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Selective removal of deletion-bearing mitochondrial
DNA in heteroplasmic Drosophila
Nikolay P. Kandul1, Ting Zhang2,3, Bruce A. Hay1 & Ming Guo2,3

Mitochondrial DNA (mtDNA) often exists in a state of heteroplasmy, in which mutant

mtDNA co-exists in cells with wild-type mtDNA. High frequencies of pathogenic mtDNA

result in maternally inherited diseases; maternally and somatically acquired mutations also

accumulate over time and contribute to diseases of ageing. Reducing heteroplasmy is

therefore a therapeutic goal and in vivo models in post-mitotic tissues are needed to facilitate

these studies. Here we describe a transgene-based model of a heteroplasmic lethal mtDNA

deletion (mtDNAD) in adult Drosophila muscle. Stimulation of autophagy, activation of the

PINK1/parkin pathway or decreased levels of mitofusin result in a selective decrease in

mtDNAD. Decreased levels of mitofusin and increased levels of ATPIF1, an inhibitor of ATP

synthase reversal-dependent mitochondrial repolarization, result in a further decrease in

mtDNAD levels. These results show that an adult post-mitotic tissue can be cleansed of a

deleterious genome, suggesting that therapeutic removal of mutant mtDNA can be achieved.
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M
itochondria are membrane-bound organelles present in
many copies in most eukaryotic cells. The circular
mitochondrial genome (mtDNA) encodes multiple

tRNAs, rRNAs and polypeptides necessary for oxidative
phosphorylation, which generates the bulk of ATP in most cells.
Individual mitochondria contain multiple copies of mtDNA,
each of which is packaged into a structure known as a nucleoid,
with primarily a single mtDNA per nucleoid1. This multiplicity of
genomes per cell, in conjunction with mtDNA’s high mutation
rate and limited repair capacity, often results in cells carrying
mtDNA of different genotypes, a condition known as
heteroplasmy. Recent studies suggest that 90% of individuals
have some level of heteroplasmy, with 20% harbouring
heteroplasmies that are implicated in disease2,3. If the frequency
of such a mutation reaches a threshold, pathology results4,5. High
frequencies of deleterious mutant mtDNA result in severe
maternally inherited syndromes4–7. Heteroplasmy for
deleterious mtDNA can also arise in somatic tissues during
development and in adulthood. It accumulates throughout
life, and is thought to contribute to diseases of aging that
include neurodegeneration, metabolic disorders, cancer, heart
disease and sarcopenia8,9. These observations emphasize the
importance of devising ways to reduce heteroplasmy in vivo.

Mitochondria-targeted site-specific nucleases, such as restriction
enzymes10,11, engineered zinc-finger nucleases12,13 and
transcription activator-like effector nucleases14,15, provide one
way to decrease the levels of heteroplasmy. In this approach, a site-
specific nuclease is engineered so as to bind and cleave a specific
mutant version of the mtDNA genome, promoting its selective
degradation. This approach has recently been used to decrease the
levels of heteroplasmy in patient-derived cell lines14, in oocytes and
in single cell embryos15. However, these methods are likely to be
challenging to implement in the adult11, as the nuclease being
expressed is a non-self protein; many cells must be targeted without
off target cleavage effects; and individuals may be heteroplasmic for
multiple deleterious mutations. Here we seek to promote cell
biological processes that normally regulate mtDNA quality as an
alternative approach to decreasing heteroplasmy in adults.

Mitophagy serves as a form of quality control that promotes
the selective removal of damaged mitochondria. In one important
pathway, dysfunctional mitochondria are eliminated through a
process dependent on PTEN-induced putative kinase 1 (PINK1)
and Parkin, loss of which lead to familial forms of
Parkinson’s disease. In this pathway, mitochondrial membrane
depolarization, which occurs in response to mitochondrial
dysfunction of various sorts, results in stabilization of the kinase
PINK1 on the outer mitochondrial membrane16. PINK1 recruits
multiple autophagy adaptors17 and the cytoplasmic E3 ubiquitin
ligase Parkin18,19, which ubiquitinates and promotes the
degradation of Mitofusins19–21, mitochondrial outer membrane
proteins essential for outer mitochondrial membrane fusion22,
thereby inhibiting re-fusion of dysfunctional mitochondria
with the network. Parkin also ubiquitinates a number of
other proteins23,24. These events lead to the recruitment of
autophagosomal membranes, which sequester the defective
mitochondria and deliver it to the lysosome for degradation.

An important question is whether mitophagy, which acts at the
level of individual mitochondria, contributes to quality control
at the level of mtDNA—the selective removal of mutant
mtDNA within the cell as a whole. Several observations suggest
that PINK1/parkin-dependent mitophagy may participate in
such a process. First, the frequency of a deleterious allele in a
heteroplasmic mammalian cell line can be reduced if cells are
cultured for long periods of time in the presence of Parkin25,
decreased membrane potential25,26 and/or stimulation of
autophagy26,27. These results are intriguing, but because the

experiments occur over many cell cycles, stochastic segregation of
mitochondrial genomes during division, coupled with increased
survival and/or proliferation of cells with an increased fraction
of wild-type mtDNA, may contribute to the decreased mutant
mtDNA load. Second, in lines of Caenorhabditis elegans
heteroplasmic for an mtDNA deletion mutant, loss of Parkin
(but not PINK1) results in increased levels of heteroplasmy28.
These results also support a role for Parkin in mtDNA quality
control, but they leave the nature of the selection event unclear,
and whether it occurs during germline transmission and/or in
somatic cells, during development and/or in the adulthood.
Finally, dopaminergic neurons from mice expressing a
proofreading-deficient mtDNA polymerase and wild type for
parkin, have a spectrum of mtDNA mutations that includes fewer
predicted pathogenic variants than are observed in neurons from
proofreading-defective mice that lack Parkin29. This also is
consistent with models in which Parkin promotes the elimination
of some mtDNA genotypes. However, whether these events occur
during development or during adulthood, and the nature of the
selection event is unknown and difficult to study in a system in
which mtDNA mutations are induced through random DNA
polymerase errors throughout life.

