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Abstract
Toll-like receptors (TLRs) are pattern recognition re-
ceptors that participate in host defense by recognizing 
pathogen-associated molecular patterns alongside inflam-
matory processes by recognizing damage associated 

molecular patterns. Given constant exposure to pathogens 
from gut, strict control of TLR-associated signaling 
pathways is essential in the liver, which otherwise may 
lead to inappropriate production of pro-inflammatory 
cytokines and interferons and may generate a predispo-
sition to several autoimmune and chronic inflammatory 
diseases. The liver is considered to be a site of tolerance 
induction rather than immunity induction, with specificity 
in hepatic cell functions and distribution of TLR. Recent 
data emphasize significant contribution of TLR signaling 
in chronic liver diseases via  complex immune responses 
mediating hepatocyte (i.e. , hepatocellular injury and 
regeneration) or hepatic stellate cell (i.e. , fibrosis and 
cirrhosis) inflammatory or immune pathologies. Herein, 
we review the available data on TLR signaling, hepatic 
expression of TLRs and associated ligands, as well 
as the contribution of TLRs to the pathophysiology of 
hepatic diseases.
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Core tip: Toll-like receptors (TLRs) are known to be 
pattern recognition receptors that recognize pathogen- 
and damage-associated molecular pattern molecules 
and thus participate in the activation of innate immune 
system. TLR signaling plays a significant role in liver 
diseases, whereas inflammatory or immune pathologies 
targeting distinct liver cells are based on complex 
immune responses. Herein, we review the current 
data on TLR signaling, hepatic expression of TLRs and 
associated ligands, as well as the contribution of TLRs 
to the pathophysiology of hepatic diseases. 
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INTRODUCTION
Liver, main filter organ acting as a first line of defense, is 
continuously exposed to massive gut-derived antigenic 
load via the portal vein, whereas inflammatory signs 
occur under normal conditions owing to highly specific 
immune properties leading to immune tolerance[1-7]. 

Pathogen-associated molecular patterns (PAMP) 
are specific signature molecules essential to entire cate-
gories of microorganisms[8-11]. Innate immune system 
recognizes PAMPs via pattern recognition receptors 
(PRRs)[7-9,12,13] and consequent downstream signaling 
cascades for proper host recognition and prevention of 
immune system hyperactivation[7-9,14]. 

Toll-like receptors (TLRs) are a family of PRRs that 
induce innate immune system by recognizing PAMPs 
and damage-associated molecular pattern molecules 
(DAMPs)[15-18]. Although the recognition of PAMPs 
enables a prompt and effective protection against 
invading pathogens[5,11,12], TLRs also contribute to the 
activation of adaptive immune responses, epithelial 
regeneration and carcinogenesis and regulation of sterile 
inflammation[5,19,20]. 

Consistent with their extensive hetapocellular ex-
pression[7,18,21,22], TLRs have recently been recognized 
as principal elements of the hepatic immune system 
that also play a crucial role in liver physiology and patho-
physiology[11,15,23]. Despite being constantly exposed 
to gut-derived PAMPs, healthy liver is free of inflamma-
tion risk due to presence of “liver tolerance” in which 
modulation of TLR signals also plays a role[5,15,23-25]. A 
tight regulation of TLR activation occurs at many levels 
involving the receptor itself, the signaling cascade and 
a distinct compartmentalization of TLRs[24,26,27]. Acute 
and chronic liver diseases are highly associated with 
triggering TLR signaling by gut-derived microbiota in the 
breakdown of the tolerance and sterile insult-associated 
products of damaged cells[28]. 

Ligand mediated stimulation of TLRs activates down-
stream adaptor molecules, including myeloid differen-
tiation primary response protein 88 (MyD88), myeloid 
toll/interleukin (IL)-1 receptor (TIR)-domain-containing 
adaptor-inducing interferon-β (TRIF) and TRIF-related 
adaptor molecule (TRAM). This triggers signaling 
cascades that converge on nuclear factor-kB (NF-kB), 
interferon (IFN) response factors (IRFs) and mitogen-
activated protein (MAP) kinases[23,29-32]. As a result, 
transcription of certain proinflammatory agents including 
IL-6, IL-12, IL-23, and tumor necrosis factor α (TNF-α) is 
induced[23,29-32]. 

TLR-mediated inflammatory-signaling pathways 
are shown to be associated with entire spectrum of 
liver diseases, from hepatitis, liver fibrosis and cirrhosis 
to alcoholic and nonalcoholic liver disease, ischemia/
reperfusion injury, liver regeneration and hepatocellular 
carcinoma[4,5,7,8,15,18,23,33]. 

Herein, we review the available literature on TLR 
signaling, hepatic expression of TLRs and associated 
ligands, as well as the contribution of TLRs to the patho-

physiology of hepatic diseases. 

TLR FAMILY, DISTRIBUTION, LIGANDS
TLRs are a group of evolutionarily conserved type Ⅰ trans-
membrane proteins responsible for innate immune 
and inflammatory responses[34-38]. They comprise an 
extracellular domain with receptor specific leucine-rich 
repeat motifs and a highly conserved cytosolic domain 
alike to the IL-1 receptor called TIR[13,29,36,37].

Of 13 TLRs exist in mammals, only TLRs 1-10 exist in 
humans[9,26,39-41]. The presence of multiple widely expressed 
TLRs enables recognition of different pathogens and thus 
initiation of appropriate immunologic response by the 
innate immunity system[30,42,43]. PAMPs include microbial 
molecular structures such as Gram-negative related 
lipopolysaccharide (LPS); Gram-positive bacteria related 
lipoteichoic acid and peptidoglycan (PGN); lipoglycans, 
lipoarabinomannan, lipopeptides and lipomannans from 
mycobacteria; zymosan from yeast; and DNA from 
viruses and bacteria[34,44]. 

DAMP include extracellular matrix and plasma 
membrane components, nuclear and cytosolic proteins 
and elements of damaged organelles[9,34,45,46]. 

