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Activating KIR2DS4 Is Expressed by Uterine NK Cells and
Contributes to Successful Pregnancy
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Tissue-specific NK cells are abundant in the pregnant uterus and interact with invading placental trophoblast cells that transform

the maternal arteries to increase the fetoplacental blood supply. Genetic case-control studies have implicated killer cell Ig-like

receptor (KIR) genes and their HLA ligands in pregnancy disorders characterized by failure of trophoblast arterial transforma-

tion. Activating KIR2DS1 or KIR2DS5 (when located in the centromeric region as in Africans) lower the risk of disorders when

there is a fetal HLA-C allele carrying a C2 epitope. In this study, we investigated another activating KIR, KIR2DS4, and provide

genetic evidence for a similar effect when carried with KIR2DS1. KIR2DS4 is expressed by ∼45% of uterine NK (uNK) cells.

Similarly to KIR2DS1, triggering of KIR2DS4 on uNK cells led to secretion of GM-CSF and other chemokines, known to promote

placental trophoblast invasion. Additionally, XCL1 and CCL1, identified in a screen of 120 different cytokines, were consistently

secreted upon activation of KIR2DS4 on uNK cells. Inhibitory KIR2DL5A, carried in linkage disequilibrium with KIR2DS1, is

expressed by peripheral blood NK cells but not by uNK cells, highlighting the unique phenotype of uNK cells compared with

peripheral blood NK cells. That KIR2DS4, KIR2DS1, and some alleles of KIR2DS5 contribute to successful pregnancy suggests

that activation of uNK cells by KIR binding to HLA-C is a generic mechanism promoting trophoblast invasion into the decidua.
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N
atural killer cells use a combination of activating and
inhibitory receptors to recognize viruses and cancerous
cells (1). That the same receptors are also used to recog-

nize fetal cells by tissue-specific uterine NK (uNK) cells (2) indi-
cates two strong contrasting evolutionary pressures, that is, disease
resistance and successful reproduction, with both showing evidence
of balancing selection (3, 4). NK cells in the pregnant uterus, de-
cidual NK (dNK) cells, are different phenotypically and functionally
from peripheral blood NK (pbNK) cells (5–10). Evidence from

genetic and functional studies suggests that dNK cells regulate
trophoblast transformation of the uterine spiral arteries necessary

for increasing the blood supply to the fetoplacental unit until the

end of gestation (11–14).
The NK cell receptors particularly implicated in reproductive

health are the highly polymorphic killer cell Ig-like receptor (KIR)

family (15). A KIR genotype is made up of two KIR haplotypes

that can differ by both gene content and allelic variation. The

genes in these haplotypes are so densely clustered on chromosome

19 that they are generally inherited as haplotypic centromeric and

telomeric blocks (16, 17) (Fig. 1A). The dominant ligands for KIR

are HLA-C allotypes. All individuals have KIRs that will bind to

HLA-C allotypes as two groups depending on the C1 or C2 epitope

that they bear. There is an increased risk of pregnancy disorders

with certain inhibitory maternal KIR and fetal HLA-C combina-

tions. Case-control genetic studies of Europeans have shown that

pregnancy disorders that result from defective placentation with

inadequate trophoblast arterial transformation (e.g., pre-eclampsia,

fetal growth restriction, and recurrent miscarriage) are linked to an

absence of the telomeric B (Tel-B) KIR region in the mother

(Fig. 1A) and the presence of paternal C2 in the fetus (13, 18, 19).

In contrast, pregnancies resulting in babies with increased birth

weights are also associated with the presence of a paternal C2 allele

in the fetus, but with a maternal Tel-B KIR region (20). The tight

linkage disequilibrium (LD) of KIRs makes it difficult to determine

through genetic studies alone which gene is responsible, so func-

tional studies are required to complement this work.
Of the KIRs in the Tel-B region, activating KIR2DS1 is the most