Regardless, the fact that mutant mtDNA accumulates in
individuals wild type for PINK1 and parkin during aging, and in
affected tissues in inherited maternal mitochondrial disease,
indicates that if PINK1- and Parkin-dependent mitophagy and/or
other pathways promote mtDNA quality control, they are often
not active or effective. To identify ways of reducing the mutant
mtDNA load in somatic tissues, systems are needed in which a
specific deleterious heteroplasmy can be induced in vivo and
followed over time, ideally in post-mitotic cells so as to eliminate
potential confounding effects associated with stochastic segrega-
tion during cell division, and differential cell proliferation and/or
cell death. Current in vivo models are cumbersome and limited,
as they require the use of Caenorhabditis elegans heteroplasmic
for a deletion28,30, or introduction of the cytoplasm from animals
homoplasmic31–34, or cells heteroplasmic35 for pre-existing
mutant mtDNA genotypes, into early embryos of a different
genotype. Here we describe the generation and use of a transgene-
based system of heteroplasmy in post-mitotic muscle to identify
conditions that result in the selective removal of mutant mtDNA.

Results
Creation of heteroplasmy for a lethal mtDNA deletion. To
create a transgene-based model of a heteroplasmy that removes
essential genes (lethal when homoplasmic), we first generated a
mitochondria-targeted version of the restriction enzyme AflIII
(mitoAflIII), which is predicted to cut Drosophila mtDNA twice,
creating a 2,584 bp deletion (mtDNAD) that removes or disrupts
multiple genes (Fig. 1a). S2 cells transiently transfected with
mitoAflIII are heteroplasmic for mtDNAD (Fig. 1b). The frequency
of heteroplasmy was further increased following co-expression with
mitochondria-targeted T4 DNA ligase (mitoT4lig) (Fig. 1b), pre-
sumably because T4 DNA ligase expression limits the degradation
of AflIII cut linear products by promoting their re-ligation and re-
cutting until base insertions or deletions result in products that lack
AflIII sites (Supplementary Table 1).

To explore the fate of mtDNAD in vivo, we sought to generate
transgenic flies that specifically create mtDNA deletions in a
post-mitotic tissue, so as to be able to isolate effects on mtDNA
quality control from those due to differential segregation during
proliferation. The Drosophila indirect flight muscle (IFM) is a
non-essential, adult-specific, post-mitotic and energy-intense
tissue containing a high density of mitochondria. It also shows
strong and consistent phenotypes in response to the loss of genes
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involved in mitochondrial quality control, such as PINK1 and
parkin mutants36–40. We expressed mitoAflIII and mitoT4
DNA ligase under the control of an adult IFM-specific
promoter (pIFM)41 derived from the flightin gene, and using
the UAS–GAL4 system. While the expression of mitoAflIII and
T4 DNA ligase under the control of ubiquitous or neuron-specific
GAL4 drivers resulted in 100% lethality, indicating the highly
deleterious nature of the deletion, as would be expected for
organism-wide defects in mitochondrial function (Supplementary
Table 2), expression of mitoAflIII and mitoT4lig under
pIFM control resulted in viable flies with high levels of tissue-
specific heteroplasmy (see below). Flies that carry these
transgenes and pIFM-Gal4 (P{pIFM-mitoAflIII, pIFM-mitoT4lig,
pIFM-Gal4}attP1) were used in subsequent experiments, and are
hereafter referred to as mitoAflIII flies (Fig. 1c–e). pIFM-driven
mitoAflIII messenger RNA (mRNA) expression is high at day 1
post adult eclosion, and then decreases markedly (4100� ) by
day 3, and onwards (Fig. 1e). MitoAflIII protein levels
presumably follow a related time course, though a lack of
antibodies to this protein prevented us from testing this directly.
Thus, pIFM-driven expression provides a pulse of mitoAflIII
expression during early adulthood, the consequences of which
can then be followed over time.

Quantification of mtDNA species. We used two complementary
approaches to quantify wild type and deletion-bearing mtDNA in
the IFMs, quantitative PCR (qPCR) and direct visualization
in situ, using target-primed rolling-circle amplification (tpRCA).
For qPCR, four loci were amplified from IFM DNA (Fig. 2a):
mtDNA common to wild type and deletion genomes, mt:NADH5

(mtDNAtotal); mtDNA that spans one of the AflIII sites, and
which is therefore specific to wild-type mtDNA (mtDNAWT);
mtDNA that spans the deletion, and is therefore specific to the
deletion (mtDNAD); and a nuclear locus, 3R:tub. Amplification
efficiencies of these primers were similar over three orders
of magnitude of DNA concentration (Fig. 2b). Quantification of
mtDNAD was done relative to both total mtDNA (mtDNAtotal)
and nuclear DNA (nucDNA). Both approaches gave similar
results, with the fraction of mtDNAD increasing through the first
10 days of adulthood to B76% of mtDNAtotal, and then
remaining stable thereafter (Fig. 2c,d). The increase in fraction of
mtDNAD over time may simply reflect the kinetics of cleavage
and re-ligation of the mtDNA genome. Competitive replication
advantage of the smaller deletion-bearing genome may also
participate, a possibility that remains to be explored.

As a mechanistically distinct approach to mtDNA species
quantification, we imaged mtDNAD and mtDNAtotal in situ,
adapting the approach of Larsson et al.42, utilizing target-primed,
tpRCA. In brief, two different oligonucleotide probes, one
designed to provide a signal when bound to mtDNAD and one
designed to provide a signal when bound to any mtDNA
(mtDNAtotal), were circularized after hybridization to target
sequences in situ. These circles provide templates for localized
amplification mediated by F29 DNA polymerase, using a nearby
target DNA 30-end as a primer. The 30-end for both probes was
generated by EcoRI cleavage. mtDNAD can be specifically
identified using this approach because the ability of a 30-end in
fixed tissue to act as a primer drops markedly with distance from
the padlock probe42. Therefore, F29-dependent amplification
from the circularized mtDNAD probe only occurs when one of
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Figure 1 | Engineered heteroplasmy for an mtDNA deletion (mtDNAD) in Drosophila. (a) Map of Drosophila melanogaster mtDNA showing the genes

affected following cleavage and re-ligation at two AflIII restriction enzyme cleavage sites. (b) Co-expression of mitoAflIII and mitoT4lig in Drosophila S2 cells

cause an increase in mtDNAD levels. (c) Transgenesis construct for co-expression of mitoAflIII, mitoT4lig and Gal4 under the control of the Flightin indirect

flight muscle (IFM)-specific promoter in Drosophila. (d) Left panel: mtDNAD is detected by PCR in the thorax, but not the head and abdomen of

P{pIFM-mitoAflIII, pIFM-mitoT4lig, pIFM-Gal4}attP1 (mitoAflIII) flies. mtDNAD is undetectable in P{CaryP}attP1 flies, which were used for a site-specific

transgenesis. Right panel: mtDNAWT (the presence of which results in a similarly size band in PCR) is present in all samples other than the no-template

control (NTC). (e) The abundance of mitoAflIII mRNA falls precipitously after day one post eclosion. Bars depict mean±1 s.d. Statistical significance was

calculated using Student’s t-test with unequal variance. NSP40.05, **Po0.01 and ***Po0.001. NS, not significant.
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the EcoRI sites has been brought near the post-cleavage AflIII
site, located adjacent to the mtDNAD probe hybridization site.
Conversely, amplification from the circularized mtDNAtotal probe
occurs when a different 30-end is utilized, generated by EcoRI
cleavage at a distinct site (Fig. 3a; Methods).