Each TLR is able to recognize a particular molecular 
pattern[29]. TLR1, TLR2, TLR4, TLR5 and TLR6 bind to 
molecules associated with bacterial membrane such as 
LPS, lipoprotein and PGN, whereas TLR3, TLR7, TLR8 
and TLR9 detect viral and bacterial or endogenous 
nucleic acids, including ssRNA, dsRNA, and unmethylated 
cytosine phosphate guanine (CpG)-containing DNA[29]. 
TLR4 along with TLR2 can recognize antigens from 
bacteria, fungi, parasites, viruses and DAMPs[47,48]. TLR10 
is the only family member among humans with no 
definite ligand, function or localization[9,13]. 

Given their ability to detect wide range of non-micro-
bial host-derived stimuli and their extensive expression 
in various cell types, TLRs are considered to participate 
in development, progression and resolution of several 
noninfectious inflammatory and immune diseases[37,49].

TLR SIGNALING PATHWAYS
Healthy liver contains low mRNA levels of TLRs and 
shows no activation of TLR-signaling pathways[5,50,51]. 
However, in the case of a breakdown in TLR tolerance 
against endogenous ligands under pathologic conditions, 
the TLR-related immune response induces TLR-ligand 
complex activated expression of proinflammatory/anti-
inflammatory cytokines and interferons[7,9,27,52].

The differential host cell response after TLR ligand 
stimulation is associated with the fact that TLRs selec-
tively use four main adaptor molecules, including MyD88, 
TIR domain-containing adaptor protein (TIRAP, or MyD88 
adaptor-like), TIR domain-containing adaptor protein 
inducing interferon-b (TRIF) and TRAM[7,9,27,30,52].

Signal transduction pathways following ligand-induced 
receptor dimerization involve one or more TIR-containing 
adaptor molecules, such as IL-1 receptor-associated 
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kinase (IRAK)-1, IRAK-4, TNF receptor-associated factor 
(TRAF)-6 and TANK binding kinase (TBK)-1, MAP kinases 
and IκB kinase (IKK). This leads to activation of the 
nuclear transcriptional factor kappa-B (NF-kB), interferon 
(IFN) regulatory factor 3 (IRF-3) and activator protein 
(AP)-1[37,53].

Upon binding with their ligand, all superfamily rece-
ptors except TLR3 use MyD88 to initiate signaling which 
may also act along with other adaptors, such as TIRAP, 
in the response induced by TLR4, TLR1/2, and TLR2/6. 
Activation of TLRs 5, 7, 8 and 9 also leads to NF-kb and 
AP-1 production, with no need for TIRAP to stimulate 
MyD88. TLRs 7 and 9 act through IRAK-1, 4 and TRAF-6, 
phosphorylate IRF-7 and lead to type 1 interferon mRNA 
expression. TLR3-mediated signaling uses only the TRIF 
adaptor molecule, which is also recruited by TLR4 in 
concert with another adaptor called TRAM[9,12,23,32,39,54] 
(Figure 1).

Hence, while intracellular signaling is similar, the 
final outcome of TLR activation differs depending on the 
nature of PAMPs, concomitantly activated TLRs and PRRs, 
the level of cytokines, and the cell stimulated[13,27,55-57]. 
Moreover, chronically activated signaling pathways is 
likely to induce transcription of oncogenic factors, which 
adds a further level of complexity to the intracellular 

signaling for these receptors[13,27,58]. 

TLR EXPRESSION AND SIGNALING IN 
HEPATIC CELL POPULATIONS
Under constant exposure to gut-derived microbiota, 
strict regulation of TLR signaling pathways is crucial in 
the liver, which otherwise may lead to inappropriate 
production of proinflammatory cytokines and interferons 
creating a predisposition to several autoimmune and 
chronic inflammatory diseases[9]. 

Liver cells are classified as parenchymal or non-
parenchymal cells. Hepatocytes comprise 60%-80% of 
the parenchymal cells, whereas the remaining population 
of non-parenchymal cells include Kupffer cells (KCs), 
sinusoidal endothelial cells (SECs), hepatic stellate cells 
(HSCs), dendritic cells (DCs), biliary epithelial cells (BECs) 
and intrahepatic lymphocytes[1,9,33]. 

Besides distinct function of liver cells with a highly 
specific distribution of TLR[1,33], liver comprises many 
populations of cells with immune competence that may 
respond to TLR signals, indicating the complexity of 
immune responses underlying inflammatory or immune 
pathologies associated with the liver cells[10]. 

mRNA levels of TLR1, TLR2, TLR4, TLR6, TLR7, TLR8, 
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TLR9, TLR10 and signaling molecules such as MD-2 
and MyD88 are lower in liver as compared with the 
levels observed in other organs[50,51,59]. This discrepancy 
indicates the high tolerance to TLR ligands from the 
intestinal microbiota in liver[11], whereas no specific liver 
cell population is considered central in TLR-mediated 
pathologies, with the different effects of TLR ligation 
varying from cell to cell[10] (Table 1).

Hepatocytes
Constituting 60% of liver cells, hepatocytes are the 
principal site for PRR production[5,33]. They express mRNA 
for all TLRs and are responsive to multiple PAMPs, while 
respond fairly weakly to TLR2 and TLR4 ligands[5,9,33]. 
While TLR4 expression in hepatocytes is not upregulated 
by proinflammatory mediators, hepatocytes show 
increased responsiveness to TLR2 ligands under inflam-
matory conditions leading to up-regulation of TLR2 
expression by LPS, TNF-alpha, bacterial lipoprotein, and 
IL-1β in an NF-kB-dependent manner[5,11,33,60,61]. 

Kupffer cells
Accounting for approximately 20% of non-parenchymal 
cells, KCs play a significant role in host defense by 
orchestrating the inflammatory response via functional 
properties, including phagocytosis, antigen processing 
and presentation, and secretion of proinflammatory 
mediators such as cytokines, prostanoids, nitric oxide, 
and reactive oxygen intermediates[5,9,11,33,62]. 

KCs express TLRs 2, 3, 4 and 9 and have a higher 
threshold for activation when compared with other 
immune cells given their milieu[5,9,33,63]. 

KCs are less responsive to “LPS tolerance” in the 
physiological environment, whereas upon activation, they 
produce several pro-inflammatory (IL-6, IL-12, IL-18 and 
TNFα) and anti-inflammatory (IL-10) mediators[33,64-66]. 
Additionally, KCs produce IFN-β, upregulate the expres-
sion of MHC-Ⅱ/costimulatory molecules and promote T 
cell proliferation and IFN-γ production; when stimulated 
with TLR3/TLR4 ligands; TLR1/TLR8 ligands and 
TLR1/2/4/6 ligands, respectively[22,33]. 

