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Abstract

The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for 

prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the 

entire range from underweight to obese. After recovery, patients have reduced rates of overweight 

and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice 

versa. Our primary analysis comprised a cross-trait analysis of the 1000 single nucleotide 

polymorphisms (SNPs) with the lowest p-values in a genome-wide association meta-analysis 

(GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI 

(GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex 
vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI related loci was 

performed in the AN GWAMA. We detected significant associations (p-values < 5×10−5, 

Bonferroni corrected p < 0.05) for 9 SNP alleles at 3 independent loci. Interestingly, all AN 

susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: 

CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage 

disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-

stratified analyses revealed that the strongest BMI signal originated predominantly from females 

(chr. 10 rs1561589; poverall: 2.47 × 10−06/pfemales: 3.45 × 10−07/pmales: 0.043). Functional ex vivo 
studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. 

Hypothalamic expression of Ctbp2 was increased in diet induced obese (DIO) mice as compared 

to age-matched lean controls. We observed no evidence for associations for the look-up of BMI 

related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at 

three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly 

promising given that the association with obesity was primarily driven by females. In addition, the 

detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and 

DIO implicate these genes in weight regulation.
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Introduction

The joint analysis of GWAS data pertaining to different phenotypes/diseases with 

overlapping or co-morbid endophenotypes recently led to the discovery of novel genes that 

had escaped detection in single phenotype/disease analyses. For instance, by a cross-disorder 

analysis of five major psychiatric disorders common underlying biological mechanisms were 

revealed1,2. A number of genetic variants were associated with more than one psychiatric 

disorder, illustrating the usefulness of the approach. Other cross-disorder analyses have 

shown overlapping genetic risk factors for phenotypes that had not been expected to share 

risk factors (e.g., ulcerative colitis and bone density or white blood cell count3). Heritability 

of anorexia nervosa (AN) is moderately high4–8. However, the two published GWAMA9,10 

were underpowered to detect signals of small effect sizes, which are characteristic of SNPs 

identified for other psychiatric disorders1,2. The largest GWAMA for AN was performed in 

2,907 patients with AN and 14,860 controls by the Genetic Consortium for AN (GCAN) and 

the Wellcome Trust Case Control Consortium 3 (WTCCC3). Although a global meta-

analysis comprised discovery and replication data sets on a total of 5,551 AN cases and 

21,080 controls, genome-wide significance was not reached10. However, 76% of the variant 

effects were directionally consistent between discovery and replication groups. This 

observation was unlikely to be spurious (p = 4 × 10−6)10.

A substantial genetic contribution to the variance of body mass index (BMI) is implicated by 

twin, family, and adoption studies11,12. The largest currently published GWAMA pertaining 

to BMI variance revealed 97 genome-wide significant (p ≤ 5×10−08) gene loci13; we use the 

term ‘BMI SNPs’ for those SNPs associated with an increased BMI. As most of the 

respective genes are expressed in the brain, a largely central regulation of human body 

weight appears likely13,14. A region on chromosome 16p11.2 supports a possible genetic 

link between obesity and AN. Carriers of the respective deletion(s) are hyperphagic and 

obese, whereas the carriers of the duplication(s) are underweight and show restrictive/

selective eating behavior15,16.

Sex-specific analyses have previously been conducted for BMI and related phenotypes. For 

instance, the weight increasing effect was more pronounced in female mice of the initial 

melano-cortin-4 receptor gene (Mc4r) knock-out strain17. In humans with MC4R mutations 

leading to reduced function, the weight increasing effect was also stronger in females18. 

Sex-stratified GWAMAs for waist-hip ratio variation and other anthropometric traits (height, 

weight, body mass index, waist circumference, and hip circumference) revealed a sexual 

dimorphism in the genetic effects for fat distribution and waist phenotypes19–22. For many of 

these, genome-wide significance was detected for females only19,20.

AN might be considered as an extreme weight condition23, potentially entailing that genetic 

factors involved in body weight regulation may overlap with those predisposing to AN as 

suggested by several groups8,10,23–30. Recent LD-score regression analyses revealed a 
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negative genetic correlation between AN and obesity (and a similar genetic correlation with 

BMI) suggesting that the same genetic factors influence normal variation in BMI as well as 

dysregulated BMI in AN30. However, in the latest GWAMA for AN 89 SNPs with genome-

wide significance for BMI variation and obesity31,32 and 15 SNPs related to extreme 

obesity31 were not associated with AN10.

