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Summary

Cancer progression depends on both cell-intrinsic processes and interactions between different cell 

types. However, large scale assessment of cell type composition and molecular profiles of 

individual cell types within tumors remains challenging. To address this, we developed 

Epigenomic Deconvolution (EDec), an in silico method that infers cell type composition of 

complex tissues as well as DNA methylation and gene transcription profiles of constituent cell 

types. By applying EDec to The Cancer Genome Atlas (TCGA) breast tumors we detect changes 

in immune cell infiltration related to patient prognosis, and a striking change in stromal fibroblast 
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to adipocyte ratio across breast cancer subtypes. We further show that a less adipose stroma tends 

to display lower levels of mitochondrial activity and to be associated with cancerous cells with 

higher levels of oxidative metabolism. These findings highlight the role of stromal composition in 

the metabolic coupling between distinct cell types within tumors.

eTOC blurb

Onuchic et al. develop an in silico deconvolution technique (EDec) that can accurately estimate 

cell type composition and molecular profiles of constituent cell types in the context of breast 

tumors. Application to breast cancers from TCGA data reveals association between stromal 

composition and the metabolic phonotype of breast tumors. Explore consortium data at the Cell 

Press IHEC webportal at www.cell.com/consortium/IHEC.

Introduction

Molecular profiling of breast tumors has led to their categorization into different subtypes 

with distinct risks and underlying biology. Of particular interest is the classification into 5 

intrinsic subtypes, which can be performed using the PAM50 classifier (Parker et al., 2009). 

However, most molecular profiling studies to date have been performed on bulk tissue 

samples, ignoring the complexity of the breast tissue, with its multiple cell types and the 

interactions between them. Valuable evidence for the significance of heterotypic interactions 

comes from the study of cell type composition of tumors, as exemplified by the prognostic 

value of immune cell infiltration (Coussens et al., 2013; Liu et al., 2014) and of epigenomic 

(Hu et al., 2005) and transcriptomic (Finak et al., 2008) perturbations within stromal cells 

(Tlsty and Coussens, 2006). Laser capture microdissection (LCM), cell sorting, and other 

physical methods to isolate cell types from solid tumors for molecular profiling are 

technically challenging, and severely limit throughput (Debey et al., 2004). A number of 

methods for in silico deconvolution have been developed to address this problem using as 

input gene expression profiles (Aran et al., 2015; Gentles et al., 2015; Houseman and Ince, 
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2014; Kuhn et al., 2011; Li and Xie, 2013; Newman et al., 2015; Shen-Orr et al., 2010; 

Venet et al., 2001; Yoshihara et al., 2013; Zhong et al., 2013) and, more recently, DNA 

methylation profiles (Houseman et al., 2012, 2014, 2016; Zheng et al., 2014; Zou et al., 

2014; Rahmani et al., 2016) of tissue homogenates. However, the ability of these methods to 

infer cell type composition of solid tumors and interpret the states of constituent cell types is 

limited, thus hampering the study of cellular states and cellular interactions within the tumor 

microenvironment.

To address this gap, we developed EDec, a deconvolution method based on a heuristic for 

constrained matrix factorization using quadratic programming. The deconvolution is based 

on cell-type specific patterns of DNA methylation. Such patterns are acquired during normal 

cellular differentiation, maintained through cell division, and serve as chemically stable 

cellular markers. We reasoned that methylation profiles would be more amenable to 

deconvolution than gene expression due to their linearity, measurement within the complete 

(0–1) dynamic range, and technology-independence (including both bisulfite sequencing and 

array platforms).

Previous methylation-based deconvolution methods either make direct use of reference 

methylation profiles of constituent cell types (Houseman et al., 2012) or ignore such 

references (Houseman et al., 2014, 2016; Rahmani et al., 2016; Zou et al., 2014). Highly 

accurate reference methylation profiles, essential for reference-based deconvolution 

approaches, are unavailable for many solid tissues, arguing for a reference-free approach. 