TLR subfamily Members Expression of cell population 
in the liver (protein level)

Location Ligand (origin) Signaling Final product-effect

TLR2 subfamily TLR1/2 NK cells, DCs (h) Plasma 
membrane

Bacterial lipoproteins
Triacylated lipopeptides

TIRAP-MyD88-
NF-kB/AP-1/IRF5 

pathway

Pro- and anti-inflammatory 
cytokines excluding type 1 
IFNs; the apoptotic cascade 
via recruiting FADD leading 

to caspase-8 activation
TLR2/6 Hepatocytes, Kupffer cells, 

NK cells, B cells, activated 
T cells, DCs (m), biliary 

epithelial cells

Diacylated lipopeptides LPS of 
Gram-positive bacteria

Fungal zymosan
Mycoplasma lipopeptides

TIRAP-MyD88-NF-
kB/AP-1 pathway

TLR10 Unknown ND
TLR3 subfamily TLR3 Hepatocytes, LSECs, Kupffer 

cells, NK cells, NKT cells, 
activated T cells, cDCs (m), 

biliary epithelial cells

Endosome Double-stranded RNA (viruses) PI3K/TRIF-IRF3 
pathway

TRAM-TRIF-NF-kB 
pathway

PI3K/TRIF-RIP1-
NF-kB pathway

Production of type 1 IFNs; 
the apoptotic cascade via 
recruiting FADD leading 

to caspase 8 activation; DC 
maturation

TLR4 subfamily TLR41 Hepatocytes, LSECs, Kupffer 
cells, NK cells, B cells, 

activated T cells, DCs (m), 
biliary epithelial cells, HSCs

Plasma 
membrane

LPS of Gram-negative bacteria; 
fusion protein (respiratory 
syncytial virus), envelope 

protein (mouse mammary-
tumor virus); HMGB1, 

hyaluronan, HSP60, free fatty 
acids (endogenous ligands); 

HSP72 (cells during stress and 
injury) surfactant protein A; 
fibrinogen; fibronectin extra 

domain A

TIRAP-MyD88-NF-
kB/AP-1 pathway
TRAM-TRIF-NF-
kB/IRF3 pathway

Pro- and anti-inflammatory 
cytokines excluding type 1 
IFNs; the apoptotic cascade 
via recruiting FADD leading 

to caspase 8 activation; 
DC maturation; activating 
caspase-1 through adaptor 

molecule apoptosis 
associated speck-like 

protein2

TLR5 subfamily TLR5 Biliary epithelial cells Plasma 
membrane

Flagellin protein (bacteria) MyD88-NF-kB/
IRF5 pathway

Pro- and anti-inflammatory 
cytokines excluding type 1 

IFNs
TLR9 subfamily TLR7/8 NK cells, B cells, DCs (h), 

DCs (m)
Endosome Single-stranded RNA 

(viruses), double-stranded, 
shortinterfering 
RNA (siRNA)

MyD88 and 
endosomal 

acidification 
(maturation)-IRF7 
pathway; MyD88- 
NF-kB pathway

High levels of type 1 
IFN production in pDCs; 

proinflammatory cytokine 
production

TLR9 LSECs, Kupffer cells, 
NK cells, B in mDCs and 

macrophages

Imidazoquinoline CpG-
containing viral or bacterial 

DNA
Endogenous host-DNA

Table 1  Toll-like receptor expression and their signaling in the liver[5,9,11,15,23,33,49]

1TLR4 requires LPS-binding protein (LBP), CD14 and MD2 to recognize LPS; 2Containing a caspase recruitment domain (ASC)[33]. RIP1: Receptor-interacting 
protein 1; FADD: Fas-associated death domain; TLR: Toll-like receptors; LPS: Lipopolysaccharide; DCs: Dendritic cells; HSCs: Hepatic stellate cells; LSECs: 
Liver sinusoidal endothelial cells; IFNs: Interferons; DC: Dendritic cell; MyD88: Myeloid differentiation primary response protein 88.
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Hepatic stellate cells
Constituting < 1% of non-parenchymal cells, HSCs 
undergo an activation process after liver injury and 
become the main liver cell type that produce extracellular 
matrix, contributing onset of liver fibrosis[67-70]. 

HSCs express TLRs 4 and 9, whereas expression 
of TLR2 is induced by TLR4 stimulation in HSCs[68-70]. 
Activated HSCs express TLR4 and CD14 and respond 
to LPS upon the activation of IKK/NF-kB and c-Jun 
N-terminal kinase (JNK) as well as the secretion of proin-
flammatory cytokines such as transforming growth 
factor (TGF)-β, IL-6, IL-8 and several chemokines such 
as MCP-1, MIP-2, intercellular cell adhesion molecule 1, 
vascular cell adhesion molecule 1, and E-selectin[9,33,70]. 
TLR4 enhances TGF-β signaling, and stellate cell activation 
was shown to promote hepatic fibrosis[71]. In chimeric 
C3H/HeJ mice with TLR4 mutation in HSC or KCs, 
amelioration of hepatic fibrosis by LPS indicated a cardinal 
role for KCs and HSC in hepatic inflammation and 
fibrosis[9,72]. LPS was shown to downregulate the TGF-β 
pseudoreceptor BAMBI in quiescent HSCs to induce 
TGF-β signaling and stellate cell activation[71]. Additionally, 
TLR9 signaling activated via DNA from apoptotic hepa-
tocytes was shown to modulate liver fibrosis via its 
effects on HSC differentiation through increased collagen 
production and inhibited HSC migration[73]. Hence, 
LPS and other TLR ligands are suggested to facilitate 
fibrogenic responses in the liver via their direct effects on 
HSCs[9,11,33]. 

Biliary epithelial cells
Accounting for approximately 5% of non-parenchymal 
cell population in the liver, BECs are commonly exposed 
to several gut-derived microbes[74,75]. BECs mainly 
express TLRs 2, 3, 4 and 5, which are upregulated by 
IFN-γ stimulation[74,75]. TLR2 and TLR4 activation results 
in increased IRAK-M expression and provide negative 
feedback in human intrahepatic BECs[76].