There is no evidence for an aberrant body weight regulation prior to manifestation of AN; 

thus, recalled premorbid weight of AN patients seemingly covers the whole BMI range33–35. 

The BMI range of patients at medium term (five to ten years) follow-ups is shifted to the left 

(lower BMI); in recovered patients overweight occurs with a substantially lower probability 

than in the general population36,37.

Here we performed three cross-trait analyses involving AN risk and BMI variation in two 

GWAMAs. First, we performed a cross-trait analysis of the 1000 SNPs with the lowest p-

values from the largest GWAMA for AN (GCAN10) for evidence of association in the 

largest published GWAMA for BMI variation (GIANT13). Second, we performed sensitivity 

analyses in sex-stratified data sets from the BMI GWAMA for the best cross-trait SNPs 

(Table 1) because of the profound female preponderance in AN38,39; furthermore, sex-

stratified analyses have revealed BMI loci that had not been detected in sex-combined 

analyses13. Finally, we performed a look-up of GWAMA derived BMI, (childhood) obesity 

and waist-hip ratio (WHR) loci within the AN GWAMA.

Post hoc we also performed (1) a look-up of the best cross-trait SNPs (Table 1) in: (1) obese 

children and adolescents from the EGG Consortium40, and (2) the first GWAS for AN9 

comprising 1,033 AN cases and 3,733 paediatric controls from the Price Foundation 

Collaborative Group and the Children’s Hospital of Pennsylvania. Finally, we performed 

functional studies of the four genes nearest to the best cross-trait findings.

Materials and Methods

Look-up of ‘AN SNPs’ (GCAN) in GIANT GWAMA for BMI including sex-specific analyses

Our primary analysis is based on the in silico look-up of the 1000 best hits according to p-

value (SNPs in high linkage disequilibrium (LD) were not excluded) derived from the case-

control AN GWAMA10 in the large scale GWAMA of up to 322,135 individuals from the 

population-based GIANT meta-analysis for BMI13. In light of the aforementioned results for 

obesity risk alleles in the AN GWAMA10, we did not pursue the directional hypothesis that 

AN susceptibility/risk alleles are protective of obesity (i.e. are expected to be BMI 

lowering); as a consequence, we report two-sided tests. Secondarily, we performed sex-

stratified analyses for the best cross-trait SNPs in the BMI GWAMA13.

We estimated the percentage of AN GWAMA SNPs that met the same p-value threshold in 

the BMI GWAMA (Supplementary Figure S1). We estimated that the genetic overlap of 

BMI and AN can seemingly be demonstrated if the number of SNPs analyzed is larger than 

500, so that the 1000 SNPs we had chosen is justified. We decided against a computational 

derivation of an “optimal” cut-off as this could inflate the type I error rate. We did not aim 
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for a comprehensive assessment of the joint common SNP variation architecture of both 

traits.

Post hoc we performed analyses in the sub data sets of GIANT (a: full GWAS chip data on 

N~233,000; b: Metabochip on N~88,000) to analyze if the observed effects are confirmed 

for each sub data set.

Look-up of ‘BMI SNPs’ in GWAMA for AN susceptibility (GCAN)

We performed an in silico lookup of the 56 novel genome-wide significant ‘BMI SNPs’ 

detected by Locke et al.13 in the case-control AN GWAMA (GCAN10). Subsequently we 

also analyzed previously described SNPs for BMI, obesity, childhood obesity, and WHR 

(see supplementary Tables). A total of 2,916 quality controlled genotypes of controls were 

included in both GCAN and GIANT (n=1,437 NBS-WTCCC National Blood Service 

donors and n=1,479 British 1958 birth cohort-WTCCC). Balancing between consistency 

(i.e. running our analyses on the same data sets as those published) and the necessity of 

sample independence, we rendered a re-analysis excluding these overlapping samples 

unnecessary.