likely candidate for enhancing placentation, because it can bind to

C2 allotypes. The inhibitory counterpart, KIR2DL1, also binds

strongly to C2 allotypes, is present in the centromeric A and some

centromeric B (Cen-B) regions, and is carried by ∼98% of individ-

uals. Therefore, in the absence of KIR2DS1 (55–60% of Europeans),

the dominant effect of paternal trophoblast C2 allotypes interacting
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with dNK cells is inhibition. Ligation of KIR2DS1 on dNK cells
induces production of cytokines and chemokines, such as GM-
CSF, which can induce trophoblast migration (12). Thus, our cur-
rent model of pregnancy indicates that when C2 allotypes derived
from the father are expressed by trophoblast, KIR2DS1 activates
dNK cells to secrete cytokines that encourage deeper invasion of
the uterus by trophoblast and promote spiral artery remodeling
and a better blood supply for the fetus (2). In the absence of
KIR2DS1, insufficient activation of dNK cells results in poor
trophoblast invasion, placental stress, growth restriction of the
fetus, and pre-eclampsia.
In a similar Ugandan case-control study, we found no protective

effect for pre-eclampsia of the Tel-B region, including KIR2DS1
(carried by ∼20% of control women). Instead, certain alleles of an
activating KIR, KIR2DS5, present in Cen-B were more frequent in
controls compared with pre-eclamptic pregnancies (21). KIR2DS5
is always located in the Tel-B region in non-African populations
and is carried in tight LD with KIR2DS1. It thus could contribute
to the protective effect of Tel-B in Europeans, but whether it is
expressed or binds C2 allotypes is still controversial. In addition to
KIR2DS1 and KIR2DS5, KIR2DL5A is also present in Tel-B and
remains an enigmatic KIR in terms of ligands and functions (22).
Other activating KIRs that might recognize ligands on trophoblast

and influence pregnancy outcome includeKIR3DS1 andKIR2DS2–4.
KIR3DS1, in LD with KIR2DS1, binds HLA-B allotypes carrying
the Bw4 motif (23), but HLA-B molecules are never expressed by
trophoblast (24, 25). KIR2DS2 is predicted to bind the C1 motif
through homology with KIR2DL2/3; the presence of fetal C1 alone
is always neutral in our genetic case control studies. KIR2DS3 is not
expressed at the cell surface (26). This leaves KIR2DS4, present in
the telomeric A (Tel-A) region, that occurs either as a truncated
(KIR2DS4del) (alleles *003/004/006 are carried by ∼80% of Euro-
peans) or full-length (KIR2DS4wt) form (allele *001 is carried by
∼35% of Europeans). KIR2DS4del has a 22-bp deletion that intro-
duces a frameshift mutation that results in a soluble protein with
only one intact Ig-like domain (27). Whereas KIR2DS4wt has
been reported to bind some HLA-C alleles carrying both the C1
and C2 epitopes, soluble KIR2DS4del does not bind HLA class
I molecules (28). We previously found a negative association of
KIR2DS4del with pregnancy outcome, but no positive effect of
KIR2DS4wt (13).
In this study, to investigate the role of KIR other than KIR2DS1 in

successful pregnancy, we have studied the expression and function of
KIR2DS4 and KIR2DL5 on dNK cells. From this we demonstrate
that activation of dNK cells is a general mechanism that is beneficial
to pregnancy.

Materials and Methods
Primary tissue

Tissue and matched peripheral blood samples were obtained from women
undergoing elective terminations in the first trimester of pregnancy; blood
was also obtained from healthy volunteers. Both sets of patients gave
informed consent. Ethical approval for the use of these tissues was ob-
tained from the Cambridge Local Research Ethics Committee (REC 04/
Q0108/23). Leukocytes and placental samples were isolated as previously
described (29).

Cell lines

Cell lines transfected with cDNA for single KIR were used to test Ab
specificities. KIR2DL1+, KIR2DL3+, KIR2DS1+, KIR2DS2+, KIR2DS4+

(30), or KIR3DS1+ (31) BWZ cells were the gift of Eric Vivier. KIR2DL2+,
KIR2DS5+, KIR3DL1+ (31), or KIR3DL3+ (32) BA/F3 cells were the gift of
Chiwen Chang, as was cDNA for KIR2DL5 used to transiently transfect
HEK293T cells. KIR2DL4+ Jurkat cells were the gift of Kerry Campbell.
Paul Norman supplied cDNA of KIR3DL2 for transient transfection into
HEK293T cells.