Under normal conditions, increased IRAK-M ex-
pression is critical in preventing undesired induction of 
the TLR signaling cascade, while in case of inflammatory 
conditions, upregulation of BEC-associated TLRs leads 
to IFN-c and TNF-α exposure, participating in biliary 
pathogenic responses[9,75].

Sinusoidal endothelial cells
Making up 50% of the non-parenchymal cells, SECs 
function in hepatic perfusion and nutrient supply[66,77-79]. 
They express TLR3, 4 and 9 and show increased NF-kB 
activation and CD54 expression alongside a limited ability 
to trigger leukocyte adhesion after LPS stimulation[66,77-79]. 
Although these effects indicate a scavenging role and 
thus the likelihood of SECs acting as antigen presenting 
cells, the exact role of the TLR signaling in inflammatory 
process in SEC remains inconclusive[9,11,33,66,77-79]. 

Isolated SECs from WT mice were shown to respond 
to TLR1, 2, 6 and 9 ligands via producing TNF-α; to TLR3 
ligands by producing TNF-α, IL-6 and IFN-β; and to TLR4 
ligands via production of TNF-α and IL-6[22,33]. Upon TLR8 

ligand binding, SECs leads to TNF-α production alongside 
upregulation of major histocompatibility complex (MHC)-
Ⅱ and co-stimulatory molecules. Stimulation of SECs by 
TLR1, 2 or 6 ligands is suggested to be associated with 
activation of allogeneic T cells, as evaluated by the mixed 
lymphocyte reaction[22,33]. The SEC immune response is 
also modulated by LPS tolerance, which appears to be 
based on prostanoid expression rather than regulation 
at the level of TLR4 surface expression[78]. Although 
SECs have been suggested to be involved in the hepatic 
uptake of LPS in some studies, several studies have not 
confirmed such a role[33,80,81].

Hepatic dendritic cells
Comprising < 1% of non-parenchymal cells, hepatic DCs 
are recruited into the liver sinusoids during inflammation 
and then they may migrate to periportal and pericen-
tral areas[5,33,82,83]. Plasmacytoid DCs (pDCs), myeloid 
DCs, lymphoid DCs, mixed lymphoid + myeloid DCs and 
natural killer DCs are amongst the DC subsets, whereas 
lymphoid and myeloid DCs are considered conventional 
DCs[33,82,83]. 

Each DC subset show distinct TLR expression pattern 
in humans with TLR1, 7 and 9 expression via pDCs, 
while expression of all TLRs excluding TLR9 by other DC 
subsets[20,33,84]. Cytokines TNF-α, IL-6 and IL-12 TLR7 
are produced by hepatic pDCs upon TLR7 and TLR9 
activation, whereas TNF-α and IL-6 in response to TLR2, 
TLR3 and TLR4 activation[50,85].

TLRs IN THE PATHOPHYSIOLOGY OF 
LIVER DISEASES
Increasing evidence suggests that TLRs have significant 
contribution to the pathogenesis and progression of 
several liver diseases, i.e., non-alcoholic fatty liver disease 
(NAFLD), alcoholic liver disease (ALD), viral hepatitis, 
autoimmune liver disease and hepatic inflammation-
fibrosis-carcinoma (IFC) sequence including hepatic 
fibrosis and/or cirrhosis and hepatocarcinoma[9,11,13,15,23,33]. 

LPS/TLR4 and TLR2 signaling have been suggested 
to be principal actors in the human hepatic IFC sequence 
associated with viral chronic hepatitis[86], while the 
participation of TLR3 in the pathophysiology of several 
liver diseases has also been suggested in the recent 
studies[11,15,23,87] (Figure 2).

NAFLD and steatohepatitis
NAFLD and steatohepatitis is characterized by a 
pathologic spectrum that ranges from fatty liver (hepatic 
steatosis) to cirrhosis with intervening non-alcoholic 
steatohepatitis (NASH) and usually occurs in association 
with obesity and insulin resistance[13,72,88-90]. 

Increased serum PAMP levels were observed in both 
experimental models and in NAFLD patients[9,18,91-96]. 
A shift in microbial populations to adopt an “obese” 
phenotype in NAFLD is referred to as “metabolic endo-
toxaemia”, in which a high-fat diet is associated with 
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elevated levels of LPS translocation[27,90,97]. 
While TLR2, TLR4 and TLR9 participate in the develop-

ment of NASH and NAFLD, LPS-TLR4 is considered to be 
the main pathway for the progression of NAFLD[98-100]. 
The role of bacterial overgrowth has also been associated 
with development of NASH, emphasizing the interaction 
between bacterial overgrowth, gut permeability and liver 
injury[90,101,102].

While the role of adipose tissue macrophages in the 
development of NAFLD is not yet clear, KCs are known 
to play a pivotal role in the development of NAFLD along-
side accompanying hepatic inflammation and related 
complications[18,98]. 

When inflammation occurs in NAFLD, NF-kB and 
transcriptional factor AP1 are activated, stimulating the 
production of TNF-α and IL-10, in particular, by KCs[23,103]. 
Studies in animal models indicated the likelihood 
of TLRs 2, 4 and 9 to participate in NAFLD onset or 
progression[9,18,91,104]. LPS/TLR4 and TLR9 signaling in KCs 
have been associated with both onset and progression 
of NAFLD by inducing reactive oxygen species (ROS)-
dependent activation of X-box binding protein-1 and IL-
1b, respectively, whereas induction of hepatic steatosis 
occurs independent of TLR2 signaling in KCs[18,104-106] 
(Figure 2).

While free fatty acids and denatured host DNA are 
considered to be potential candidates to activate TLR2, 
TLR4 and TLR9 signals, no clear-cut evidence exists to 
confirm their capacity to activate TLRs in NAFLD[18]. TLR4 
signaling has been considered to play a major role in the 
pathogenesis of NAFLD that operates via KCs stimulation 
and increased ROS and TNF-α production[13]. 

ALD 
ALD is described along a disease spectrum ranging from 
steatosis and steatohepatitis to fibrosis and cirrhosis 
and potential development of hepatocellular carcinoma 
(HCC)[90,107]. 

