented 

epithelium (RPE) (Yoshii et al. 2007). It will be interesting to discover if insm1 is expressed 

in RPE-derived progenitor cells during X. laevis regeneration as it is in glia-derived 

progenitors of the regenerating zebrafish retina.

Expression in the developing tadpole brain

insm1 is also expressed in the developing tadpole brain (Parlier et al. 2008). To further 

characterize insm1 expression in Xenopus brain, we performed whole mount in situ 
hybridization on brains isolated from stage 45 tadpoles. insm1 is expressed in the optic 

tectum, dorsal pallium, rhombomeres, hypothalamus and preoptic area (Figure 2 D-F). This 

pattern is similar to that of foxn4 and lhx5, which are also expressed in similar progenitor 

cell-containing regions of the brain (Figure 2 G – L) (Moreno et al. 2004; Moreno et al. 

2005; Kelly et al. 2007). These genes differ in expression pattern in the forebrain where 

insm1 and foxn4 are expressed in the dorsal pallium while lhx5 is expressed in the olfactory 

bulbs (compare Figure 2 D, G with J). The expression patterns of these genes also differ in 

the hindbrain: insm1 is expressed in the rhombomeres while foxn4 and lhx5 are expressed in 
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the reticular formation (compare Figure 2 D with G, J). This is in general agreement with the 

expression of insm1 in late progenitor populations in the mouse brain (Duggan et al. 2008). 

It would be interesting to discover whether insm1 has a role in regulating proliferation in the 

brain, as has been demonstrated for the zebrafish retina (Ramachandran et al. 2012).

MATERIALS AND METHODS

In situ hybridizations were performed using digoxigenin-labeled antisense riboprobes 

generated by in vitro transcription of linearized DNA templates. Probes for insm1 (Parlier et 

al. 2008), foxn4 (Kelly et al. 2007), lhx5 (Bachy et al. 2001), neurod (Lee et al. 1995), and 

notch1 (Coffman et al. 1990) were prepared as described. Embryos for in situ hybridization 

were generated and staged according to standard criteria (Nieuwkoop 1994; Sive 2000). 

Wholemount in situ hybridizations were performed using Xenopus laevis embryos were 

performed as described previously (Sive 2000). Section in situ hybridizations were 

performed using 8 μM sections of fixed, paraffin-embedded tadpoles (Viczian et al. 2003). 

Whole mount brain in situ hybridizations were performed on brains isolated from fixed stage 

45 embryos (Colombo et al. 2004).
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Figure 1. Insm1 is expressed in retinal progenitor cells (RPCs)
A. Schematic representation of the mature Xenopus tadpole retina. B – J. In situ 
hybridization performed using sectioned Xenopus laevis embryos. insm1 is expressed in 

retinal progenitor cells (RPCs) and undifferentiated neuroepithelium at stage 38. At stages 

41 (C, H) and stage 45 (D), insm1 expression was detected in RPCs located in zones 2 and 3 

of the ciliary marginal zone (CMZ) but not in the retinal stem cells of zone 1. Compare the 

expression of insm1 at stage 41 (C, H) to expression of notch1, a zone 2 marker, at stage 41 

(F, I). Both are absent in the most distal zone 1 of the CMZ. Also compare the proximal 

expression of insm1 (C, H) to zone 3 and 4 marker, neuroD at stage 41 (G, J). The CMZ is 

indicated by black brackets. Scale bars (1 μ M) for (B-G) and (H-J) are indicated in (A) and 

(F), respectively. Abbreviations: GL – ganglion cell layer, INL – inner nuclear layer, PL – 

photoreceptor layer.
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Figure 2. insm1 expression in the developing brain
A – C. Diagrammatic representation of selected brain regions as viewed in dorsally (A), 

ventrally (B) or laterally (C). D – L. Whole mount in situ hybridizations of stage 45 

dissected brains using probes for insm1 (D – F), foxn4 (G – I), or lhx5 (J – L). insm1 is 

expressed in the dorsal pallium, optic tectum and rhombomeres as viewed dorsally (D). 

insm1 expression was also detected ventrally (E) and laterally (F) in the hypothalamus, 

preoptic area and isthmus. Scale bars (1 μ M) are indicated in (D) for (D-F), (G) for (G-I) 

and (J) for (J-L). Abbreviations: DP – dorsal pallium, H – hypothalamus, IS – isthmus, OB – 

olfactory bulb, OT – optic tectum, PO – preoptic area, RF – reticular formation, R – 

rhombomeres.
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