Subsequent look-ups in independent GWAS data sets

We performed a look-up of the best cross-trait SNPs in GWAMA data of the EGG 

Consortium40 consisting of 5,530 obese children and adolescents (BMI ≥ 95th percentile) 

and 8,318 controls (BMI < 50th percentile). Data on the childhood obesity trait has been 

contributed by the EGG Consortium and was downloaded from www.egg-consortium.org40. 

An additional look-up of the best cross-trait SNPs from GCAN and GIANT was performed 

in the first GWAS for AN9 consisting of 1,033 AN cases and 3,733 paediatric control 

subjects of European ancestry; five SNPs were available.

Written informed consent to take part in genetic association studies was given by all 

participants and in case of minors by their parents. Studies were approved by the respective 

institutional review boards or ethics committees and conducted in accordance with The 
Declaration of Helsinki9,10,13,40.

Statistical analyses

We performed two main analyses and one stratified analysis nested within the first main 

analysis focussing on European-descent individuals of two GWAMAs. The GWAMA for 

AN10 was performed as fixed-effect meta-analysis based on single-SNP case-control 

association analyses under an additive genetic model with control for population 

stratification at the discovery data set level. Similarly, the GWAMA for BMI variation13 also 

worked with a fixed-effect meta-analysis based on discovery data set results obtained under 

a linear regression model adjusted for age, age2, sex, and study-specific covariates including 

control for population stratification effects. For the first main analysis, we looked-up the 

1000 SNPs of the GWAMA for AN10 with the lowest p-values (discovery p-values from 

5.56×10−22 to 4.79×10−4, of note: the SNP with the lowest p-value in the initial discovery 

GWAS for AN was not confirmed by genotyping in the replication sample10) in the 

GWAMA for BMI13. We applied a conservative Bonferroni-correction to the uncorrected p-
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values of the GWAMA for BMI to address multiple testing (see Table 1 and Supplementary 

Tables), and accordingly regarded all associations as significant which met a nominal p-

value ≤ 5×10−5 (Table 1). For the SNPs with significant associations in the GWAMA for 

BMI, we also report the results of sex-stratified sensitivity analyses (Table 1). For the second 

main analysis, we performed a look-up of the 97 BMI loci in the GWAMA for AN. The 

direction of effect was evaluated only for SNPs with a nominal p-value ≤ 0.05.

Post hoc we also analyzed genome-wide significant loci for BMI, obesity, childhood obesity 

not originally described in Locke et al.13 (reviewed in 41) and 68 genome-wide significant 

loci for waist-hip ratio (WHR) derived from a European GWAMA primary analysis 

(GIANT21) in the GWAMA for AN (GCAN10).

Animals and diet—Unless stated otherwise, male C57BL/6J mice were fed ad libitum 
with either a standard chow diet (Harlan Teklad LM-485; 5.6% kcal fat) or a high-fat diet 

(D12331; Research Diets, New Brunswick, NJ; 58% kcal fat). The mice had free access to 

water and were maintained under constant ambient conditions (22 ± 1°C, constant humidity, 

12h/12h light/dark cycle). All animal studies were performed in Cincinnati, OH, USA and 

were approved by the Animal Ethics Committee of Cincinnati, OH, USA.

Gene expression analyses—To assess effects on fasting and re-feeding, hypothalamic 

gene expression was profiled in male 27/28 week old C57BL/6J mice fed either ad libitum 
with a regular chow diet, or which had been fasted for 12h, 24h, or 36h, or which had been 

fasted for 36h and then re-fed for 6h using either a fat-free diet or a high-fat diet (N=6–8 

mice per group). The use of existing ex vivo material is in agreement with the US and 

German guidelines of the Animal Welfare Committee to restrict animal experiments to an 

absolutely necessary minimum. Target genes were amplified using the ViiA 7 real-time PCR 

system (Life Technologies; Darmstadt, Germany); results were normalized to the 

housekeeping gene hypoxanthine guanine phosphoribo-syltransferase 1 (HPRT). The used 

primer sequences were CTBP2-F: 3′-TACCACACCATCACCCTCAC -5′; CTBP2-R: 3′-

TGTGGCAGACTGTCGAATCT-5′; CCNEI-F:3′-AGCCTCGGAAAATCAGACCA-5′; 