Despite a strong association between alcohol and 
hepatotoxicity, the exact pathogenesis has not yet been 

elucidated[90]. Involvement of the gut microbiota via 
a “leaky” gut has been indicated in the development 
of ALD[18], whereas the role of alcohol has also been 
suggested in increasing gut permeability by disrupting 
tight junctions[108,109]. Increased plasma LPS levels and 
hepatic endotoxin levels, which leads to increased TLR4 
signaling on KCs, HSC, LSECs and hepatocytes and thus 
the release of pro-inflammatory cytokines have been 
associated with inflammation and liver damage[9,107,108,110]. 

Recent studies indicate significant contribution of 
TLR4 signaling and thus the crucial role of both KCs and 
HSCs in development of gut-derived endotoxin related 
effects in ALD[18]. Chronic alcohol consumption is also 
associated with the increased expression of TLR1, TLR2, 
TLR4 and TLR6-TLR9, which further potentiates the 
secretion of the pro-inflammatory TNF-α in response to 
LPS[111].

KCs produce pro-inflammatory cytokines (TNF-α, 
IL-1, IL-6 and IL-8, chemokines) and profibrogenic factors 
(TGF-β) under post-LPS mediated TLR4-dependent 
stimulation, and consequent liver inflammation and 
stellate cell activation induce liver fibrosis[9,15,112,113]. The 
TLR4-dependent downstream signaling cascade in ALD 
was shown to proceed via the MyD88-independent 
pathway, possibly via adapter molecule TRIF[114]. None-
theless, increased expression of not only TLR4 but also 
other TLRs such as TLR1, 2, 6, 7, 8 and 9 was shown in 
an experimental chronic alcohol model[115]. 

Although activation of KCs via TLR4 signaling is a 
key event in the pathogenesis of alcohol-induced liver 
injury[18], recent data emphasize the activation of TLR4 
signaling in HSCs as well, indicating the their contribution 
to alcohol-induced hepatocyte injury, steatosis, 
inflammation, and fibrogenesis[18,116]. In HSCs, activated 
TLR4 signaling downregulates TGF-β pseudoreceptor 
BMP and activin membrane-bound inhibitor (BAMBI), 
resulting in enhancement of TGF-β signaling, whereas 
BAMBI downregulation is dependent on MyD88 but not 
TRIF[18,110]. The TLR4-TRIF-IRF3-dependent pathway 
associated with bone marrow-derived cells including 
KCs is considered to be more important than the TLR4-
MyD88-dependent pathway in the development of 
alcoholic steatohepatitis[18,110,114].

Acting through upregulation of TLR4 and MD-2 and 
induction of a Th1-type immune response, bacterial DNA 
recognition by TLR9 was also shown to be associated 
with LPS induced liver injury[117], indicating the likelihood 
of TLR9 signaling to contribute to pathogenesis of ALD[18].

Hepatic fibrosis and cirrhosis
The development of hepatic fibrosis and consequent 
cirrhosis upon continued liver insults may occur in any 
type of chronic hepatic injury, including viral hepatitis, 
alcohol, autoimmune and metabolic disease[9,67]. 

Prolonged or repeated liver injury leads to a mala-
daptive interplay of hepatocytes, HSCs and KCs in 
association with TLR expression, eventually resulting in 
abnormal extracellular matrix protein deposition in the 
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liver[35,67,118]. 
LPS-TLR4 activation is considered essential for hepatic 

fibrogenesis, whereas TLR4 is expressed on KCs and 
HSCs, the key mediators of hepatic fibrogenesis[27,75,80,81]. 

KCs express the highest levels of TLR4 and act as the 
principal target of LPS leading to release of several pro-
inflammatory and pro-fibrogenic mediators[5,27,71,114,119]. 
However, HSCs are crucial in the pathogenesis of fibrosis 
and cirrhosis given their myofibroblastic phenotype and 
ability to produce collagen, the principal component of 
fibrotic tissue[9,120]. 

Activation of HSC occurs either via pro-inflammatory 
cytokines and growth factors secreted by LPS-TLR4-
stimulated KCs, or directly via LPS-TLR4-dependent HSC 
stimulation[9,71]. LPS/TLR4 signaling in HSCs is essential 
for development of liver fibrosis and acts via stimulating 
production of chemokines that recruit KCs alongside 
enabling unrestricted activation of HSCs by KCs-derived 
profibrogenic cytokine TGF-β[11,13,103,121] (Figure 2).

TLR4 activation in HSCs is considered to be the main 
step for collagen production and the main mediator of 
fibrosis and cirrhosis[9,11,67,70,71]. 

KCs induce fibrogenesis by means of proinflam-
matory and profibrogenic cytokine secretion, whereas 
HSCs are the leading source of extracellular matrix 
production in the fibrotic liver[11,67]. 

TLR9 signaling-associated metabolic pathways are 
also considered important in the genesis of hepatic 
fibrosis in vivo, leading to activation of pathways such 
as IL-1 production and thus HSCs by upregulating pro-
fibrogenic genes, such as procollagen type Ⅰ and tissue 
inhibitor metalloproteinase-1[16,69,103,104]. 

Moreover, a deficiency of TLR3-mediated NK cell-
dependent apoptosis of HSCs has been linked to the 
progression of alcohol-induced liver fibrosis[122,123]. 
Upregulation of TLR2 was shown to promote liver inflam-
mation and fibrogenesis in NASH[106] and HSCs activation 
and inflammation response during carbon tetrachloride-
induced liver fibrosis mediated via MAPK and NF-jB 
signaling pathways[124], whereas TLR5 was also shown 
to be directly involved in the progression of fibrosis via 
activation of the NF-kB and MAPK signaling pathways[52]. 

Hepatitis B
Hepatitis B virus (HBV) is a DNA virus responsible for 
acute hepatitis, which is self-limiting in 80%-90% of 
adults and chronic in 10%-20% of cases[5,125]. Hepatitis 
B is associated with an increased risk of developing 
cirrhosis, hepatic decompensation and HCC, but pro-
gnosis shows interpersonal variation depending on the 
viral susceptibility and induction of antiviral immune 
response[126,127]. 

Indicating the role of TLRs in HBV infection, the 
activation of TLR3, TLR7 and TLR9 as well as TLR4 
and TLR5, has been associated with blockage of viral 
replication via IFN-dependent inhibition of HBV[76,128,129]. 
Moreover, HBV leads to TLR downregulation alongside 
restriction of receptor activity, increasing the likelihood 
of persistent infection[27]. 