However, reference methylation profiles from representative cell lines are available and can 

provide valuable information if used to improve inference while minimizing bias. Toward 

this goal, EDec uses relevant reference information in indirect ways to minimize bias. First, 

it uses references to identify sets of loci that are likely to exhibit variation in methylation 

levels across constituent cell types of a given tissue (feature selection), while taking a 

reference-free approach to the deconvolution problem itself. Second, it identifies constituent 

cell types by comparing their deconvoluted molecular profiles to reference profiles.

EDec consists of three stages (0,1, and 2, Figure 1). Starting with methylation profiles of 

tumor homogenates over loci selected based on reference methylation profiles (Figure 1a - 

Stage 0), EDec estimates both cell type proportions and methylation profiles of constituent 

cell types using a reference-free approach (Figure 1a - Stage 1) similar to previous 

reference-free techniques (Gaujoux and Seoighe, 2011; Houseman et al., 2016). The 

proportion estimates are then used as a “key” to deconvolute gene expression profiles of 

constituent cell types (Figure 1a - Stage 2).

EDec proof of concept experiments were performed using both Illumina methylation arrays 

and RainDance Technologies’ ThunderStorm BS-seq (Komori et al., 2011; Paul et al., 2014) 

targeted bisulfite sequencing. The method is validated using both computer simulations and 

profiling experiments on prepared cell mixtures. By applying EDec to the breast cancer 

datasets generated by The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas 

Network, 2012) we predict cellular proportions and methylation states of constituent cell 

types within breast tumors as well as infer changes in gene expression within each 

constituent cell type. Such predictions were largely confirmed by comparisons with cell type 
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composition estimates based on H&E staining, and by comparison against gene expression 

profiles of specific cell types isolated through LCM. We show that cancerous epithelial cells 

exhibit methylomes distinct from those of normal epithelium. EDec also replicates the 

previously reported association between increased immune cell infiltration in triple negative 

breast cancer and better prognosis (Adams et al., 2014). We further detect expression 

changes that are highly consistent with known hallmarks of cancer, and with known roles of 

specific cell types within breast cancer. Lastly, we observe that the degree of stromal 

adiposity across breast cancer subtypes predicts the pattern of metabolic coupling observed 

between cancer epithelium and stroma.

Results

Epigenomic Deconvolution Method

The first stage of EDec (Figure 1a - Stage 1) performs constrained matrix factorization to 

find cell type specific methylation profiles and constituent cell type proportions that 

minimize the Euclidian distance between their linear combination and the original matrix of 

tissue methylation profiles (Figure 1b). The minimization algorithm involves an iterative 

procedure that, in each round, alternates between estimating constituent cell type proportions 

and methylation profiles by solving constrained least squares problems through quadratic 

programming. The minimization problem is made tractable by the constraints that 

methylation measurements (beta values) and cell type proportions are numbers in the [0,1] 

interval, and that cell type proportions within a sample add up to one. These constraints 

restrict the space of possible solutions, thus making it possible for the local iterative search 

to reproducibly find a global minimum and an accurate solution. One key requirement for 

EDec is that cell type proportions vary across samples. A second requirement is that there 

must be significant differences across constituent cell type methylation profiles. The latter 

requirement can be met by providing EDec with loci expected to vary in methylation levels 

across constituent cell types (Figure 1a - Stage 0).

Similar to how tissue methylation profiles are modelled, tissue gene expression profiles can 

also be modeled by the linear combination of the expression profiles of its constituent cell 

types. However, due to the less constrained nature of gene expression measurements ([0,∞]) 

vs. methylation measurements ([0,1]), the same reference-free approach used in Stage 1 is 

not as effective for gene expression deconvolution. Therefore, instead of using that 

approach, when both DNA methylation and gene expression profiles are available for the 

same set of samples (e.g., from the same tissue homogenate), EDec-Stage 2 uses the cell 

proportions estimated in Stage 1 as a fixed input when estimating the average gene 

expression profiles of constituent cell types through a constrained least squares fit using 

quadratic programming with solutions constrained to [0,∞] (Figure 1a - Stage 2 and Figure 

1c).