CCNEI-R: 3′-CTTCGCACACctccattagc-5′, CARF-F: 3′-

GTGGACGACAGATAGTGGGA-5′; CARF-R: 3′-GGAGAGGAGAGTCTTGGCTG-5′; 

NBEAL1-F: 3′-AGGAGAAGGAAATGGCTGATCA-5′, and NBEAL1-R: 3′-

TCCACTGTGAGAGAAGCTGG-5′. Data represent means ± SEM. *P<0.05, **P<0.01, 

based on a one-way ANOVA with Dunnett’s Multiple Comparison post-hoc test.

To additionally assess the effects of a high fat diet on hypothalamic expression of Nbeal1 
and Ctbp2 was assessed in age matched male C57BL/6J mice fed either a regular chow diet 

(body weight 32.69g ± 0.45g) or a high-fat diet (body weight 54.72g ± 1.25g; N=7–8 mice 

per group). Data represent means ± SEM.

In silico analyses—Expression patterns and known variants in the coding regions 

(missense, nonsense and frameshift) were analyzed in silico (http://www.genecards.org/; 

http://exac.broadinstitute.org/about).
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Results

Association of AN risk SNPs with increased BMI

We detected association (p-values < 5×10−5, Bonferroni corrected p < 0.05) at three 

independent chromosomal loci in the BMI GWAMA (chromosome 2: four SNPs in linkage 

disequilibrium [LD], r2 ≥ 0.819, D′ = 1; chromosome 10: three SNPs, r2 ≥ 0.363, D′ ≥ 

0.728; and chromosome 19: two SNPs, r2 = 1, D′ = 1); the lowest p-value (rs1561589, 

2.47×10−6, pcorrected = 0.0025) was observed at the chromosome 10 locus (Table 1). Within 

the GIANT13 data we post hoc also analyzed the data sets separately for (a) full GWAS chip 

data (HapMap imputed) on N~233,000 and (b) Metabochip on N~88,000 (Supplementary 

Table S1). Both independent data sets confirmed the association of the nine SNPs.

The nearest genes to these nine SNPs ordered from lowest to highest p-values are: (1) 

chromosome 10: CTBP2 (C-terminal binding protein 2 gene); (2) chromosome 19: CCNE1 
(cyclin E1 gene); (3) chromosome 2: CARF (calcium responsive transcription factor gene) 

and (4) NBEAL1 (neurobeachin-like 1 gene). The third chromosomal locus included two 

genes, because the four SNPs are located in a region with high linkage disequilibrium 

(lowest LD for the four SNPs: r2 ≥ 0.819, D′ = 1). Interestingly, for all SNPs, the AN risk 

alleles were consistently associated with increased BMI (Table 1).

Sex-specific analyses for the best cross-trait SNPs (Table 1) revealed that the chromosome 

10 association signal was primarily driven by females. Again, post hoc sex-specific analyses 

in the sub data sets of GIANT (a: full GWAS chip data on N~233,000; b: Metabochip on 

N~88,000; supplementary Table S1) confirmed the larger effect in females for the best locus.

Further look-ups

Because AN typically manifests during adolescence, we analyzed the identified SNPs in the 

EGG Consortium data set40, which includes only children and adolescents. The lookup of 

the nine cross-trait SNPs (Table 1) did not reveal significant findings at the five SNPs 

available (p-values from 0.0916 at rs11245456 to 0.6075 at rs1561589). However, the 

direction of effect was the same between AN risk and early onset extreme obesity in all five 

SNPs.

The look-up of the nine cross-trait SNPs in the first GWAS for AN9 comprising 1,033 AN 

cases and 3,733 paediatric controls (five SNPs were available, each locus was represented) 

showed nominally significant results for two SNPs at chromosome 2 (rs17406900, nominal 

p = 0.03; rs7573079, nominal p = 0.04), our second best locus. However, for these SNPs the 

direction of effect was opposite to the effect in GCAN.