Flow cytometry

dNK cells were gated on as live, CD9+CD56+ cells. pbNK cells were gated
on as live CD56+CD32 cells. The following Abs were used: Live/Dead
discriminator (Life Technologies), CD9 (SN4 or M-L13 from eBioscience
or BD Biosciences, respectively), CD56 (HCD56 from BioLegend), and
CD3 (SK7) from BD Biosciences. Fibroblasts and macrophages were
identified using CD10 (HI10a from BioLegend) and CD14 Abs (MwP9 and
HCD14 from BD Pharmingen and BioLegend), respectively. The following
Abs were used to stain KIRs: UPR1 (KIR2DL5) from BioLegend and Carlos
Vilches (33); 179315 (KIR2DS4), 143211 (KIR2DL1), and 181703 (KIR2DL4)
from R&D Systems; FES172 (KIR2DS4) and EB6 (KIR2DL1/S1) from
Beckman Coulter; CHL (KIR2DL2/3/S2) from BD Pharmingen; DX9
(KIR3DL1) from BioLegend; NKVFS1 (KIR2DL1/2/3/S1/2/4) from Abcam;
5.133 (KIR3DL2) from Marco Colonna (34); and FLAG Abs from Sigma-
Aldrich. Intracellular staining was performed according to the manufacturers’
instructions with Abs against Ki647 (BD Pharmingen), CCL3 (R&D Sys-
tems), and GM-CSF (BD Biosciences).

Functional assays

Purified NK cells (CD56 positive selection using magnetic beads; Miltenyi
Biotec) or mixed decidual mononuclear cells were stimulated with plate-
bound anti-KIR2DS4 (179315) Abs or an isotype control for 12–48 h.
After this time supernatants were removed (spun at 500 3 g for 5 min to
remove cellular contaminants) or stimulated cells were mechanically dislodged.
Supernatants were analyzed using a chip-based fluorescence-linked immu-
nosorbent assay (human cytokine Ab array G series 1000; RayBiotech) or a
standard ELISA for CCL1 and XCL1 (DuoSets; R&D Systems). Cells
activated cells in the presence of monensin and brefeldin A for 5 h were
analyzed for surface expression of CD107a (H4A3; BD Pharmingen) or
the intracellular cytokines listed above.

Immunohistochemistry

Paraffin sections of decidual implantation sites were heat treated in 0.1 M
citrate buffer for 20 min at 99.5˚C. Slides were left in hot buffer for a
further 20 min for Ag unmasking. Anti-XCR1 (191704 from R&D Sys-
tems) was stained in TBS with 0.1% Tween 20 for 45 min. The staining
was detected with goat anti-rabbit IgG-biotin and avidin-biotin-HRP
complexes (Vector Laboratories).

Genetic typing

The case-control cohort analyzed in this study has previously been de-
scribed (13). KIR and HLA-C1/2 genetic typing of new patient samples was
performed as in this previous study. Two-digit HLA-C typing was performed
by the Tissue Typing facility at Addenbrookes Hospital, Cambridge, U.K.

Statistical analysis

Statistical tests were carried out using the computational site http://
vassarstats.net/, the statistical packages within GraphPad Prism v6 (GraphPad
Software, La Jolla, CA), the Real Statistics Resource Pack for Excel 2010
(http://www.real-statistics.com/), and PLINK (version 1.07; http://pngu.mgh.
harvard.edu/purcell/plink/) (35). The product rule was calculated by multiply-
ing the observed frequency (Obs) of individual receptors (Obs [A] x Obs [B])
to generate the expected frequency of double-positive receptors (expected
frequency [AB]). The following genetics tests were performed: a x2 test and
Fisher exact test with two-tailed mid-p adjustment, a Breslow–Day test, and a
Cochran–Mantel–Haenszel test.

Results
KIR2DS4wt in epistasis with KIR2DS1 is associated with a
lower risk of pre-eclampsia