Validation using in silico mixtures of methylation profiles derived from breast cancer-
related cell lines

We first validated the core EDec algorithm (Stage 1) on simulated mixtures of 

experimentally derived DNA methylation profiles (9 cell lines: 6 breast cancer, 1 normal 

Onuchic et al. Page 4

Cell Rep. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



breast epithelial, 1 immune, and 1 cancer associated fibroblast (CAF)). Among the 1,000 

target genomic regions included in this breast cancer methylation-focused panel 

(Supplemental Table 2), 149 exhibited particularly distinct methylation patterns across 

different breast cell types (based on reference epigenomes) (Kundaje et al., 2015), and were 

used in EDec Stage 1. The simulation dataset consisted of 100 mixtures, each composed of 4 

cell types (one breast cancer cell line, one normal mammary epithelial cell type, one stromal 

cell type, and one immune cell type). About half of the simulated mixtures contained on 

average higher levels of breast cancer (60%) and immune cell types (20%), representing 

distributions observed in tumor samples such as those in the TCGA dataset. To simulate the 

presence of different breast cancer subtypes, different simulated mixtures had a different 

cancerous epithelium constituent. Specifically, the breast cancer cell type for each mixture 

was chosen randomly from the set of 6 breast cancer cell lines. Simulated normal breast 

contained higher than average levels of normal epithelial (60%) and stromal cell types 

(30%). To better represent real samples, random noise was introduced into the methylation 

profiles across all samples (see Extended Experimental Procedures). We applied EDec to 

this dataset assuming 9 different cell types in the model (6 possible breast cancer cell lines, 

one normal epithelial, one stromal, and one immune). EDec accurately estimated DNA 

methylation profiles (r = 0.982, Figure 2a) and proportions (r = 0.983) for all constituent cell 

types (Figure 2b).

Validation on cell line mixtures profiled by targeted bisulfite sequencing

We next validated EDec on cellular mixtures prepared in vitro. Specifically, we profiled 10 

samples using targeted bisulfite sequencing and applied EDec using the set of 149 loci 

selected in EDec-Stage 0. Four of the 10 samples were pure cells lines, including: MCF-7, 

HMEC (Human Mammary Epithelial Cells), a CAF cell line, and CD8+ cytotoxic T-cells. 

The other six samples consisted of three pairwise combinations (MCF-7/HMEC, MCF-7/T-

cells and MCF-7/CAF), each in two proportions (75%:25%, and 95%:5%). There was a 

strong concordance between the EDec estimated and the true proportions (r = 0.996, Figure 

2c). In addition, the estimated methylation profiles for the 4 different cellular fractions 

closely matched the methylation profiles of cells used to create the mixtures (r = 0.998, 

Figure 2d).

Validation on breast tumor samples profiled by targeted bisulfite sequencing

We next generated DNA methylation profiles for 31 breast tumors and 8 normal breast 

samples using targeted bisulfite sequencing. We applied EDec assuming six constituent cell 

types (see Extended Experimental Procedures), and asked how similar the estimated 

methylation profiles were to a set of external reference methylation profiles (Figure 2e). 

Three of the six estimated methylation profiles were most similar to one of the reference 

breast cancer cell lines. The three remaining profiles had particularly high correlation with 

the methylation profiles of either CD8+ cytotoxic T-cells, CAF cell line, or the HMEC cell 

line. This indicates that EDec identifies three components that explain the diversity of 

cancerous epithelial cells in those samples, while the other three components correspond to 

an immune fraction, a fibroblast/stromal fraction, and a normal epithelial fraction.
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To further validate EDec, clinical pathologist evaluations of cell type composition were 

obtained for 29 of the 39 samples based on H&E staining. The pathologist estimated 

proportions for cancerous epithelial, normal epithelial, stromal, and immune fractions. Since 

the EDec method had proportion estimates for three different cancer epithelial fractions, we 

combined the proportions for those three fractions to make the two techniques comparable. 

Despite observing good consistency for the cancer epithelial and immune fractions, we 

observed low correlation for the normal epithelial and stromal fractions. We reasoned that 

the low correlation may be explained by extensive epithelial-mesenchymal transitions that 

may blur the boundary between epithelial and stromal cells. We therefore modified the 

analysis by combining proportion estimates of normal epithelial and stromal components 

and examined concordance of EDec and H&E proportion estimates for three fractions 

(cancerous epithelial, normal epithelial/stromal, and immune). The estimates were highly 

concordant for all three cell type fractions (r = 0.74, p-value < 10−15, Figure 2f). The highest 

correlation was for the immune fraction (0.78) and the lowest for cancerous epithelial 

fraction (0.67). The concordance between these two techniques indicates that EDec’s 

estimates of proportions and methylation profiles correspond to real cell types, and are not 

just general components that explain variability in the methylation dataset.