In vitro HBV studies on TLR expression in HepG2 
cells revealed elevated expression of TLRs 2, 3, 4, 5, 6, 7 
and 9 mRNA upon ligand binding along with an induced 
IFN response and abolished HBV DNA replication and 
RNA transcription, whereas no or very limited expression 
of TLRs 1, 8 and 10[9,130]. Furthermore, transfection of 
HBV-positive cell lines with TLR adaptor molecules was 
shown to be associated with elevated TLR activity and a 
consequent reduction in HBV DNA and mRNA levels[131], 
whereas HBV replication was completely abolished after 
injection of TLR3, TLR4, TLR5, TLR7 and TLR9 ligands 
into HBV transgenic mice[129]. 

TLR1, TLR2, TLR4 and TLR6 were shown to be down-
regulated in HBV-infected peripheral blood monocytes 
along with a decreased cytokine response to TLR2 and 
TLR4 ligands[132]. Downregulation of TLR2 on hepatocytes 
and hepatic KCs was demonstrated in HBeAg-positive 
CHB-infected patients, whereas upregulation of TLR2 and 
cytokine expression was observed in HBeAg-negative 
CHB patients[133]. Hence, HBeAg-induced downregulation 
of TLR2 via precore protein has been accused for the 
accelerated progression of disease in HBeAg-positive 
patients[9,133]. 

Although HBV is able to downregulate TLRs and 
thus avoid anti-viral pathways, prolonged infection and 
loss of HBeAg is considered likely to upregulate TLR 
signaling pathways such as TLR2 that are not primarily 
involved in anti-HBV responses while trigger hepatic 
inflammation and disease progression[11].

In vitro analysis of HBV-Met cells revealed that TLR-
treated KCs and SECs to have a modulatory effect on 
HBV replication[134]. TLR3- and TLR4-stimulated KCs 
and TLR3-activated SECs were shown to affect HBV 
replication via MyD88-independent pathway[66]. HBV-
suppressing effect was mediated by IFN-β in case of 
TLR3 ligand activation, whereas by cytokines of an 
undefined nature in case of TLR4-activated KCs[66]. 

HBV is a stealth virus and thus does not induce 
an IFN response during the early phase of infection, 
whereas its recognition by liver resident cells is con-
sidered likely to activate innate immune responses 
without IFN induction[107,135]. Notably, HBV was shown 
to be recognized by hepatic NPCs, mainly by KCs, 
leading to NF-kB-dependent induction of the release of 
the inflammatory cytokines IL-6, IL-8, TNF-α and IL-1β 
as well as reduced expression of transcription factors 
essential for HBV gene expression and replication 
including hepatocyte nuclear factor (HNF) 1α and 
HNF4α[136]. 

Hepatitis C
Hepatitis C virus (HCV) is a hepatotropic virus re-
sponsible for development of chronic hepatitis and 
related complications such as liver cirrhosis, liver failure 
or HCC[137,138]. 

Similarly to HBV, current evidence indicates that HCV 
selectively impairs activation of TLR signaling controlling 
HCV replication, while it concomitantly stimulates TLR 
pathways that generate a chronic inflammatory state 
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leading to persistent liver injury[11,27,139,140].
HCV-induced inhibition of TLR signaling contributes to 

its chronicity related to virus dissemination, inflammation 
and eventual progression to fibrosis and cirrhosis[9,11]. 

 Regulation of HCV replication by non-parenchymal 
liver cells occurs through the production of IFN-β upon 
their stimulation by TLR3 and TLR4[141]. The inhibitory 
effect of HCV proteins on TLR7 and TLR9, is also likely 
to prevent virus clearance[27]. Furthermore, activation 
of TLR2 along with TLR1 and TLR6 and possibly TLR4 
by HCV core protein and NS3 promotes hepatic inflam-
mation and injury[142-145]. 

In the presence of HCV, significantly decreased TLR7 
expression along with TLR7-independent activation of 
IRF-7 pathway was demonstrated both in vitro and in 
vivo[146].

The NS3/4A serine protease of HCV, HCV NS3 
protein and HCV NS5A act via three signaling pathways 
including the TLR3-TRIF-TBK1-IRF-3, TLRMyD88, and 
RIG-I/MDA5-IPS-1 pathways to enable HCV to evade 
innate immune signaling[33]. Moreover, LPS, the HCV core 
protein and IFN-γ have been suggested to amplify inflam-
matory monocyte/macrophage activation via formation 
of MyD88-IRAK complexes, increased NF-kB activation 
and increased production of TNF-α, leading to the loss of 
TLR tolerance[147].

Based on these findings, both host- and virus derived 
factors have been considered likely to act on macro-
phages to induce persistent inflammation during chronic 
HCV infection[53,107]. 

Hepatocarcinoma
Diseases associated with uncontrolled innate immunity 
related to TLR ligand exposure in the liver (fibrosis, 
hepatitis B and C infection, ALD and NASH) are also 
among the etiologies for HCC. Therefore, it appears 
likely that TLRs play a role in the development of inflam-
mation-associated liver cancer and are involved in 
the progression of HCC[18,107]. Hence, chronic hepatic 
inflammation and fibrosis, as regulated by TLR activation, 
promotes HCC formation in approximately 10% of cases 
of cirrhosis[9,54]. 

TLRs, TLR4 in particular, are considered to play a 
significant role in associating hepatic chronic inflam-
mation and hepatocarcinoma[13]. A significant regression 
in liver tumors in TLR4 and MyD88 deficient mice 
indicates a prominent contribution of TLR signaling to 
hepatocarcinogenesis[23,148].

HCC has been indicated to be promoted via gut 
microbiota and TLR4 in association with increased 
production of proinflammatory cytokines (TNF-α, IL-6), 
hepatomitogen epiregulin expression and prevention of 
apoptosis, whereas a reduction in the development of 
HCC was shown via gut sterilization, germ-free status 
or TLR4 inactivation[18,149,150].

Activation of KCs via TLRs is considered to be involved 
in the process of tumorigenesis[18] by inducing proin-
flammatory cytokines and hepatomitogens responsible 
for enhanced development of HCC[150,151], whereas TLR4 

expression on non-marrow-derived resident liver cells is 
considered to be required for the promotion of HCC[149].