KIR2DS4wt, the full-length form of activating KIR2DS4, is poten-
tially important in pregnancy as it can bind to some HLA-C allotypes
(28, 36). Indeed, we previously found in a case-control cohort of
European women that KIR2DS4del associates with increased risk of
pregnancy disorders (13). The presence of KIR2DS4wt was neutral in
this analysis. However, we only considered presence/absence of this
gene and did not consider the effect of both KIR telomeric regions
that make up the women’s genotypes. There are three possible re-
gions: Tel-A containing KIR2DS4wt; Tel-A containing KIR2DS4del;
and Tel-B containing KIR2DS1 (Fig. 1A) that provides a strong pro-
tective effect (13). In this study, therefore, we reanalyzed this dataset
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for the effect of KIR2DS4wt, now controlling for the clear protective
effect of KIR2DS1. Indeed, the presence/absence of KIR2DS1 does
alter the effect of KIR2DS4wt, indicative of epistasis (Breslow–Day
test, p = 0.003). KIR2DS4wt is protective compared with KIR2DS4del
in KIR2DS1+ women (p = 5.7 3 1024, odds ratio [OR] = 0.59)
(Fig. 1B). This effect is not found in the absence of KIR2DS1
(p = 0.83, OR = 1.0). This indicates that women who carry both
KIR2DS4wt and KIR2DS1 are further protected against disorders of
pregnancy affecting placentation (p = 6.8 3 1025, OR = 0.45)
(Fig. 1C). Because of the similar functions and overlapping ligands
of KIR2DS1 and KIR2DS4, it is likely that the epistasis detected at
the statistical level reflects a biological interaction.

KIR2DS4 is expressed by a large proportion of both pbNK and
dNK cells

Two mAbs (FES172 and 179315) were tested to confirm specificity
against KIR2DS4 on cell lines expressing single KIR (Supplemental
Fig. 1). The frequency of KIR2DS4+CD56+ cells is high in both dNK
and pbNK cell populations (Fig. 2A–C). In contrast, both KIR2DS1
and KIR2DL1 have an increased frequency of expression in dNK
cells compared with pbNK cells (12, 37, 38) and so, in accordance

with the product rule, there is a higher frequency of dNK cells
coexpressing these KIRs than for pbNK cells (12). This means that
the proportion of cells coexpressing KIR2DS4 and other KIRs is
probably different for dNK and pbNK cells. We chose to look at the
distribution of KIR2DS4 relative to KIR2DL1, because KIR2DL1
is carried by almost all donors, allowing us to analyze KIR
coexpression with sufficient statistical power. KIR2DL1 is also
critical to our model of pregnancy disorders, as it is strongly in-
hibitory for HLA-C allotypes bearing C2 epitopes. Our findings
(Fig. 2D, 2E) show that in pbNK cells, most KIR2DS4+ cells lack
KIR2DL1 (Fig. 2E, mid gray segment), but in dNK cells, most
KIR2DS4+ cells coexpress KIR2DL1 (Fig. 2E, dark gray segment).
This increased coexpression obeys the product rule (Supplemental
Fig. 2A), suggesting it reflects the combined frequency of KIR2DL1
and KIR2DS4. In line with this, Ki-67 staining shows that KIR+ dNK
cells proliferate more than KIR2 cells, but there is no prefer-
ential proliferation by KIR2DS4+KIR2DL1+ cells compared with
single-positive cells (Supplemental Fig. 2B). Therefore, in do-
nors carrying KIR2DS4wt, a large proportion of dNK cells
coexpresses KIR2DS4 with other KIRs that have the potential to
modulate its function.

FIGURE 1. KIR2DS4wt in epistasis with KIR2DS1 is as-

sociated with a lower risk of pregnancy disorders. (A) The

LD blocks that make up .94% of European KIR genotypes

(17). An individual’s KIR genotype contains two haplotypes,

each with one centromeric (left) and one telomeric (right)

block. These blocks contain activating (white) and inhibitory

(black) genes in LD. Framework genes (gray) are found in all

haplotypes. The three most common telomeric blocks contain

either KIR2DS4wt, KIR2DS4del, or KIR2DS1. (B) Women

were stratified according to the presence or absence of the

protective gene KIR2DS1, as a Breslow–Day test indicated

epistasis between KIR2DS1 and KIR2DS4wt. The carrier

frequency of KIR2DS4wt was then compared between

women with affected pregnancies and healthy control preg-

nancies within each subgroup. The presence of KIR2DS4wt

was protective (Cochran–Mantel–Haenszel test p = 5.7 3 1024,

OR = 0.59). (C) Then, within the women carrying KIR2DS1, the

double-positive KIR2DS1+KIR2DS4wt+ are the most protected

(p = 6.78 3 1025, OR = 0.45).
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Using KIR Fc-fusion proteins, KIR2DS4 binds and responds to
certain HLA-C alleles carrying both C1 and C2 epitopes (28, 36).
Binding of KIR2DS4 on dNK cells to trophoblast HLA-C ligands