As expected, flight muscle from wild-type flies labels only with
the mtDNAtotal probe (Fig. 3b), while flight muscle from 10-day-
old mitoAflIII flies labels with both mtDNAtotal and mtDNAD

probes (Fig. 3c). Both signals co-localize with mitochondria, as
visualized with an antibody that stains the mitochondrial matrix
(Fig. 3d). Fluorescent signals rarely co-localize (Fig. 3d) because
tpRCA labels only a small fraction of mtDNA nucleoids42.
mtDNAD labelling was only detected in IFMs of mitoAflIII flies,
but not in the neighbouring jump muscle, in which mitoAflIII is

not expressed (Fig. 3e; Supplementary Fig. 1). Importantly, the
fractions of mtDNAtotal consisting of mtDNAD determined using
qPCR and tpRCA were comparable once a correction factor was
applied to the tpRCA data so as to take account of the fact that
the probability of RCA is dependent on the distance of the
padlock probe to the 30-end used as primer42 (Methods;
Supplementary Table 3). Finally, we note that tpRCA is not
used to estimate the total tissue levels of mtDNA, since
only a fraction of nucleoids are labelled. Estimates of total
muscle mtDNA (using nucDNA as a point of comparison,
Supplementary Table 3) are derived from qPCR analysis.

Effects of mtDNAD heteroplasmy on IFM function. To explore
the effects of high levels of heteroplasmy in more detail, we
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Figure 2 | qPCR quantification of mtDNA species and effects of heteroplasmy on muscle structure. (a) Positions and orientations of qPCR primers are

indicated by arrows. (b) Four standard curves connecting three average Ct values (±1 s.d.) for each primer set. (c) The amount of mtDNAD in the IFMs of

mitoAflIII flies increases through the first 10 days after eclosion and stabilizes afterwards. Relative amounts of mtDNAD were estimated using qPCR normalized

to the levels observed in 10-day-old flies, which were assigned the value of 1. Minimum four biological replicates were quantified for each time point. Statistical

significance is calculated relative to the values in 10-day-old flies. (d) Quantification of mtDNA forms in flight muscle from 10-day-old P{pIFM-Gal4}attP1 (wild

type, left bar of each pair) and mtDNAD -bearing P{pIFM-mitoAflIII, pIFM-mitoT4lig, pIFM-Gal4}attP1 (mitoAflIII, right bar of each pair) flies. mtDNAWT depletion

among all mtDNA molecules (mtDNAtotal) corresponds to emergence of mtDNAD molecules: that is, mtDNAtotal�mtDNAWT¼mtDNAD. Bars depict

mean±1 s.d. (e,h) Toluidine blue staining, and (f,g,i,j) transmission electron micrographs of indirect flight muscles of 10-day-old flies. Wild-type (e–g) and

mitoAflIII (h–j) flies have similar muscular ultrastructure. Scale bars, 1.0mm. Statistical significance was calculated using Student’s t-test with unequal variance.
NSP40.05, *Po0.05 and ***Po0.001. NS, not significant.
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examined flight muscle from 10-day-old wild-type and mitoAflIII
flies using light microscopy and transmission electron microscopy.
Muscle morphology was similar for both genotypes (Fig. 2e–j). In
particular, at the transmission electron microscopy level
mitochondria were of similar size and abundance, with intact
cristae. We also tested flight muscle function using an assay
commonly used to quantify flight performance in Drosophila43.
Wild-type and mitoAflIII flies showed similar abilities in this assay
(Supplementary Fig. 2). These results suggest that high levels of
heteroplasmy do not result in dramatic defects in function, and are
consistent with other observations showing high levels of
heteroplasmy for a deleterious mutation in phenotypically
normal animals, including Drosophila34 and humans2,44,45.

Autophagy promotes selective removal of mtDNAD. To explore
roles for autophagy in mtDNA quality control, we expressed
mCherry-Atg8a46 in the IFMs of otherwise wild-type animals, with
or without mitoAflIII. Atg8 is a cytosolic ubiquitin-like protein that
is required for the formation of autophagosomal membranes,
becoming covalently linked with them during autophagosome
formation. Autophagosome formation can therefore be visualized
as the formation of discrete mCherry-Atg8a puncta46,47. Few
Atg8a-positive structures were observed in IFMs from 3-day-old
widl-type flies (Fig. 4a). In contrast, IFMs from similarly aged
mitoAflIII flies showed a large number of positive structures, an
increase of roughly 50� (Fig. 4a,b). Expression of endogenous
Atg8a was also upregulated in mitoAflIII flies, as was that of Atg1
(Fig. 4c), a master upstream activator of autophagy.

If autophagy represents an attempt to remove dysfunctional
mitochondria that carry mutant mtDNA, decreasing the levels of
Atg1 and Atg8a should lead to an increase in mtDNAD. In
considering this and other questions (Figs 5 and 6), we
characterized mtDNA species at day 10 so as to provide
ample time for mtDNA quality control following the pulse of
pIFM-driven AflIII and T4 DNA ligase expression (Fig. 1e). For
simplicity, in the text below, we refer only to measurements of
mtDNA calculated from mtDNAD/mtDNAtotal using qPCR,
though other methods gave similar results (Figs 5 and 6;
Supplementary Table 3). Comparisons of heteroplasmy levels
across all genotypes are made with respect to those of mitoAflIII
flies (Supplementary Table 3). Consistent with the above
hypothesis, RNAi of Atg1 resulted in an increase in the frequency
of mtDNAD (from 76±1 to 82±2%), as did knockdown or
mutation of Atg8a (from 76±1% to 89±1% or 89±2%,
respectively; Fig. 5; Supplementary Figs 3 and 4). Conversely,
overexpression of UAS-Atg1 or UAS-Atg8a under pIFM-Gal4
control resulted in the specific loss of mtDNAD (from 76±1 to
4±1% or 67±3%, respectively; Fig. 5). This effect was particularly
marked in the case of Atg1 expression, which resulted in the
removal of 95% of the mutant genomes. The stronger effects of
Atg1 overexpression may reflect the fact that Atg1 is an upstream
activator of autophagy48, expression of which is sufficient to drive
autophagy49. In contrast, Atg8 functions downstream of autophagy
activation; it serves as a protein–protein interaction platform and
structural component of the autophagosome, and its expression
levels regulate autophagosome size48,50. Atg1 is regulated in a
number of ways in vivo. In one important pathway, the mTOR
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Figure 3 | Rolling circle-based quantification of mtDNAtotal and mtDNAD. (a) Strategy for visualizing mtDNAD and total mtDNA in situ, using padlock