Deconvolution of breast tumors from the TCGA collection confirms the role of immune 
response in tumor progression

We next applied EDec to deconvolute DNA methylation profiles of 1061 breast tumors and 

123 adjacent normal breast samples generated using Infinium HumanMethylation arrays by 

TCGA (The Cancer Genome Atlas Network, 2012). We selected 391 informative loci (EDec 

- Stage 0) from 45 reference DNA methylation profiles gathered from the NCBI GEO 

archive for the following four relevant cell types: cancer epithelial (25), normal epithelial 

(3), stromal (9), and immune (8). (Figure 3a) (see Extended Experimental Procedures).

EDec-Stage 1 (Figure 1a) was then applied to the TCGA DNA methylation data over the 

391 probes, assuming 4–15 constituent cell types. Reference methylation profiles (20) were 

added to the TCGA dataset to improve stability of convergence (Extended Experimental 

Procedures and Figure S5). Based on model reproducibility and goodness of fit (see 

Extended Experimental Procedures), we chose the model with 8 cell types for all further 

analyses. We generated heat maps of correlations between the 8 EDec-estimated methylation 

profiles and each GEO reference methylation profile (Figure 3b). The correlations suggest 

that EDec identified methylation profiles corresponding to one immune, one stromal, one 

normal epithelial, and 5 different cancerous epithelial components.

DNA methylation profiles were also generated for nine of the TCGA samples using targeted 

bisulfite sequencing. This allowed us to compare EDec estimated proportions for those 

samples based on sequencing data, in the context of 39 breast tissue samples profiled by 

bisulfite sequencing, versus those estimates based on arrays in the context of 1184 TCGA 

samples (Figure 3c). Estimated proportions were highly correlated (r = 0.88), suggesting that 

EDec operates independently of the methylation profiling method. EDec and pathologist 

(H&E staining) proportion estimates were also consistent (r = 0.90) (Figure 3d).
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Consistent with expectations, EDec predicts normal breast samples to have negligible 

proportions of cancerous epithelial cells, while in breast tumors those cell types are 

generally the ones with highest proportions (Figure 3e). We also observe that the cancerous 

cell fraction of the different breast cancer samples is explained by a different combination of 

the five cancerous epithelial components, with one of them typically being dominant. 

Grouping tumor samples based on the dominant cancer epithelial component showed some 

concordance with their PAM50 classification (Parker et al., 2009). In particular, basal-like 

samples were nearly all in the same EDec-defined group (Figure 3e - red box). We further 

investigated methylation heterogeneity of the epithelial fraction over the 391 chosen probes 

within and between tumor subtypes (Extended Experimental Procedures and Figure S1). 

Luminal B tumors had the most heterogeneous profiles, while normal breast samples had the 

most homogeneous epithelial profile. Despite having an intermediary level of heterogeneity, 

Basal-like tumors exhibited epithelial methylation profiles highly distinct from the other 

breast tumor subtypes.

We also found that tumor subtypes differ significantly in the degree of infiltration by either 

immune or stromal cells (Figure S2). Normal-like samples contained the highest median 

stromal proportion (18%) and Luminal B tumors the lowest (4%). Basal-like tumors 

displayed the highest median degree of immune cell infiltration (21%), while Luminal B 

tumors again had the lowest (7%). Normal breast tissue samples displayed a much higher 

median proportion of stromal cells (37%) than breast tumors (8%).

We next investigated whether the predicted immune proportion was associated with survival 

of basal-like breast cancer patients. Indeed, patients with greater than 20% immune cell 

infiltration survived significantly longer (p < 0.01) than those with less than 20% (Figure 

3f), consistent with previous microscopy-based evaluation of immune cell infiltration 

(Adams et al., 2014). We also investigated whether immune infiltration levels in adjacent 

normal tissue were related to immune infiltration levels in the matched tumor sample. No 

such correlation was observed, indicating that immune infiltration of tumors is not 

dependent on the amount of immune cells in the surrounding normal tissue (Figure S2).