might affect the frequency of KIR2DS4+ cells, but we find no
difference in the proportion of dNK cells expressing KIR2DS4
when the mother or fetus carries its ligands (Supplemental Fig. 3A,
3B). There is a suggestion that allogeneic ligands affect KIR2DS4
expression, as there are fewer dNK cells expressing KIR2DS4 when
the fetus alone carries a ligand, compared with the mother alone
(Supplemental Fig. 3C). Given that KIR2DS4wt is protective in
genetic case-control studies only in the presence of KIR2DS1, and
that both are mutually exclusive on a KIR haplotype, protected in-
dividuals must have one copy of each gene. Therefore, we analyzed
the effect of KIR2DS4wt copy number on frequency of expres-
sion: as two copies, as one copy in the presence of KIR2DS4del,
or as one copy in the presence of KIR2DS1. KIR2DS4 frequency
on dNK cells is similar in these different genetic backgrounds,
suggesting that an altered frequency of KIR2DS4+ dNK cells
in KIR2DS1+KIR2DS4+ individuals is not the mechanism by
which KIR2DS4 provides protection against pregnancy disorders
(Supplemental Fig. 3D).

KIR2DS4 activation on dNK cells induces cytokine responses

HLA-C ligands for KIR2DS4 are shared with other NK receptors
on dNK cells. To investigate the functional consequences
specific to activation of KIR2DS4 alone, we used cross-linking
with a specific mAb. Decidual NK cells are poor killers, as
measured by chromium-release assays (6, 9, 39), but CD107a
degranulation does occur in the presence of low-dose IL-15
(40) and offers a reproducible assay to quantify dNK cell ac-
tivation. We find that degranulation of both pbNK and dNK
cells occurs in response to increasing concentrations of anti-
KIR2DS4 (Scheirer–Ray–Hare modification of Kruskal–Wallis
test, effect of mAb concentration p = 4.1 3 10210) (Fig. 3).
Because cytokine responses are more physiologically relevant
to human pregnancy than is degranulation (12, 41), we next
analyzed the cytokines produced following KIR2DS4 stimu-
lation of dNK cells using a semiquantitative screen of 120
cytokines (Supplemental Table I). Mixed decidual mononu-
clear cells were cocultured in wells coated with anti-KIR2DS4
or control IgG Ab so that contact with stromal cells is main-
tained, as this improves viability. We identified eight candi-
dates that were upregulated .1.25-fold in at least one out of
four donors tested (Fig. 4A, 4B). After cross-linking with anti-
KIR2DS4, flow cytometry (GM-CSF and CCL3) or ELISA
(XCL1 and CCL1) assays were used to validate four of these
eight cytokines (Fig. 4C–F). The percentage of dNK cells
positive for intracellular GM-CSF and the median fluorescence
intensity for CCL3 increases (p , 0.05) (Fig. 4C–E) and se-
cretion assayed by ELISA for both XCL1 (p , 0.01) and CCL1
(p , 0.05) is augmented (Fig. 4F). In summary, stimulation of
KIR2DS4 on dNK cells triggers the release of cytokines, many
of which are related to the cytokines upregulated at the mRNA
level by dNK cells upon KIR2DS1 activation (XCL2, CCL3L3,
GM-CSF, IFNG) (12), although to our knowledge this is the
first time XCL1 and CCL1 have been identified as secreted by
dNK cells in response to activating signals.

Trophoblast and maternal decidual cells express receptors for
newly identified cytokines produced by activated dNK cells

Recently we have shown that GM-CSF induces migration of human
primary trophoblast cells (12). CCL3 production by decidual and
trophoblast cells may attract NK cells, as well as monocytes and
T cells, which all bear receptors for this cytokine (42, 43).
Receptors for chemokines XCL1 and CCL1 have not been
described on cells at the site of placentation. We therefore
stained sections of decidua and placenta and cell isolates by

FIGURE 2. KIR2DS4 is expressed by a large proportion of both pbNK and

dNK cells. (A) Flow cytometry plots from a typical donor showing the gating

strategy for pbNK and dNK cells. (B) Flow cytometry plots showing KIR2DS4

and KIR2DL1 staining on pbNK and dNK cells from a representative donor.