probes and target-primed rolling-circle amplification (tpRCA). (b) P{pIFM-Gal4}attP1 (wild type) IFMs reacted with probes specific for mtDNAD (red) and
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complex negatively regulates Atg1 in nutrient-rich conditions51.
Interestingly, exposure of flies raised on normal (nutrient-rich)
media to the mTOR inhibitor rapamycin also resulted in a modest
decrease in mtDNAD frequency (Supplementary Fig. 5). Together,
these results suggest that autophagy participates in the removal of
mtDNAD in Drosophila IFMs. This process is inefficient in wild-
type animals, but can be stimulated through further activation of
autophagy.

PINK1 and Parkin promote autophagic removal of mtDNAD.
PINK1 and Parkin were first shown to function in a common
pathway in Drosophila38–40,52, with the loss of either protein
resulting in marked phenotypes in multiple tissues. IFM
phenotypes include extensive cell death and severe defects in
mitochondrial integrity and function36–40. Results of mass
spectrometry show that the normal turnover of a number of
mitochondrial proteins in adult Drosophila is both Parkin and

autophagy dependent, suggesting that PINK1 and Parkin
promote mitophagy on an ongoing basis in wild-type
animals53. However, whether they promote mtDNA quality
control has not been examined. We characterized the
consequences of PINK1 and Parkin overexpression, as extensive
cell death precludes study of loss-of-function mutants36–40.
Overexpression of PINK1 resulted in a large decrease in
mtDNAD frequency, from 76±1 to 26±3%. Overexpression of
Parkin resulted in an even larger decrease in mtDNAD frequency,
from 76±1 to 5±0.3%, which was associated with a modest
decrease in mtDNAtotal (Fig. 6). Importantly, IFMs from
mitoAflIII double mutants in which Parkin was overexpressed
in an Atg8a mutant background had an increased frequency of
mtDNAD as compared with mitoAflIII flies (82±2% versus
76±1%; Fig. 6). These levels are similar to those observed when
mitoAflIII is expressed in an Atg8a mutant background (Fig. 5).
These results suggest that PINK1 and Parkin act through
autophagy to promote the removal of mtDNAD, and that
expression level of these proteins is rate limiting for mtDNA
quality control in otherwise wild-type animals.

Decreased Mfn promotes selective removal of mtDNAD.
Because mitochondria are only tested for quality when isolated
from the network54, the rate of re-fusion, which determines the
half-life of isolated fragments, is expected to play an important role
in quality control. This is because mutant-bearing fragments can
only be detected as such if their half-life is long as compared with
the time needed for depolarization and tagging as defective, which
will itself depend on the nature of the underlying genetic defect
and half-life of wild-type versions of the encoded products
provided through complementation55–57. A prediction of this
model is that decreasing the levels of mfn should promote selective
mutant mtDNA removal by increasing the half-life of isolated
mitochondrial fragments, and/or by lowering the threshold
amount of Mfn that needs to be degraded by the limiting
amounts of PINK1 and Parkin available (Fig. 6) to inhibit
re-fusion. We used RNA interference to decrease Mfn in the IFMs
to levels sufficient to bring about a decrease in mitochondrial size
and rescue other PINK1 and parkin loss-of-function
phenotypes58,59. Consistent with the above hypothesis, this
resulted in a large decrease in deletion levels (from 76±1 to
39±1%; Fig. 6). The converse experiment, increasing levels of mfn,
could not be carried out as this results in extensive cell death41.
Interestingly, overexpression of the pro-fission protein Drp1 at
levels which also rescue PINK1 and parkin loss-of-function
phenotypes and bring about a similar decrease in mitochondrial
size58 did not result in a decrease in deletion levels, with levels
being instead somewhat increased (from 76±1 to 88±2%; Fig. 6).
Why increased Drp1 results in an increased frequency of deletions
requires further exploration. One possible mechanism suggested by
modelling studies is that increased levels of Drp1, in conjunction
with wild-type levels of Mfn, which our results suggest (Fig. 6) are
higher than optimal for efficient mtDNAD removal, leads to more
rapid cycles of fusion and fission, promoting content mixing and
complementation, thereby defeating quality control55–57.

Synergy between ATPIF1 and Mfn in reducing mtDNAD.
Finally, in order for mitochondria isolated from the network to be
tested for mtDNA quality, it is not enough that they remain
isolated from the network. They must also present an ‘honest
signal’ as to genome dysfunction, typically in the form of
depolarization of the mitochondria in which these genomes
reside. Presentation of such a signal can be inhibited through the
action of other regulators of mitochondrial physiology. For
example, mitochondria depolarization can lead to reversal of the
F0F1 ATP synthase, which then pumps protons into the matrix,
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restoring the mitochondrial inner membrane potential at the
expense of cytosolic ATP. This process is regulated by the
ATPIF1 protein, which inhibits ATPase activity, but not synthase
activity. The importance of ATP synthase reversal in inhibiting
mitophagy is suggested by observations of mammalian cell
cultures treated with a mitochondrial uncoupler60. In the

presence of wild-type levels of ATPIF1 mitochondria undergo
depolarization and recruitment of Parkin. However, if they are
depleted of ATPIF1, the mitochondrial membrane fails to
depolarize or recruit Parkin60. To explore roles that ATPIF1
plays in mtDNA quality control, we expressed Drosophila
ATPIF1 in mitoAflIII flies. This alone had no significant effect
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on mtDNAD levels. Interestingly, however, expression of ATPIF1
in the presence of RNAi of mfn resulted in a synergistic decrease
in mtDNAD levels, from (from 76±1 to 12±1%), as compared
with RNAi of mfn alone (from 76±1 to 39±1%; Fig. 6). These
observations suggest that ATP synthase reversal can antagonize
mtDNA quality control, and that drugs that mimic ATPIF1
activity by inhibiting ATPase activity but not ATP synthase
activity61,62 may be useful in promoting quality control.