Deconvolution of RNA-seq profiles of breast tumors from the TCGA collection reveals cell-
type specific tumorigenic perturbations with the tumor microenvironment

Given the availability of both mRNA-sequencing and DNA methylation profiles for the 

TCGA breast samples, we applied EDec-Stage 2 to estimate gene expression profiles of 

constituent cell types. EDec-Stage 2 was independently applied to 6 subsets of the 1,114 

TCGA expression profiles, corresponding to the five PAM50 subtypes (Luminal A (523 

samples), Luminal B (207), HER2-enriched (78), Basal-like (173), Normal-like (33)) 

(Parker et al., 2009), plus normal breast tissue samples (100). We combined the eight EDec 

Stage 1-estimated proportions (Figure 3e) into the following three cell type fractions: 

epithelial (including 5 cancer epithelial and 1 normal epithelial), stromal, and immune. 

Proportion estimates for those three cell types were then used in EDec Stage-2 to estimate 

expression profiles of epithelial, stromal, and immune cell types for each PAM50 subtype 

and normal breast.
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EDec predicts epithelial specific expression of ESR1, PGR, and FOXA1 in Luminal A and 

Luminal B subtypes (Figure 4a), consistent with previous reports (Toss and Cristofanilli, 

2015). Due to poor model fit, as indicated by large error bars, cell-type specific expression 

could not be established for a number of genes, ERBB2 within HER2-enriched tumors being 

the most conspicuous example. The poor fit of the model for that gene is due to its 

exceedingly high variance in expression within epithelial cells of this tumor type (Figure 

S3). We can show through simulations (Extended Experimental Procedures) that this effect 

is mitigated by increasing the number of input breast cancer samples. We note that the large 

estimated standard error provides a clear signal that cell-type specific expression cannot be 

established for specific genes, thus preventing erroneous conclusion suggested by high mean 

values.

EDec predicts stroma-specific expression of vimentin (VIM), a general mesenchymal cell 

marker (Kalluri and Zeisberg, 2006), in normal breast and in all tumor subtypes. Conversely, 

the stroma-specific expression of COL1A1, FAP, and FN1 is observed in tumors, but not in 

normal breast (Figure 4a). That observation is consistent with the activation of such genes in 

CAFs, the main constituent of the tumor stroma (Kalluri and Zeisberg, 2006).

EDec correctly predicts immune-specific expression of immune cell markers (PTPRC, 

CD3G, CD8A, and CD4) in every group of samples (Figure 4a). Note that the CD8+ T-cell 

marker CD8A shows significantly higher expression in breast cancers than in normal 

breasts, consistent with observations that the immune components of breast tumors contains 

a larger proportion of CD8+ T-cells compared to the immune component of normal breasts.

We next compared gene expression profiles of the three tumor-constituent cell types against 

the profiles of their normal control counterparts. A gene set enrichment analysis (Huang et 

al., 2009a, 2009b) was then performed on the resulting sets of differentially expressed genes. 

Figure 4b summarizes the top gene set enrichments for genes up- or down-regulated in 

tumor cells compared the normal controls (for full set of gene set enrichments see 

Supplemental Table 1). The terms found to be enriched in each of the sets of differentially 

expressed genes are consistent with known hallmarks of cancer (sustaining proliferative 

signaling, activating invasion and metastasis, inducing angiogenesis, deregulating cellular 

energetics, avoiding immune destruction, etc.) and with the known roles of each cell type 

within breast tumors (e.g., “extracellular matrix remodeling” genes up-regulated specifically 

in stromal cells and “sustaining inflammation in tumor” category in immune cells) (Hanahan 

and Weinberg, 2011).