Association of ‘BMI SNPs’ with AN

The look-up of the ‘BMI SNPs’ in the AN GWAMA did not reveal (Bonferroni-corrected 

for 97 SNPs) significant results (Supplementary Tables S2–S4). Similarly, post hoc lookups 

of additional genome-wide significant loci for BMI, obesity, childhood obesity41 

(Supplementary Table S5) and WHR21 (Supplementary Table S6) in the GWAMA for AN 
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(GCAN10) did not reveal statistically significant findings after correction for multiple 

testing.

In silico analyses

All four genes located at the three identified loci are widely expressed in brain tissues, 

including the hypothalamus (http://www.genecards.org/). A spectrum of different, 

potentially functionally relevant variants (missense, nonsense and frameshift) was detected 

for all four genes (Supplementary Table S7).

Mouse model

Gene expression profiling of Ctbp2, Ccne1, Carf, Nbeal1 and in male C57BL/6J mice 

revealed that hypothalamic expression of both Ctbp2 and Nbeal1 was decreased by fasting 

(one-way ANOVA p<0.05 for both targets; Figure 1). Notably, hypothalamic expression of 

Ctbp2 and Nbeal1 remained decreased after 36h fasting followed by 6h re-feeding with 

either a fat-free diet or a high-fat diet relative to control mice fed ad libitum (Figure 1). In 

line with the down-regulation of hypothalamic expression of Ctbp2 and Nbeal1 in response 

to nutrient availability, expression of Ctbp2 was increased in diet-induced obese compared to 

age-matched lean control mice (p < 0.01; Figure 2); for Nbeal1 we noted a trend for 

increased expression in obese compared to lean mice (p = 0.070; Figure 2).

Discussion

Among the 1000 SNPs with the lowest p-values in the GCAN GWAMA for AN10 we 

identified nine SNPs in three chromosomal regions with significant p-values in the currently 

largest GWAMA for BMI variation13 using a conservative Bonferroni correction.

The relevance of these three loci is uncertain, because none of the nine SNPs have 

previously been identified for either AN or BMI/obesity or other psychiatric disorders. Two 

NBEAL1 SNPs (intronic and 3′UTR, rs16839626, rs6733725; no detectable LD to the SNPs 

identified here; http://www.broadinstitute.org/mpg/snap/ldsearchpw.php) had been detected 

in a GWAS for obesity related traits in 815 Hispanic children from 263 families42. Nominal 

associations (not genome-wide significant) for energy storage and fat mass deposition (p = 

2×10−7), fat mass change (4×10−7) and weight change (3×10−6) were shown42. Central 

(including hypothalamic) expression of all four genes was detected. We did not detect 

association of the previously published GWAMA SNPs for BMI, (childhood) obesity, or 

WHR with AN (Supplementary Tables).

The following results do not readily substantiate the relevance of our association findings: a) 

The analysis of the five out of nine available cross-trait SNPs in 5,530 obese children and 

adolescents (BMI ≥ 95th percentile) versus 8,318 controls (BMI < 50th percentile) from the 

EGG Consortium40 did not reveal significant findings. However, for all available SNPs the 

direction of effect was identical to that observed in the GIANT GWAMA. Because the EGG 

Consortium GWAMA is substantially smaller than the recent GIANT approach13, true 

signals may not have been detectable. b) The look-up of the same cross-trait SNPs in the 

first GWAS for AN9 did not support our findings. This might partly be explained by the 

lower sample size in the analysis of the Price Foundation Collaborative Group and 
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Children’s Hospital of Pennsylvania samples9 (1,033 AN cases and 3,733 paediatric 

controls) compared to the latest GWAS10 (2,907 cases with AN and 14,860 controls). In 

conclusion, we cannot exclude that our detected associations for the nine SNPs represent 

false positive associations.

The following lines of evidence do however support that we have indeed detected SNPs 

associated with both AN and obesity: The identification of the three loci with nominal p-

values in the range of 10−5 to 10−6 for association with BMI is quite unexpected. 

Accordingly, at least one and maximally all three loci are involved in body weight 

regulation; the same potentially holds true for AN. If this assumption is correct, future larger 

GWAMAs for both AN and BMI/obesity will pick up the respective loci. It is also of interest 

that all risk alleles were directionally consistent for AN risk and higher BMI. This is 

especially unexpected as (a) patients with AN do not have an elevated premorbid BMI33; (b) 

BMI-values of followed up patients only infrequently exceed the cutoff for overweight (BMI 

≥ 25 kg/m2)36 and (c) LD-score regression analyses revealed a negative genetic correlation 

between AN and obesity30. It is unlikely that the overlap between the AN (controls) and 

GIANT GWAMAs explains our results.