Discussion
We have generated a transgene-based model of mtDNA hetero-
plasmy in an adult post-mitotic tissue, the adult flight muscle. The
high levels of heteroplasmy (B76%) did not interfere with flight
muscle function, making this a useful system for exploring mtDNA
quality control in a quantitative manner. It may also prove useful
as a system in which to identify compensatory mechanisms that
buffer muscle function from effects caused by high levels of
heteroplasmy. Finally, we demonstrate that the load of deleterious
mtDNA can be decreased through several different interventions.
Genetic and chemical screens using such a model should prove
useful in identifying molecules that can cleanse tissues of a
deleterious genome, via known and unknown mitochondrial
quality control pathways. The many tools for regulated spatial
and temporal control of gene expression in Drosophila will allow
such screens to be carried out in a variety of tissues and
environmental contexts, including aging63.

Our results show that adult muscle has a significant but limited
ability to remove mutant mtDNA utilizing genes required for
autophagy, and that mtDNAD removal can be greatly stimulated
in several ways: by limiting the ability of mitochondrial fragments
to re-fuse with the network (decreasing Mfn levels), by limiting
their ability to undergo repolarization through ATP synthase
reversal (ATPIF1 expression), by increasing the tagging of
mtDNAD-bearing fragments (increasing PINK1 or Parkin levels),
and by increasing the frequency with which these tagged
fragments are degraded (activation of autophagy). These
observations have important implications for new therapies for
mitochondrial disease and diseases of aging.

Our observation that wild-type levels of key proteins are not set
to maximize mtDNA quality control provides a possible explana-
tion for why mutant mtDNA accumulates in multiple tissues during
normal aging: the components are required at different levels in
other more immediate contexts. Thus, mitochondrial dynamics are
often driven to promote rapid cycles of fusion and fission so as to
increase network connectivity, ATP production and/or calcium
handling22,64,65. These conditions are predicted to facilitate mutant
mtDNA maintenance or accumulation55–57. Similarly, levels of
ATPIF1 may primarily reflect the need to buffer mitochondrial
membrane potential from transient changes associated with muscle
contraction and/or mediate metabolic reprogramming and
responses to stress66. PINK1 and Parkin also play a number of
non-mitophagic roles in Drosophila and mammalian systems,
which may be costly if activated continuously67–69. Continuous
activation of autophagy leads to cell death, tissue catabolism and
changes in metabolism, and is normally tightly regulated at multiple
levels50. In the face of these competing cellular demands, expression
tuned to maximize the removal of mutant mtDNA throughout life
probably would result in significant life-history costs, particularly
since defects in mtDNA quality control in somatic tissues manifest
themselves primarily in later life8,9. A key question is whether
occasional manipulations of cell physiology that promote mtDNA
quality control, in otherwise healthy individuals, can bring about a
more general ‘housecleaning’ that keeps the frequency of mutant
DNA below the threshold for causing cellular dysfunction in diverse
tissues without incurring other organismal costs.

Methods
Generation of constructs. The protein sequence of AflIII restriction enzyme
(protein ID: ADO24177.1) without the N-terminal Methionine was back translated
and codon optimized for translation in Drosophila in Gene Designer 2.0
(https://www.dna20.com/resources/genedesigner). The N-terminal tag directing
protein import into the mitochondrial matrix (60 amino acids from the N terminus
of Drosophila Aconitase (CG9244), plus a C-terminal Alanine) was identified with
the Target P 1.1 program (http://www.cbs.dtu.dk/services/TargetP/). It was then
appended to the N terminus of AflIII, generating mitoAflIII. To build the
pUASt-mitoAflIII, a mitoAflIII fragment was gene synthesized by DNA2.0 and
cloned into pWALIUM 20 (https://plasmid.med.harvard.edu/PLASMID/
GetVectorDetail.do?vectorid=500) between XbaI and NdeI sites.

A mitochondria-targeted version of T4 DNA ligase was built as follows. The
coding sequence (CDS) of T4 DNA ligase was PCR amplified from Escherichia coli
carrying T4 bacteriophage. An out of frame synthetic intron was inserted into the
CDS of T4 ligase to facilitate bacterial cloning and manipulation. To generate pUASt-
mitoT4ligase, the N-terminal mitochondrial targeting sequence utilized with AflIII, T4
ligase and two translations enhancers IVS (a small 50-untranslated region (UTR)
intron from the Drosophila Mhc gene, CG17927) and p10 30-UTR (the terminator
sequence from the AcNPV p10 gene) were cloned into pWALIUM 20 cut at
BglII and HpaI sites). To build constructs for overexpression of parkin,
drp1 and Atg8a, a mitoT4ligase fragment in pUASt-mitoT4ligase plasmid was replaced
with corresponding CDSs. CDSs of parkin, drp1, Atg8a and ATPIF1 were PCR
amplified from Drosophila cDNA, reverse-transcribed with an oligo-dT primer from
total RNA.

A three-transgene construct (pIFM-mitoAflIII, pIFM-mitoT4lig and pIFM-Gal4)
that directs IFM-specific expression of mitochondrially targeted AflIII and T4 ligase,
and the yeast transcriptional activator Gal4, was built in pWALIUM 20 (Fig. 1c;
GenBank, KX696451). The Flightin promoter (pIFM) was PCR amplified from
Drosophila melanogaster genomic DNA, using primers 50-CGTTCCCGTGATAG
AGTAACGGTTCCT-30 and 50-CAGCTAAAACTAGGACATTGGGTCCACTG-30 ,
543 bases 50 to the start site of transcript variant B of the Flightin gene (CG7445) and
23 bases 50 of its 50-UTR, respectively. The fragment between the two gypsy
insulators in pWALIUM 20 was removed with PstI and HpaI. pIFM, IVS, mitoAflIII
and p10 30-UTR fragments were then ligated together. The resulting plasmid was
then cut with StuI and pIFM-mitoT4lig was cloned, 50–30 , from the gypsy insulator
towards the attP site. Finally, pIFM-Gal4 was cloned, 50–30 , into the XhoI site, from
the White gene towards the attP site (Fig. 1c).

Transfection of Drosophila S2 cells. Drosophila S2 cells were maintained using
standard protocols (Invitrogen, #R690-07). Transient transfections were performed
using FuGene HF (Roche) with the following plasmids: pUASt-mitoAflIII,
pUASt-mitoT4lig, pMT-Gal4 and pJFRC81 and pCaSpeR-hs. pJFRC81 (pUASt-
eGFP-p10) was added to visualize the efficiency of transfection and activation; and
pCaSpeR-hs (empty pHsp70 vector) to control for the amount of transfected DNA.
pMT was induced with 400 mM of CuSO4 7 h after transfection. Thirty hours post
transfection, DNA was extracted from S2 cells and analysed by PCR.