The percentage of cells in each quadrant is shown. (C) The proportion of

KIR2DS4+ cells was compared for pbNK and dNK cells in matched donors

(n = 22). The proportion of KIR2DL1+ (n = 41) and KIR2DS1+ (n = 11) NK

cells is shown for comparison only. Data points for KIR2DS1 and some

KIR2DL1 (shown in gray) are already published (12) and are reproduced with

permission from the Journal of Clinical Investigation. (D and E) The propor-

tion of NK cells from each KIR+ subset (single-positive [sp], double-positive

[dp], or double-negative [dn] for the receptors) was compared for pbNK and

dNK cells. (D) Values for individual donors. Black lines represent donors, red

lines represent the median, ***p , 0.001 by Wilcoxon signed rank test. (E)

The mean values for each subset are displayed as a pie chart.
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flow cytometry for these receptors. Several cell types within the
placenta, including fetal endothelial cells, villous trophoblast,
and invasive EVT express XCR1, the receptor for XCL1
(Fig. 5). Within the dNK cell–rich decidua, XCR1 is found
on cells with branching processes (Fig. 5B), identified by
flow cytometry as a small proportion of the CD14+ macrophage
population (Fig. 5D, 5E). CCR8, the receptor for CCL1, is
expressed by all decidual macrophages and a small proportion
of dNK cells (Fig. 5F).

KIR2DL5, the only inhibitory receptor in the Tel-B region, is
not expressed on the surface of dNK cells

In the Tel-B region, KIR2DS1 is in LD with KIR2DL5A, which
codes for an orphan inhibitory receptor. To determine whether
KIR2DL5A affects dNK cell activation and pregnancy outcome,
we first looked for expression of KIR2DL5A in dNK cells.
KIR2DL5 alleles are also found in the Cen-B region, where they
are known as KIR2DL5B (Fig. 1A). To distinguish between these
alleles we used Ab UPR1, which binds the most common KIR2DL5A
allele in Europeans, KIR2DL5A*001 (∼30% Europeans) (33),
but not KIR2DL5A*005 (∼8% Europeans) or KIR2DL5B (∼20–
40% Europeans) (22). UPR1 binds KIR2DL5 and not other KIRs,
which we confirmed using KIR-negative cell lines transfected
with single KIR genes (Supplemental Fig. 1). In donors where
there were detectable KIR2DL5+ pbNK cells, there was no
surface expression of KIR2DL5 on dNK cells (Fig. 6A, 6B).
The donors who expressed KIR2DL5 in blood always also
carry KIR2DS5 (Fig. 6C), which is in LD with KIR2DS1 and
KIR2DL5*001 in the Tel-B haplotype in Europeans, suggesting
we might only detect Tel-B KIR2DL5*001 and not other KIR2DL5
allotypes. The absence of KIR2DL5 surface expression on dNK
cells means it is unlikely to be affecting the activity of dNK cells,
and so the protective effect of the Tel-B region is due to activating
KIR alone.

Discussion
We have shown that KIR2DS4wt is associated with lower risk of
pregnancy disorders in the presence of KIR2DS1, representing a
synergistic interaction. KIR2DS4wt has been linked to higher viral
load and increased transmission of HIV infection (44–47), as well

as with clinical outcomes in arthritis (48–50), cancer (51), and
allogeneic cell transplantation (52). Because KIRs are in tight LD
and there are confounding effects of genes on alternative haplo-
types, it can be difficult to determine which particular KIR has a
role in disease (53). In the present study, we have ruled out the
effect of alternative haplotypes by stratifying the cohort according
to the presence of Tel-B. A clear biological rationale for a par-
ticular KIR’s involvement can also help distinguish the effect of
KIRs in tight LD. KIR2DS4wt is in LD with KIR3DL1 alleles, but
in the context of pregnancy, the ligand for KIR3DL1, HLA-Bw4,
is not expressed by trophoblast. HLA-Bw4 can be expressed by
stromal cells, so it is possible it modulates uNK cell activity.
Nevertheless, KIR2DS4, known to bind to certain HLA-C allo-
types expressed on trophoblast, is the likely candidate for the
protective effect.
To explain how a particular KIR could affect trophoblast