We next sought to further validate EDec-Stage 2 predictions of differentially expressed 

genes against a previously published dataset, in which gene expression profiling was 

performed on epithelial and stromal components of matched invasive carcinomas and 

adjacent normal tissue, after LCM (Ma et al., 2009). Despite the fact that the study did not 

separate out the immune component, focused on the fibrous portion of the stroma (both in 

normal breast and breast cancer), and used microarrays to profile expression, we still 

observe significant overlaps between the differentially expressed genes predicted by EDec 

and those observed in the LCM dataset (Figure S4). Consistency is observed both for 

expression differences in epithelial and stromal components.
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Switch from adipose to fibrous stroma supports oxidative metabolism in cancerous cells

Tumor cells are often more glycolytic than their normal counterparts even in the presence of 

oxygen. This phenomenon is known as the Warburg effect (Wallace, 2005) and is thought to 

occur due to the higher anabolic needs of highly proliferative tumor cells (Vander Heiden et 

al., 2009). Consistent with this phenomenon, we observe enrichment for glycolysis genes 

among those upregulated in cancer epithelium compared to normal epithelium (Figure 5a). 

However, contrary to the reduction in mitochondrial activity in cancerous cells predicted by 

the Warburg effect, we observe strong enrichment for genes involved in oxidative 

phosphorylation (OXPHOS) among those upregulated in cancer epithelium compared to 

normal epithelium (Figure 5a). Further, upregulation both glycolysis and OXPHOS genes 

can be confirmed in comparisons of gene expression profiles of tumor versus normal breast 

epithelium after LCM (Figure 5a).

The upregulation of both glycolytic and oxidative pathways in cancer cells comes with a 

demand for nutrients and oxygen, which can be met both by increased angiogenesis and 

potentially by the support of other cells in the microenvironment. The previously proposed 

reverse Warburg effect model (Martinez-Outschoorn et al., 2015, 2014; Pavlides et al., 2009) 

postulates that tumor cells can induce shutdown of oxidative metabolism in the surrounding 

stromal cells, causing them to reduce oxygen consumption and to secrete high energy 

metabolites produced through glycolysis. Those metabolites may then be taken up by 

cancerous cells to fuel their own oxidative metabolism. Consistent with that model, we 

observe enrichment for OXPHOS genes among those downregulated in tumor stroma, and 

for glycolysis genes among those upregulated in the tumor stroma (Figure 5a).

Given that adipocytes have higher rates of mitochondrial activity than fibroblasts (Hofmann 

et al., 2012; Wilson-Fritch et al., 2003), the observed downregulation of OXPHOS genes in 

the tumor stroma may reflect the change in stromal composition, from a more adipose 

(oxidative) stroma in normal breast to a more fibrous (glycolytic) stroma in breast tumors. 

To determine whether such change indeed occurs we examined expression levels of 

adipocyte (PPARG, CEBPA, ADIPOQ, FABP4) or CAF (ACTA2, FN1, FAP, COL1A1) 

markers in the stroma of normal breast and different breast tumor subtypes (Figure 5b). 

Adipocyte markers are highly expressed in the stroma of normal breast and Luminal A 

tumors, with negligible expression in other tumor subtypes. CAF markers, in contrast, seem 

to display the opposite pattern of expression. Such observations are consistent with fibrosis 

in breast tumors, and with the higher incidence of tumors with adipose stroma among those 

of the Luminal A subtype (Jung et al., 2015). The change in stromal adipocyte content 

between normal breast and breast tumor is also apparent in H&E staining slides gathered 

from matched tumor/normal samples from TCGA (Figure 5c). In the LCM dataset, only the 

fibrous portion of the stroma was selected for analysis both in normal breast and in breast 

tumors. Therefore, consistent with the idea that the observed changes in stromal OXPHOS 

gene expression result from a change from adipose to fibrous stroma, no change in 

expression of those genes is observed in the LCM dataset (Figure 5a).

We next asked whether the change from adipose to fibrous stroma was associated with a 

change from oxidative to glycolytic stroma. To examine this, we analyzed the correlation 

between the expression of either adipocyte or CAF markers in the stroma and the stromal 
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expression of OXPHOS genes across breast cancer subtypes. We observed that, as expected, 

the stromal expression of most OXPHOS genes had a strong positive correlation with the 

stromal expression of adipocyte markers, while the expression of CAF markers in the stroma 

was negatively correlated with OXPHOS genes (Figure 5d).