TLR4 contributes significantly to hepatic inflammation 
and fibrosis, whereas upregulation of inflammatory 
factors such as COX-2 and NF-kB by TLR4 as well as 
the TLR adaptor protein Myd-88 is also important in 
hepatocarcinogenesis[148,152-155]. TLR3 expression is 
suggested to contribute to hepatocarcinoma via pro-
apoptotic activity, while activation of TLR9 via CpG DNA of 
HBV has been associated with malignant transformation 
in liver cells[27,156,157]. 

Although, TLR2 binding with ligands such as HMGB1 
and HSPA1A is associated with tumor enhancement, 
the effect of TLR2 activation is considered likely to differ 
according to the phase of HCC carcinogenesis, with 
anti-oncogenic potential slowing down the onset and 
development of HCC in earlier phases, whereas pro-
oncogenic potential during later stages that promotes 
the progression of inflammation and fibrosis[158]. 

Activation of the NF-kB and JNK pathways and higher 
expression levels of IKKα and IKKβ are considered 
critical in the production of the cytokines related to TLR-
induced liver damage and HCC progression[107].

Recently, spontaneous HCC development was demon-
strated in hepatocyte-specific TAK1 deleted (TAK1DHEP) 
mice along with a resistance for HCC development that 
occurs via deletion of MyD88, TLR4 or TLR9 signaling[159].

Alcohol and HCV are suggested to interact in causing 
progression of liver disease and malignancy, whereas 
TLR4, TLR4 downstream gene Nanog and activated LPS-
TLR4 are also considered to contribute to this synergy 
via triggering proliferative and anti-apoptotic signals to 
non-marrow-derived resident liver cells and thus HCC 
progression[9,149,150,160]. 

Ischemic/reperfusion injury and liver allograft rejection
Ischemia-reperfusion (I/R) injury in partial hepatectomy 
and liver transplantation is associated with the release 
of various endogenous ligands for hepatic tissue TLRs 
and thus the activation of complex signaling pathways 
that induce neutrophilic and T-lymphocytic tissue inflam-
mation and injury[53,161,162].

Among the most studied TLRs in hepatic I/R, TLR4 
was shown to participate in certain acute sterile injury 
models, including liver I/R, by mobilizing the immune 
system upon detection of endogenous ligands, whereas 
limited data are available on TLR2 and TLR9[163,164].

MyD88-independent activation of TLR4 by DAMPs is 
considered central to the inflammatory process observed 
in I/R lesions[165-167], whereas HSP, heparan sulfate, fib-
ronectin, fibrinogen, hyaluronan and HMGB1 are known 
to act as endogenous ligands for TLR4 activation in 
hepatic I/R injury[5,163]. 

Release of HMGB1 activates the cell surface TLR4 
on KCs and leads to a subsequent release of cytotoxic 
mediators (TNF-α, IL-6 and chemokine IP-10), alongside 
an inappropriate activation of the pro-apoptotic protein 
kinase JNK and stress-responsive NF-kB, all of which 
are mediators of cell injury[5,163,168,169]. Cellular expression 
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of TLR4 is further upregulated via newly synthesized 
mediators such as TNF-α, leading to formation of a vicious 
cycle of proinflammatory cytokine production[61,163,170]. 

Downstream TLR4 signaling pathways in I/R injury 
seems to be independent of MyD88 signaling, whereas 
TRIF-dependent activation of the interferon response 
and IRF1 expression is considered critical for mediating 
I/R injury in hepatocytes in terms of releasing the 
danger signal HMGB1[164,171,172]. Hence, TLR4, IRF1 and 
HMGB1 are considered three important and interacting 
mediators of I/R injury[164].

Albeit not consistent, available data suggest that 
besides lack of TLR4, downregulation of TLR2 expression 
in the donor organ also suppress I/R injury[27,165,173]. 
Accordingly, given the amelioration of liver injury in I/R 
via non-selective inhibition of TLR2 and TLR4 activation 
by certain molecules such as bicyclol or N-acetylcysteine, 
role of TLRs in I/R lesion has been emphasized[27,174,175]. 

TLR9, which shows affinity toward both pathogen-
derived and endogenous host DNA, is considered to 
play a crucial role in non-pathogen-induced hepatic I/R 
injury by causing neutrophil activation, liver necrosis, 
and inflammatory cytokine release[163,176,177]. 

Although TLR signaling dependent early activation 
of the innate immune system is consistently reported in 
the setting of I/R injury, additional studies are required 
to fully explore the roles of other TLRs and TLR signaling 
pathways in I/R injury[163,164]. 

Liver regeneration after partial hepatectomy
Recognizing the mechanism of liver regeneration is 
important not only for managing acute liver failure and 
post-transplant hepatic dysfunction but also for disturbed 
liver regeneration in NASH or NAFLD and advanced 
liver fibrosis[178]. The deposition of excessive amounts 
of extracellular matrix, the presence of persistent 
inflammation, the transformation of SECs and HSCs, 
portal blood flow reduction and increased JNK activity 
are considered among the factors associated with the 
regenerative ability of fibrotic livers[178,179].

TLR/MyD88-mediated pathways are associated with 
onset of liver regeneration after partial hepatectomy 
(PH) via activation of NF-kB, release of TNF-α and IL-6 
and the expression of the immediate early genes for cell 
replication in hepatocytes, whereas distinct TLR ligands 
responsible for the priming process have not yet been 
clarified[33,178]. No contribution of TLR2, TLR4 or TLR9 to 
MyD88-mediated pathways and no influence of TLR2 or 
TLR4 on proinflammatory cytokine production or gene 
replication have been reported for liver regeneration 
after PH[33,180,181]. 

In fact, given the inhibition of regenerative process 
via excessive TLR signaling produced by LPS injection 
after PH, the magnitude of TLR signaling is considered 
critical for intact liver regeneration[178,182]. 

TLR3 signaling, which utilizes a distinct adaptor 
protein, TRIF, is considered to attenuate the initiation of 
liver regeneration via TLR3-dependent NF-kB activation 
in hepatocytes and TLR3-induced IFN-γ through 

STAT1 and consequent induction of the IRF-1 and p21 
pathways[178,183,184]. 

In addition, although a non-TLR MyD88-dependent 
pathway with IL-1 and IL-18 has been suggested to 
play a role in allograft rejection initially, findings on the 
existence of normal liver regeneration after PH in caspase 
1-deficient mice indicate unremarkable participation of 
IL-1β and IL-18 in liver regeneration[178]. 