PCR detection of the engineered mtDNA deletion. DNA from S2 cells and
Drosophila tissues was extracted with the DNeasy Blood and Tissue kit (Qiagen).
The following two primers flanking the two AflIII sites in Drosophila mtDNA were
used to PCR mtDNAD: 50-ATCATATTTGTCGAGACGTTAATTATGGTTG-30

and 50-GAAATGAAATGTTATTCGTTTTTAAAGGTATCTAG-30. These
primers amplify either a 481 bp product from mtDNAD molecules or a 3,065 bp
product from mtDNAWT molecules. The following primers complementary to the
mt:CytB locus, located inside the deleted fragment, were used to amplify a 498 bp
product present in mtDNAWT: 50-GGACGAGGAATTTATTACGGTTCATA-30

and 50-GTGTTACTAAAGGATTTGCTGGAAT-30 . LongAmpTM Taq DNA
polymerase (New England BioLabs, NEB), with a 65 �C elongation temperature,
was used for PCR with the following conditions: (94 �C for 20 s, 51.5 �C for 13 s,
and 65 �C for 25 s)� 32 cycles. PCR amplicons were sequenced directly. If
sequencing showed the presence of different templates (as determined by
ambiguity at or near the post-cleavage AflIII site), they were first cloned into TOPO
TA vector (Invitrogen) and then multiple individual clones were sequenced.

Drosophila strains and genetics. Flies were maintained on the standard
cornmeal/soy flour/yeast fly food at 25 �C with a 12H/12H light and dark cycle.
The following fly stocks were obtained for this study: da-Gal4 (Bloomington
#8641); elav-Gal4 (Bloomington #8765); Mef2-Gal4 (Bloomington #27390);
ey-Gal4 (Bloomington #5534 & #5535); r4-Gal4 (Bloomington #33832);
pUASt-mitoGFP58; pUASp-mCherry-Atg8a (Bloomington # 37750, from which
Dr1/TM3, Ser1 was removed); pUASt-Atg1(6B) III (gift from Thomas Neufeld,
University of Minnesota); Atg1 RNAi line (Bloomington #26731); Atg8a RNAi line
(Vienna Drosophila RNAi Center #109654); Atg8aKG07569/FM7c (Bloomington
#14639); pUASt-Pink1 (ref. 38); pUASt-RNAi-Marf58.

Constructs were injected at Rainbow Transgenic Flies, Inc. (http://www.
rainbowgene.com). The constructs containing pIFM-Gal4 were inserted at the
P{CaryP}attP1 site on the second chromosome (Bloomington #8621), while
constructs with trans-activated genes were inserted at the P{CaryP}attP2 on the
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third chromosome (Bloomington #8622). Transgenic flies were balanced against
the same background: w1118; CyO/snaSco and w1118; TM3, Sb1/TM6B, Tb1,
respectively.

MitoGFP and pUASp-mCherry-Atg8a expression and visualization. To visualize
mitochondria in the Drosophila IFMs pUASt-mitoGFP58 was recombined into two
genetic backgrounds: P{pIFM-mitoAflIII, pIFM-mitoT4lig, pIFM-Gal4}attP1 and
P{pIFM-Gal4}attP1. The two generated lines were crossed to flies carrying the
marker of autophagy, pUASp-mCherry-Atg8a46. The IFMs were dissected from
3-day-old male flies and fixed for 35 min in PBS with 4% paraformaldehyde and
0.2% Triton X-100. After washing three times in PBS and 0.2% Triton X-100,
samples were mounted into Vectashield mounting medium and imaged on a
confocal scope (Olympus FluoView-1000). Images were acquired with a � 60
(numerical aperture¼ 1.30) objective and 1,024� 1,024 resolution at 12 bits
per pixel. Each channel (GFP and mCherry) was scanned consecutively at 12.5 ms
per pixel. Three slides were prepared and examined for each genetic group. Six
images applying a twofold zoom were acquired for quantification (Fig. 4b).
A higher magnification (a fourfold zoom) was used to acquire images for
presentation (Fig. 4a).

Quantification of mtDNAD with qPCR. Aged male flies were fixed in 100%
ethanol and stored at 4 �C. After fixing flies for at least 14 h, IFMs were dissected in
100% ethanol. Twenty male flies were used per replicate sample. Ethanol was then
removed and the sample dried on a heatblock for 15 min at 90 �C. DNA was
extracted from dried IFMs with the NucleoSpin Tissue XS kit (Macherey-Nagel).
DNA concentration was measured with the NanoDrop ND-1000
(Thermo Scientific) and adjusted to 10 ng ml� 1.

The abundance of mtDNAD was quantified relative to both mtDNAtotal and
nucDNA using real-time qPCR. The relative quantification of mtDNA deletions
with qPCR has previously shown to correlate well with estimates based on
Southern blotting70. Real-time qPCR was performed with the SYBR Green I Master
kit (Roche) on the LightCycler 480 real-time PCR system (Roche). An elongation
step of PCR was done at 65 �C for 25 s. Amplifications of four loci were assessed
with qPCR: mt:cytB (specific for mtDNAWT), mt:AflIIID (specific for mtDNAD),
mt:NADH5 (mtDNAtotal) and nuc:Tube (nucDNA single-copy locus; CG10520;
Supplementary Table 4; Fig. 2a). The first two loci assessed the amounts of
mtDNAWT and mtDNAD, respectively; the second two loci provided different
references for normalization of the amount of mtDNAD (DCt). Melting curve
analysis did not identify any primer-dimer peaks in melting profiles. To estimate
the dynamic range, efficiency and sensitivity for each primer set, we constructed a
standard curve covering three orders of magnitude of total DNA concentration.
DNA was extracted from the dissected IFMs of w1118; P{pIFM-mitoAflIII,
pIFM-mitoT4lig, pIFM-GAL4}attP1/CyO 10-day-old male flies. The four primer
sets have identical efficiencies and sensitivity though the entire range (Fig. 2b).
Based on this, we applied a simple DDCt quantification algorithm to measure the
effect of a tested gene (OE or KD) on the level of mtDNAD. The w1118;
P{pIFM-mitoAflIII, pIFM-mitoT4lig, pIFM-GAL4}attP1/þ 10-day-old male flies
were the reference sample for all comparisons. At least four biological replicates
were analysed for each genetic background. The calculations of DDCt, fold
difference and normalized percentages were performed in Microsoft Excel for Mac
2011. Equations of the DDCt algorithm are presented in Supplementary Methods.