The reverse Warburg effect model predicts that a glycolytic stroma associates with oxidative 

cancerous epithelial cells, whereas an oxidative stroma would be associated with more 

glycolytic tumor cells. Given that a fibrous stroma seems to be more glycolytic than an 

adipose one, we hypothesized that a change from adipose to fibrous stroma would associate 

with a change from glycolytic to oxidative cancerous epithelium. We therefore analyzed the 

degree of correlation between the expression of either adipocyte or CAF markers in the 

stroma and the expression of OXPHOS genes in the epithelial fraction across breast cancer 

subtypes. Stromal expression of CAF markers was indeed positively correlated with 

epithelial OXPHOS gene expression, while adipocyte marker expression in the stroma was 

negatively correlated with OXPHOS gene expression in the epithelial fraction (Figure 5e). 

Interestingly, the stromal expression of CAV1, a gene whose low expression in breast cancer 

stroma is known to associate with negative prognosis and with tumors with reverse Warburg 

metabolism (Martinez-Outschoorn et al., 2015, 2014; Pavlides et al., 2009), is strongly 

correlated with the expression of adipocyte markers in the stroma (mean r = 0.97), providing 

further support for the hypothesis that stromal adiposity associates negatively and the 

stromal fibroblast content associates positively with the reverse Warburg pattern of 

metabolism.

Discussion

The Epigenomic Deconvolution (EDec) method provides accurate platform-independent 

estimation of cell type proportions, DNA methylation profiles, and gene expression profiles 

of constituent cell types. By significantly relaxing the dependence on reference methylation 

profiles of constituent cell types compared to previous methods (Houseman et al., 2012), 

EDec enables deconvolution of complex tumor tissues where highly accurate references are 

unavailable. In contrast to reference-free methods (Houseman et al., 2016, 2014; Rahmani et 

al., 2016; Zheng et al., 2014; Zou et al., 2014), EDec’s indirect use of surrogate references 

greatly assisted in the interpretation of deconvolution results, allowing us to uncover more 

complex biological patterns than possible by applying other deconvolution techniques. 

Further, unlike previous methylation-based deconvolution methods, EDec does not require 

that each cell type be explained by a single component (e.g., cancerous epithelial fraction in 

the TCGA dataset was modeled by five different components), thus making it possible to 

model the full diversity of cancerous epithelial cells. Despite such methodological advances, 

we note that the current tissue models obtained by EDec still only approximate the full 

complexity of breast tumors. For example, more detailed deconvolution of individual 

components of the stromal and immune fractions would likely yield additional biological 

insights.

By addressing the confounding issue of tissue heterogeneity, EDec enables the comparison 

of tumors of various cell type compositions based on inferred molecular profiles of 

constitutive cancer epithelial cells and also the comparisons between cancer cell fractions of 
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tumors and experimentally more tractable cell line models. EDec reveals that methylome 

profiles of breast cancer cells are distinct from those of normal epithelial cell types, and that 

they can be mapped to specific groups of cancer cell lines. We also observe that cancerous 

cells of basal-like tumors have particularly distinct cellular identity as indicated by their 

distinct methylation profiles.

By providing information about the epigenomic and transcriptomic states of both cancerous 

epithelial and non-epithelial tumor cells, the method enables the study of heterotypic 

interactions driving tumor progression. The most striking pattern that emerged from our 

analyses is metabolic coupling between epithelium and stroma that seems to be related to the 

degree of adiposity of the stroma. Specifically, upregulation of both glycolysis and 

OXPHOS in cancerous epithelial cells supports the idea that, despite the long-postulated 

Warburg effect, cancer cells in breast tumors still upregulate their energy production through 

OXPHOS in comparison to normal cells (Zu and Guppy, 2004). Further, the switch from 

adipose to fibrous stroma leads to lower stromal mitochondrial activity, which in turn seems 

to support up-regulation of OXPHOS in cancerous epithelial cells. Our findings therefore 

refine the reverse Warburg effect model (Martinez-Outschoorn et al., 2015, 2014; Pavlides et 

al., 2009) by showing that it may be mediated by changes in cell type composition of tumor 

stroma. It is tempting to speculate that the differences in stroma composition across tumor 

subtypes may be related to a different capacity of distinct tumor types to induce the 

conversion of adipocytes into fibroblasts (Bochet et al., 2013; Dirat et al., 2011), which 

would be more supportive of reverse Warburg metabolism. Despite these encouraging 

results, that are largely confirmed by expression profiling of microdissected tumors, further 

experiments focusing on protein and metabolite levels in different tumor cell types will be 

needed to conclusively confirm this model.

