Table 3.
Performance of the LDA classifier with shrinkage regularization trained using all controlling fixations as target fixations (Trainset 2).
Sbj. | Test on fixations with 500 ms threshold | Test on fixations with 1000 ms threshold | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Specificity | Sensitivity | AUC | Sensitivity | |||||||||
All | Button | Ball | Free cell | All | Button | Ball | Free cell | But-ton | Ball | Free cell | ||
1 | 0.90 ± 0.16 | 0.18 ± 0.19 | 0.21 ± 0.21 | 0.17 ± 0.18 | 0.18 ± 0.18 | 0.63 ± 0.06 | 0.64 ± 0.10 | 0.61 ± 0.05 | 0.64 ± 0.06 | 0.13 | 0.09 | 0.08 |
2 | 0.85 ± 0.07 | 0.28 ± 0.10 | 0.34 ± 0.17 | 0.30 ± 0.08 | 0.20 ± 0.13 | 0.63 ± 0.02 | 0.66 ± 0.06 | 0.64 ± 0.02 | 0.58 ± 0.05 | 0.30 | 0.24 | 0.16 |
3 | 0.96 ± 0.05 | 0.19 ± 0.12 | 0.24 ± 0.21 | 0.15 ± 0.10 | 0.15 ± 0.11 | 0.63 ± 0.04 | 0.70 ± 0.10 | 0.60 ± 0.06 | 0.59 ± 0.08 | 0.20 | 0.10 | 0.09 |
4 | 0.83 ± 0.17 | 0.32 ± 0.18 | 0.41 ± 0.19 | 0.26 ± 0.21 | 0.27 ± 0.17 | 0.64 ± 0.02 | 0.69 ± 0.07 | 0.62 ± 0.03 | 0.60 ± 0.03 | 0.34 | 0.24 | 0.32 |
5 | 0.83 ± 0.09 | 0.21 ± 0.08 | 0.25 ± 0.14 | 0.19 ± 0.08 | 0.21 ± 0.11 | 0.64 ± 0.03 | 0.67 ± 0.03 | 0.61 ± 0.03 | 0.66 ± 0.05 | 0.19 | 0.16 | 0.14 |
6 | 0.70 ± 0.25 | 0.32 ± 0.23 | 0.36 ± 0.27 | 0.30 ± 0.23 | 0.37 ± 0.28 | 0.59 ± 0.06 | 0.59 ± 0.06 | 0.56 ± 0.05 | 0.63 ± 0.07 | 0.31 | 0.21 | 0.27 |
7 | 0.90 ± 0.09 | 0.12 ± 0.09 | 0.19 ± 0.11 | 0.12 ± 0.06 | 0.13 ± 0.11 | 0.56 ± 0.01 | 0.60 ± 0.02 | 0.55 ± 0.03 | 0.56 ± 0.05 | 0.07 | 0.07 | 0.09 |
8 | 0.92 ± 0.05 | 0.26 ± 0.16 | 0.24 ± 0.15 | 0.28 ± 0.15 | 0.30 ± 0.19 | 0.71 ± 0.06 | 0.68 ± 0.07 | 0.72 ± 0.05 | 0.74 ± 0.06 | 0.26 | 0.27 | 0.21 |
Mean | 0.86 | 0.24 | 0.28 | 0.22 | 0.23 | 0.63 | 0.65 | 0.61 | 0.63 | 0.23 | 0.17 | 0.17 |
Std. | 0.15 | 0.17 | 0.08 | 0.07 | 0.19 | 0.04 | 0.04 | 0.05 | 0.06 | 0.09 | 0.08 | 0.09 |
For training, recordings with 500 ms dwell threshold were used. On these recordings, 5-fold cross-validation was used to estimate, as M ± SD over folds, all the performance indices. For each fold, the classifier was trained on 80% of the set, its threshold was adjusted on 8% aiming to obtain 90% specificity, and testing was done on 12%. In the case of testing on 1000 ms dwell threshold data, the train and test sets were not overlapped and, therefore, the classifier was applied to all test data.