Toluidine blue staining and transmission electron microscopy. Thoraces from
10-day-old P{pIFM-Gal4}attP1 (wild type) and P{pIFM-Gal4, pIFM-mitoAflIII,
pIFM-mitoT4lig}attP1 (mitoAflIII flies) male flies were dissected, fixed in paraf-
ormaldehyde/glutaraldehyde, post-fixed in osmium tetraoxide, dehydrated in
ethanol and embedded in Epon. Blocks were cut to generate 1.5-mm-thick sections
using a glass knife, or 80-nm-thick sections using a diamond knife on a microtome
(Leica, Germany). Toluidine blue was used to stain 1.5-mm-thick tissue sections.
Thin sections (80-nm thick) were stained with uranyl acetate and lead citrate, and
examined using a JEOL 100C transmission electron microscope (UCLA Brain
Research Institute Electron Microscopy Facility). At least six thoraces were
examined for each genotype.

Flight assay. Flight performances of mitoAflIII and wild-type 10-day-old male
flies were compared using the ‘cylinder drop assay’43. Five groups of 30–50 flies of
each type were introduced into the top of a 500-ml graduated cylinder whose
internal walls were coated with paraffin oil. Wild-type flies quickly initiate
horizontal flight, striking the wall close to the entry level, whereas poor fliers land
at lower levels or at the bottom of the cylinder. The distribution of heights at which
the flies stuck in the oil reflects their flying performance.

Quantification of transcript abundance with RT–qPCR. The w1118;
P{pIFM-mitoAflIII, pIFM-mitoT4lig, pIFM-GAL4}attP1/CyO (mitoAflII) transgenic
male flies were used to quantify the transcription of pIFM-mitoAflIII. Five time
points were used to probe the mRNA abundance of mitoAflIII: 1, 3, 5, 7 and 9 days
post eclosion. The expression of Atg1 and Atg8a gene was analysed in the same
transgenic flies at day 3 post eclosion. Total RNA was extracted from the dissected

thoraces and legs of flies using the mirVana miRNA isolation Kit (Ambion).
To remove DNA contamination, 3 mg of total RNA was treated with the Turbo
DNA-free kit (Ambion). Then, cDNA was synthesized from 500 ng of RNA with
SuperScript III reverse transcriptase (Invitrogen) using an oligo-dT primer. qPCR
with reverse transcription (RT–qPCR) was performed with the SYBR Green I
Master kit (Roche) and the CFX96 Real-Time PCR detection system utilizing the
Bio-Rad C1000.

Primers used for RT–qPCR are listed in Supplementary Table 5. We placed one
primer directly on a splice junction to avoid amplification of genomic DNA. A
melting curve analysis was performed to confirm the absence of any primer-dimer
peak in the melting profile. Three dilution series (1/1, 1/10 and 1/100) were used to
build a standard curve and estimate the dynamic range, efficiency and sensitivity
for each primer set. The mRNA abundances of mitoAflIII, Atg1 and Atg8a
transcripts were normalized to b glucuronidase (bGlu) mRNA, according to the
DCt method with an efficiency correction (Supplementary Methods). Four
biological replicates were analysed per sample. mRNA abundances of mitoAflIII at
different time points were compared with the value at 1 day post eclosion, which
was given the value of 100% (Fig. 1e). Three-day-old w1118; P{pIFM-GAL4}
attP1/CyO male flies served as a reference for estimation of changes in Atg1 and
Atg8a mRNA abundance in the mitoAflII flies.

Target-primed tpRCA and immunochemistry. We performed target-primed RCA
in whole-mount IFMs dissected from male flies using a modified version of a pub-
lished method42. In brief, mtDNA in fixed tissue was cleaved with the restriction
enzyme EcoRI and then made single stranded using l 50–30 exonuclease. Two
different padlock probes were then hybridized to mtDNA. One hybridization site was
located near (44 bp) an EcoRI site present in widl type and mutant mtDNA (green
oval in Fig. 3a). A second probe hybridizes near (66 bp) an EcoRI site that is brought
close to the remaining AflIII site following mitoAflIII cleavage and re-ligation, but
located 1.71 kb away from the probe binding site in widl-type mtDNA (red oval in
Fig. 3a). After ligation of the padlock probes, rolling-circle amplification using F29
DNA polymerase was carried out, using the nearby 30-end provided by EcoRI
cleavage as a primer. This results in many rounds of amplification of the padlock
probe sequence, which is detected through hybridization with fluorescently labelled
probes (dpMtDNAtotal-AlexaFluor488; and dpMtDNAD-TAMRA; green and red
loci, respectively; Fig. 3). mtDNAD can be specifically identified using this approach
because the ability of a 30-end in fixed tissue to act as a primer drops markedly with
distance from the padlock probe42, and thus only occurs when one of the EcoRI sites
has been brought near the post-cleavage AflIII site (Fig. 3a, details below). We note
that the efficiency of tpRCA-based labelling of nucleoids in muscle is low, as is also
seen in mammalian cells42. Because of this, and the fact labelling efficiency can vary
several fold, tpRC is not used to estimate the absolute levels of mtDNA. It can only be
used to determine the fraction that is mtDNAD.

All reactions were performed inside 0.2 ml PCR tubes. At each step, we
incubated samples with an enzyme or probe at 4 �C for 1 h, to allow for tissue
penetration, before raising the temperature to 37 �C. The IFMs were dissected from
10-day-old flies and fixed in 4% formaldehyde in PBS with 0.3% Triton X-100 for
35 min. The fixed tissue was rinsed three times for 5 min in wash A (PBS with 0.2%
Triton X-100) at room temperature (RT), heated at 75 �C for 15 min and chilled on
ice for 2 min. DNA was digested using 0.5 U ml� 1 of EcoRI HF (NEB) at 37 �C for
40 min, and rinsed three times in wash A at RT for 5 min. Hybridization target
sequences for two padlock probes (Supplementary Table 6) were located either near
an EcoRI site present in both mtDNAWT and mtDNAD (mtDNAtotal, green oval;
Fig. 3a), or near an EcoRI site only brought near the hybridization site through
creation of a deletion (mtDNAD, red oval; Fig. 3a). We applied 0.2 U ml� 1 of the
50–30 l exonuclease (NEB) at 37 �C for 15 min to make a single-stranded DNA
target for complementary padlock probes.