Hepatic autoimmune disorders
Although antibody formation against self-antigens 
is key to the development of autoimmune hepatic 
diseases, including autoimmune hepatitis, primary 
biliary cirrhosis (PBC) and primary sclerosing cholangitis 
(PSC)[185], recently the influence of gut microbiota on 
the propagation of these diseases has been indicated[90]. 

Given that the liver is considered a classical immu-
noprivileged site, TLR signals may act as an important 
promoter for overcoming this immunoprivilege and in–
ducing hepatic autoimmune disease[11,13,186].

Previous studies have suggested regulator role of gut-
derived products on T cell function within the liver[90], 
based on the connection between TLR4 signaling and the 
trapping of CD8+ T cells in the murine liver[187], as well 
as contribution of TLR9 to the homing and stimulation 
of hepatic NKT cells via a KC and IL-12 dependent 
process[188]. The role of LPS/TLR4 signaling has been 
indicated in the pathogenesis of PBC and PSC[13]. 
Monocytes from PBC patients have been suggested 
to show increased sensitivity to activation of selective 
TLRs (TLR2, TLR4, TLR3, TLR5 and TLR9), while the 
subsequent release of proinflammatory cytokines has 
been associated with development of self-tolerance and 
autoimmune progression[189] (Figure 2).

LPS was shown to accumulate in significant amounts 
in the biliary epithelia of PBC patients, whereas positivity 
for IgM antibodies against lipid A, an immunogenic and 
toxic component of LPS, is confirmed in 64% of PBC 
sera[190,191]. TLR4 expression is significantly elevated in 
BECs, periportal hepatocytes and blood monocytes of 
PBC patients[192,193], whereas LPS/TLR4 signaling has been 
associated with an increased release of proinflammatory 
cytokines such as IL-1b, IL-6, IL-8 and TNF-α[189]. TLR4 
ligand-stimulated NK cells have been suggested to be 
associated with BEC damage in the presence of TLR3 
ligand-activated monocytes among PBC patients[194]. 
Despite similar levels of TLRs in BECs isolated from livers 
from patients and controls, stimulation via TLR3 agonist 
poly I:C and co-culture with liver-infiltrating mononuclear 
cells resulted in elevated chemokine levels in livers from 
patients[195]. Moreover, when compared to patients with 
autoimmune hepatitis and Hepatitis C, patients with 
PBC showed higher levels of TLR3 and IFN-α/β in portal 
tracts and liver parenchyma[196]. Furthermore, TLR9 
ligand (CpG) stimulation of peripheral blood monocytes 
from PBC patients was demonstrated to activate IgM-
producing B cells and to increase TLR9 expression on 
these cells[197,198]. These findings emphasize the role of 
innate immunity not only in the pathogenesis and pro-
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gression of PBC but also in the regulation of adaptive 
immune responses[9]. 

The role of TLRs in PSC has not been extensively 
studied[11]. Abnormal LPS accumulation was demon-
strated in BECs in PSC[190]. Stimulating isolated BECs 
with anti-BEC antibodies from patients with PSC leads to 
increased expression of TLR4 along with higher levels of 
inflammatory cytokines in the presence of LPS[199]. 

Accordingly, increased LPS accumulation and TLR4 
expression in BECs has been suggested to induce break-
down of self-tolerance and onset of bile duct damage 
in PBC and PSC thorough their stimulatory effects on 
selective pro-inflammatory cytokines with a critical 
role[13]. Given the signs of inflammatory bowel disease 
to exist in most patients with PSC and the likelihood 
of gut factors to induce response onset per se with no 
preceding immune cell dysfunction, future investigations 
are needed addressing the role of gut microbiota in 
conjunction with PSC and PBC to provide a better under-
standing of the mechanisms and treatment of these 
complex diseases[90]. 

CONCLUSION
TLRs have been recognized as key regulators of innate 
and adaptive immune responses in the liver, although 
growing evidence suggests the critical role of TLR 
dysregulation in the pathogenesis and progression of 
many liver diseases[9,107]. TLRs, mainly TLR4 and TLR2, 
play a fundamental role in the inflammation and fibrosis 
of the liver and promote the progression of chronic 
liver diseases[27,35,86]. Indeed, LPS/TLR4 signaling is 
enhanced and essential in liver diseases such as ALD, 
NAFLD, PSC, CBP and fibrosis, and inhibition of TLR4 
has been associated with amelioration of liver injury, 
emphasizing the contribution of LPS/TLR4 signaling to 
the pathogenesis of liver diseases[13].

The local innate immune system represented by liver 
cells participates in tolerance induction or inflammation 
alongside its interaction with the adaptive immune 
system, whereas suppression of the TLR system in the 
liver by pathogens enhance chronicity of infection[107]. 
Therefore, targeting TLR signaling at different levels of 
cascade appears to offer therapeutic potential in the 
management of chronic liver disease[11]. 

LPS/TLR4 signaling pathway has been recognized 
as an important pharmacological target in chronic liver 
diseases. Suppression of TLR4 signaling via modulation 
of LPS production, TLR and co-receptor expression and 
downstream signaling molecules has been shown to 
ameliorate liver injury, indicating the contribution of 
LPS/TLR4 signaling to the pathogenesis of chronic liver 
diseases. Given the likelihood of systemic suppression of 
TLR4 to disable responding pattern of TLR4 to invading 
pathogens, modulation of intestinal microbiota via probiotics 
and symbiotics become a preferred therapeutic strategy 
for liver diseases, associated with favorable tolerability 
and safety[13,23]. Besides, certain synthetic ligands of TLRs 
have been considered to act as target molecules for drug 

development given their effects on regulation of innate 
and adaptive immune responses, including TLR activators 
(for infections and certain cancers), TLR inhibitors 
(for inflammatory diseases and sepsis) as well as TLR 
neutralizing antibodies[34,37]. Further investigation of the 
role of TLR pathways in liver diseases addressing the 
downstream mediators and regulation of TLR signaling, 
the specific cell populations involved, the role of TLR 
polymorphisms and the mechanisms underlying liver 
tumorigenesis is needed to transfer knowledge on TLR 
pathophysiology into clinical practice in treating human 
liver diseases[5,23].
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