Sex-specific analyses

We also performed look-ups in sex-stratified analyses for the best cross-trait SNPs in the 

BMI GWAMA, because (i) AN predominantly occurs in females38,39 and (ii) sex-specific 

analyses rendered BMI loci that had not been picked up by sex-combined analyses13. We 

found that the three AN risk SNPs at the chromosome 10 locus with the lowest p-values in 

the BMI GWAMA (sex-combined) mainly originated from the female participants (Table 1). 

This finding provides additional indirect evidence that particularly this locus is involved in 

both AN and body weight regulation in females mainly.

Animal model

The hypothalamic expression data obtained in male mice clearly substantiate that the 

detected associations at two loci may indeed represent true positive findings. The cDNA of 

the fasting/re-feeding experiment described in this manuscript is commonly used in the 

Müller/Tschöp lab to assess regulation of target genes. Whereas unfortunately there is no 

documentation on the total number of previously analyzed targets, it can be confirmed that 

only few of the previously analyzed genes have been found to be differentially regulated 

under the conditions reported here (e.g. 43). Expression of Ctbp2, whose locus represented 

our strongest association signal (Table 1), proved to be inversely regulated by fasting and 

diet induced obesity. Thus, hypothalamic gene expression was reduced for this gene and 

additionally in fasted (12, 24 or 36 h) mice; this down-regulation persisted 6 hours after 

renewed access to adlibitum feeding (re-feeding for 6 h with either a high-fat diet or a fat-

free diet). Genes, whose expression is down-regulated in fasting, are usually anorexigenic 

(e.g., leptin44,45), while expression of orexigenic genes (e.g., ghrelin46) is increased in 

fasting. Hence it is likely that both Ctbp2 and Nbeal1 have an anorexigenic effect. In 

accordance with this assumption, both genes were up-regulated in diet induced obesity 

(DIO; Figure 2).
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BDNF signalling

It is of interest to point out that the two genes CTBP2 and CARF are involved in BDNF 

signaling pathways47–63. The leptinergic-melanocortinergic-BDNF pathway includes genes 

with known genetic variation underlying both monogenic and polygenic obesity64. Multiple 

SNPs near BDNF are genome-wide significantly associated with obesity (e.g. 13,65). 

Evidence for an involvement of BDNF in AN stems from studies on (a) animal models, (b) 

genetics, and (c) serum or brain levels of BDNF. However, some of the data are equivocal. In 

more detail: (a) in animal models the central infusion of BDNF induces weight loss66,67. 

The suppressive effects of BDNF on feeding behavior and body weight are mediated by 

corticotropin-releasing factor (CRF) and hypothalamic neuronal histamine in mice68. BDNF 

signaling is altered by reduced BDNF expression in the hippocampus, in activity-based 

anorexia in mice69 and in immobilization stress induced anorexia in rats70. Deletion of the 

Bdnf gene in the PVH resulted in hyperphagia, reduced locomotor activity, impaired 

thermogenesis, and severe obesity. Additionally, in response to cold exposure BDNF 

expression in the PVH was increased71. (b) Association of variation in BDNF with AN was 

shown by some but not all studies72–84. For the widely studied BDNF Val66Met variant, a 

recent meta-analysis showed no association of the infrequent 66Met allele with AN82. (c) 

Decreased serum and brain levels of BDNF had unequivocally been reported in patients with 

AN66,85–100. This was recently confirmed in a meta-analysis97. While only one study has 

suggested an interaction between CTBP2 and BDNF47, the interaction of CARF and BDNF 

has been substantiated in numerous studies (see above). Thus, again as BDNF might be 

involved in both AN and obesity27,101,102 this gene is biologically highly plausible.