Two 50-end phosphorylated padlock probes served as a template for target-
primed RCA: ppMtDNAtotal and ppMtDNAD. The padlock probe hybridization
site for ppMtDNAtotal is located 44 bp upstream of one EcoRI site, while the
padlock probe hybridization site for ppMtDNAD is located 1,752 bp upstream of a
second EcoRI site in mtDNAWT, and 66 bp upstream of an EcoRI site in mtDNAD

(Fig. 3a). After three rinses in wash A at RT for 5 min, we hybridized 185 nM of
both padlock probes under the published conditions42 at 37 �C for 40 min. To
remove unbound padlock probes we rinsed sample in wash B (2� SSC, 0.02%
Triton X-100) at 37 �C for 5 min, and then in wash A three times each for 5 min at
RT. Padlock probes were circularized using 0.1 U ml� 1 T4 DNA ligase (NEB) in the
supplied buffer supplemented with 500 mM of ATP (NEB) at 4 �C overnight.
Samples were then rinsed in wash B at 37 �C for 5 min and three times in wash A at
RT for 5 min. We performed the RCA reactions using 1 U ml� 1 of F29 DNA
polymerase (NEB) in the supplied buffer supplemented with 5% glycerol and
200 mgml� 1 of BSA at 37 �C for 40 min. Samples were rinsed in wash A three times
at RT for 5 min, and then post-fixed in 4% formaldehyde in PBS with 0.3% Triton
X-100 for 20 min each. After three rinses in wash A, we hybridized 250 nM of
fluorophore-tagged detection probes (Supplementary Table 6) under the same
conditions as for the padlock probe hybridization, at 37 �C for 90 min. The samples
were rinsed three times in wash A at RT for 5 min before mounting them in
VectaShield (Vector Laboratories) on a microscope slide.

The samples used for immunostaining were blocked in 5% BSA in wash A at RT
for 1 h. After blocking, samples were rinsed three times in wash A at RT for 5 min,
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and stained with primary and secondary antibodies overnight at 4 �C. After
primary and secondary staining, samples were extensively rinsed, four times in
wash A at RT for 20 min each. Mitochondria were immunostained using mouse
monoclonal (15H4C4) anti-ATP5A (Abcam #14748) at a 1/300 dilution and goat
anti-mouse Alexa Flour 405 (Abcam #175661) at a 1/250 dilution.

Imaging of tpRCA. Images of in situ tpRCA were acquired with the Olympus
FV-1000 confocal microscope using a � 60 (numerical aperture¼ 1.30) objective
and 1,024� 1,024 resolution at 12 bits per pixel. Each channel was scanned
consecutively at 4 ms per pixel applying a threefold zoom. For each genotype, tissue
from six flies was examined, with four or more images per fly, and a single
400� 400 image is displayed in Figs 5b and 6b.

Image quantification. ImageJ 2.0 was used for image analysis and quantification.
For each colour channel, a threshold was determined from a channel’s histogram
and applied to remove background pixels. To quantify numbers of fluorescent loci
(mCherry-Atg8a, Alexa Flour 488 and TAMRA), colour channels were split,
converted to 8 Bit grey scale and then to binary images. Numbers of fluorescent
foci were counted with a particle analysis tool in ImageJ. Total numbers of
fluorescent foci counted were similar for all genotypes and samples.

Quantification of mtDNAD using tpRCA. In order for a padlock probe to be able
to hybridize to its target, and to be used as a substrate for rolling-circle
amplification, several things must happen. First, the 50–30 exonuclease must
degrade one strand of mtDNA, beginning at the cleaved EcoRI site, to provide a
probe hybridization site. Second, following hybridization of the padlock probe, F29
DNA polymerase must shorten the unprimed 30-end so that it becomes located
sufficiently near the probe hybridization site to function as a primer. Both of these
exonucleolytic events are likely to be inhibited in a distance-dependent manner in
an in situ preparation of formaldehyde fixed tissue, since in vivo mtDNA is bound
to varying degrees, depending on context, by mtDNA-packaging proteins such as
TFAM1. Larsson et al.42 observed such distance-dependent behaviour, with
padlock probes located close to the restriction enzyme-created end being detected
twice as frequently as those located 134 bp away. In our experiments, the mtDNAD

padlock probe is located 1.7 kb away from the exposed 30-end in wild-type mtDNA,
but only 66 bp away in mtDNAD. Thus, failure of one or both of the above
exonucleases to process the intervening mtDNA provides a mechanistic basis for
our ability to specifically detect mtDNAD. With respect to our ability to quantify
the fraction of mtDNAtotal represented by mtDNAD using tpRCA, we note that
target sites for mtDNAD and mtDNAtotal padlock probes are located at different
distances from their closest EcoRI cut sites: 66 and 44 bases, respectively. Assuming
that the ability of a 30-end to prime tpRCA is a linear function of distance (based on
the above proposed mechanisms, and the observations of Larsson et al.)42, we
applied a correction factor for different efficiencies of RCA of the circularized
padlock probes by adjusting the percentage of mtDNAD (red) to mtDNAtotal

(green) loci on tpRCA images by 3/2.

mitoAflIII fly feeding experiments. The P{pIFM-mitoAflIII, pIFM-mitoT4lig,
pIFM-Gal4I}attP1/CyO male flies were used for feeding experiments. All flies were
kept under the same conditions at 25 �C with a 12H/12H light and dark cycle.
Twenty flies were introduced into a vial, and flies were transferred into a new vial
every other day. Rapamicyn (99þ%, Alfa Aesar) was dissolved in 100% ethanol to
a 40 mM stock concentration. It was gradually diluted in water to a 200 mM
working concentration. Drosophila food was prepared from Instant formula
4–24 (Carolina) dissolved in water with 200 mM rapamycin. Diluted ethanol alone
was added to the control food. Newly enclosed flies were kept for 10 days on
200mM of rapamycin.

Quantification of mtDNAD from mitoAflIII flies fed on supplemented diets.
Total DNA was extracted from dissected IFMs of 10-day-old male flies. The same
qPCR primers (Supplementary Table 4) and DDCt quantification algorithm were
used to estimate changes in levels of mtDNAtotal and mtDNAD molecules between
the control flies and flies fed on food supplemented with rapamycin. Because each
group (experimental and control) was fed on Instant formula 4–24 (Carolina), we
could not normalize the fold change in mtDNAD induced by rapamycin to the level
of mtDNAD in the mitoAflII flies fed on the standard fly food. Instead, changes in
abundance of the mtDNAtotal and mtDNAD are presented as percentages relative
to the respective estimates in the control flies, which were given the value of 100%.
Four biological replicates were analysed for each feeding experiment.

Statistical analysis. Statistical analysis was performed in JMP 8.0.2 by SAS
Institute Inc. Observations from each genetic background were compared
with corresponding values from mitoAflIII flies (Figs 5a and 6a). P values were
calculated for a two-sample Student’s t-test with unequal variance.

Data availability. The sequence of plasmid used to generate mitoAflIII flies is
deposited in GenBank under accession code KX696451.
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