migration, the candidate KIR needs to be expressed by NK cells
in contact with EVT in the decidua. KIR2DS4 is expressed by
a large proportion of dNK cells, and its frequency of expression
follows the product rule of coexpression with other KIRs.
Coexpression of KIRs is relevant because the balance of ac-
tivating and inhibitory signals within the cell determines ac-
tivation of NK cells. Similar to KIR2DL1, KIR2DS1 has increased
frequency of expression in dNK cells compared with pbNK
cells. KIR2DS4wt could swing the balance in favor of acti-
vation when coexpressed with KIR2DS1 or in the context of
activating cytokines, but it may fail to activate dNK cells in the
absence of another activating receptor. Indeed, KIR2DS1 may
also require the presence of another activating receptor to
have measurable effects on population genetics, but unlike
KIR2DS4wt, KIR2DS1 is in LD with two other activating re-
ceptors in Europeans. There is precedence for co-operation of
activating KIRs from pregnancy and allogeneic hematopoietic
stem cell transplantation, where cumulative Cen-B and Tel-B
haplotypes that carry multiple activating KIR contribute to
increasing beneficial effects (18, 54). Indeed, our finding that
certain centromeric alleles of another different activating KIR,
KIR2DS5, is protective against pre-eclampsia in Ugandans
(21) supports this model. There is still limited evidence that
KIR2DS4 responds to HLA-C molecules, but our preliminary

FIGURE 3. KIR2DS4 is functional on dNK cells. pbNK

and dNK cells from KIR2DS4+ donors were incubated in

wells coated with anti-KIR2DS4 or an isotype control for

5 h in the presence of monensin. (A) dNK cells from a

represenative donor, gated as in Fig. 2, are shown stained

for KIR2DS4 and CD107a following activation with plate-

bound Ab (anti-KIR2DS4 or an isotype control). (B) The

percentage of KIR2DS4+ NK cells positive for CD107a

upon activation was calculated by subtracting the percent-

age CD107a+ when cells were cross-linked with IgG. The

extent of degranulation for a range of Ab concentrations is

shown. pbNK and dNK cells were not from the same donor.

Scheirer–Ray–Hare modification of Kruskal–Wallis test,

effect of concentration p = 4.1 3 10210; effect of cell type

p = 0.24; effect of interaction p = 0.87. Bars represent

medians and interquartile ranges.
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findings suggest that the size of the KIR2DS4+ dNK cell subset
is smaller when KIR2DS4 ligands are present in the fetus, but
not the mother. This observation supports the hypothesis that
KIR2DS4 does bind these HLA-C ligands on trophoblast.
Why should KIR2DS4 act as a coreceptor in this way, requiring

the presence of another activating receptor? The mechanism of
this co-operation remains unclear, but we can exclude some
factors. First, we have shown that the frequency of expression
of KIR2DS4wt on dNK cells is unaffected by the presence of
Tel-B or Tel-A on the women’s other haplotype. Therefore,
higher frequency of expression of KIR2DS4wt in the presence
of KIR2DS1 cannot be the mechanism by which epistasis is
achieved. Similarly, there is only one prevalent allele of KIR2DS1
and functional KIR2DS4 among Europeans (KIR2DS1*002 and
KIR2DS4*001), so allelic variation on particular haplotypes is
unlikely to affect the association in our European case-control
cohorts. One reason for the dependence of KIR2DS4wt on the
presence of KIR2DS1 could be the nature of its interaction
with HLA-C molecules. Although there are functional re-
sponses of KIR2DS1+ NK cells upon interaction with HLA-C
alleles carrying C2 epitopes ex vivo (12, 55, 56), similar re-
sponses of KIR2DS4+ NK cells have only been demonstrated
for HLA-C*0401 (36) and HLA-A*1102 (28). The interaction
of KIR2DS4 with HLA-C could be of lower avidity than that of
KIR2DS1; KIR2DS4 recognition of HLA-C allotypes might be
peptide-dependent, as has been shown for KIR3DS1 (23); or
KIR2DS4 may be interacting with open conformers of HLA
molecules (57) expressed by trophoblast. All these factors
could affect the way KIR2DS4 binds to HLA-C molecules on
trophoblast.
Specialized functions for pbNK and dNK cells are likely to

have arisen because of the conflicting demands of disease re-
sistance and reproductive success (3). When trying to assess
the impact of KIRs in health and disease, it is necessary,
therefore, to study these receptors in the species and tissue of
interest. Upon triggering of KIR2DS4 with specific Abs, dNK
cells degranulate and secrete cytokines, such as GM-CSF,
that are known to have direct effects on trophoblast migra-
tion, and other cytokines (XCL1, CCL1, and CCL3) that have
the potential to directly impact trophoblast and other cells in
the decidua, including decidual macrophages. Recently,
KIR2DS4 has been highlighted for promoting trogocytosis
(58), a process that has been implicated in dNK cell acqui-
sition of HLA-G from trophoblast (59). There may be several
mechanisms, therefore, by which triggering of dNK cells
could aid placentation.