In the following we provide additional information on the genes located nearest to the three 

loci identified via the nine SNPs starting with the chromosome harboring the SNPs with the 

lowest p-values:

Chromosome 10—The three intronic SNPs in the CTBP2 gene (C-terminal binding 

protein 2) show the lowest p-values in our BMI GWAMA13 look-up (Table 1); as stated 

above the effect is almost only due to females. The two alternative CTBP2 transcripts lead to 

two distinct proteins, one of which is a transcriptional repressor, while the other is a major 

component of synaptic ribbons, a specialized form of synapses. A NAD+ binding domain is 

common to both isoforms. There is evidence that the gene/protein is involved in brown 

adipose tissue function and regulation103–109. Ctbp2 knock-out mice displayed abnormal 

phenotypes in the cardiovascular and central nervous systems, in addition to having effects 

on embryogenesis, growth/size/body, and mortality/aging (http://www.informatics.jax.org/

allele/ MGI:2183646110). Recently, a miRNA that was up-regulated during the development 

of obesity in mice (miR-342-3p) was described to promote a suppressing effect on 

CtBP2111, again underscoring the relevance of the gene for weight regulation.

Chromosome 19—The cyclin E1 gene (CCNE1) identified via the two SNPs 5′ to this 

gene encodes a protein that belongs to the highly conserved cyclin family. Cyclins act as (i) 

regulators of specific kinases and (ii) contribute to the coordination of mitotic events. In 

many tumors overexpression of this gene has been observed112. It was recently shown that 
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proliferation of 3T3-L1 preadipocytes promoted by recombinant myostatin increased 

expression of proliferation related genes (e.g. cyclin E1 by 20.5 %113).

Chromosome 2—The third chromosomal locus includes two genes, because the four 

SNPs are located in a region with high linkage disequilibrium (lowest LD for the four SNPs: 

r2 ≥ 0.819, D′ = 1). Three of the SNPs are located in an intron, one is 5′ to NBEAL1 (Table 

1): (1) The calcium-response factor gene (CARF or as an alias name amyotrophic lateral 

sclerosis 2 (juvenile) chromosome region, candidate 8 gene: ALS2CR8) acts as a 

transcriptional activator that mediates the calcium- and neuron-selective induction of BDNF 

expression52. Lack of Carf (Als2cr8) in knock-out mice results in deficits associated with 

learning and memory56. Functionally relevant recessive mutations in the gene have been 

described in patients with amyotrophic lateral sclerosis 2 (ALS2114).

In sum, in a cross-trait analysis for genetic loci involved in AN risk and increased BMI three 

chromosomal loci with potential relevance for both traits were detected. Apart from the 

identification of these loci, their role in both AN and body weight regulation was particularly 

substantiated by ex vivo data of mouse models for fasting and DIO suggesting an anorexic 

role of CTBP2 and NBEAL1, by the sex specific results for CTBP2 and the finding that 

CTBP2 and CARF are involved in BDNF regulation. Further in depth molecular genetic and 

biological analyses are essential to understand the relevance of these loci and the genes they 

contain in the etiology of AN and in body weight regulation/obesity. The association of AN 

alleles with increased BMI might imply that a specific genetic variant (allele) can either 

increase or decrease BMI depending on presence or absence of additional factors with an 

influence of the body weight (e.g. occurrence of an eating disorder), or the variant 

predisposes to dysregulation and other genes or environmental factors determine its 

direction). If true, this general concept has implications for gene mapping approaches in 

genetic epidemiology calling for more hypothesis-driven stratified analyses. A spectrum of 

different variants (missense, nonsense and frameshift) has been described for the four genes 

(Supplementary Table 7), so that a mutation screen in these genes in study groups of patients 

with AN or extreme obesity is warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hypothalamic expression of Ctbp2 (a), Ccne1 (b), Carf (c), Nbeal1 (d), or in response to 

fasting for 12, 24 or 36 h, and after re-feeding for 6 h with either a high-fat diet (HFD) or a 

fat-free diet (FFD, N = 6–8 mice per group) (c). *P<0.05, **P<0.01, based on a one-way 

ANOVA with Dunnett’s Multiple Comparison post-hoc test
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Figure 2. 
Hypothalamic expression of Ctbp2 and Nbeal1 in diet induced obesity (DIO) as compared to 

age-matched lean control mice.
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