FIGURE 4. Cytokine secretion by dNK cells in response to KIR2DS4

activation. (A and B) A semiquantitative fluorescent chip-based sandwich

ELISA was used to screen for 120 cytokines in supernatants taken from

mixed decidual leukocytes of KIR2DS4+ donors (see Supplemental

Table I). Leukocytes were cultured on Ab-coated plastic for 12–24 h,

where the only cells to express KIR2DS4 were the dNK cells. Fluorescent

spots for cytokines of interest are highlighted in (A). The cropped regions

of interest are taken from different chips and different donors. They are

grouped according to whether they show a .1.5-fold increase in secretion

on average across all donors (Increase); secretion that was already high

within the isotype control stimulation, so the screen was insensitive (Ambigu-

ous); and control spots (Control). (B) The cytokines that were upregulated.1.25-

fold upon KIR2DS4 activation in at least one of four donors tested are

listed in the table. The mean fold change across all four donors is shown

to the right. Values .1.25-fold are highlighted in gray. (C–E) Mixed

decidual leukocytes were cultured on plastic coated with either anti-

KIR2DS4 Ab or an isotype control (IgG2a) in the presence of monensin

and brefeldin A. After 5 h, cells were fixed and live CD56+CD9+

KIR2DS4+ dNK cells were identified by flow cytometry (C). Although

KIR2DS4 expression reduced upon cross-linking (C), most retained

KIR2DS4 expression. These KIR2DS4+ dNK cells were assessed for

intracellular cytokines: (D) GM-CSF (n = 7) and (E) CCL3 (n = 7). (F)

When Abs for flow cytometry were not available, purified dNK cells

were cultured on Ab-coated plastic for 12–48 h and the production of

CCL1 and XCL1 (n = 8) was detected in supernatants by commercial

sandwich ELISA. Results are color coded according to donor. *p ,
0.05, **p , 0.01 by Wilcoxon signed rank test.
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The view that immune cells must be suppressed for successful
pregnancy, both locally in the uterus and systemically, origi-
nated with Medawar (60) and the birth of transplant biology.
There is now mounting evidence that for uNK cells this is
not correct. We show that activation of dNK cells through
KIR2DS4wt provides help to trophoblast migration and the
establishment of pregnancy. Perhaps KIR2DS5 in the Cen-B

region may protect Africans from pre-eclampsia in the same
way (21). Moreover, we find here that inhibitory receptor
KIR2DL5A in the protective Tel-B region is not expressed by
dNK cells, suggesting it does not affect pregnancy outcome.
Taken together, these data support a model of generic activa-
tion of dNK cells counteracting strong inhibition by KIR2DL1
and benefitting pregnancy.

A

B

C

D

E F

FIGURE 5. Receptors for XCL1 and CCL1 on placenta and

in the pregnant uterus. (A-C) Immunohistochemical localiza-

tion of XCR1, the receptor for XCL1, with DAB substrate and

Carazzi’s hematoxylin nuclear counterstain. (A) XCR1 was

identified on trophoblast invading the pregnant uterus. (B)

Within the maternal compartment, XCR1 was identified on

individual cells with branching processes often adjacent to

vessels. (C) Isotype control staining of trophoblast (left panel)

invading the uterus (right panel). (D) Chemokine receptor

expression on live CD14+ decidual macrophages was con-

firmed by flow cytometry for (E) XCR1 (n = 6) and (F) CCR8

(n = 5). A population of cells that did not express the receptor

(dNK cells for XCR1 and fibroblasts for CCR8, because some

dNK cells express low amounts of CCR8) is shown for com-

parison. EVT, extravillous trophoblast; VT, villous trophoblast.
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