In conclusion, EDec reveals layers of biological information about distinct cell types within 

solid tumors and about their heterotypic interactions that were previously inaccessible at 

such large scale due to tissue heterogeneity. EDec improves on previous methods by 

employing a data-driven approach that makes indirect use of reference profiles of constituent 

cell types and adequately models the variability of methylation profiles across different 

cancer cells. We note that EDec is a general technique and could potentially be applied to 

different types of tumors and other complex non-tumor tissues. However, such applications 

would involve new feature selection with a set of references appropriate for that tissue, and 

would need to be validated. In addition to the method itself, we have also developed a 

“deconvoluted breast cancer” data resource for breast tumors and normal breast tissues 

within the TCGA collection (http://genboree.org/theCommons/projects/edec). This resource 

can now be further explored by the community to derive or test new hypotheses.

Experimental procedures

ThunderStorm BS-Seq assay and breast cancer target panel

A set of 1000 target regions of around 300bp in length were preselected for targeted bisulfite 

sequencing based on previous reports of their involvement in breast cancer biology (see 

Supplemental Table 2). Of the 1000 genomic regions, 149 were selected based on cell type 
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specific methylation based on Roadmap Epigenomics reference DNA methylation profiles 

(Kundaje et al., 2015).

Primer pairs designed to specifically amplify each selected target region were designed by 

RainDance Technologies. The ThunderStorm BS-seq assay using that set of primer pairs 

was performed at RainDance Technologies according to the manufacturer’s specification. In 

summary, that assay uses a microfluidic chip to perform multiplex amplification of bisulfite 

treated DNA using the set of primers designed to amplify the selected set of genomic 

regions. This step is followed by sequencing of PCR product. Read mapping and 

methylation level calling was performed using Bismark (Krueger and Andrews, 2011). 

Target regions were sequenced on average to 200X coverage. For all subsequent analyses, 

DNA methylation levels for all CpGs overlapping each of the target regions were averaged, 

giving an average methylation value for each region of interest. For eight of the breast 

cancer samples profiled using this assay, 450k arrays were also performed by the TCGA 

group. We observed over 0.9 correlation between methylation levels measured by both 

platforms over the 614 regions overlapping 450K array probes for all samples analyzed.

TCGA data processing

Methylation array data—The breast cancer TCGA DNA methylation data was generated 

using either the Infinium HumanMethylation450 BeadChip (450K array) or the Infinium 

HumanMethylation27 BeadChip (27K array). We used the TCGA Assembler (Zhu et al., 

2014) to download level 3 data (fully processed) for all 27K and 450K profiles. Since most 

27K probes are present in the 450K array, we merged the two datasets and included only 

overlapping probes in our analysis. We also removed any probe with a detection p-value less 

than 0.05 in at least one sample, those that overlapped known SNPs, and those that were 

previously reported as cross reactive (Chen et al., 2013). The final number of probes passing 

these criteria was 17,907. We also corrected for platform biases using an Empirical Bayes-

based approach (ComBat) (Johnson et al., 2007), implemented in the SVA package in R 

(Leek, J.T. et al., 2015).

RNA-Seq data—TCGA Assembler (Zhu et al., 2014) was used to download normalized 

(RNA-seq v2 - RNA-seq by Expectation Maximization) gene transcript abundance 

measurements from the TCGA database. PAM50 classification (Parker et al., 2009) based on 

RNA-seq for 1030 breast cancer samples generated by the TCGA Analysis Working Group 

were obtained from the UCSC Cancer Genomics Browser (Goldman et al., 2013). Of the 

TCGA breast cancer samples that had RNA-sequencing data and associated PAM50 

classification, 1005 also had DNA methylation data. For normal breast samples, 100 had 

both DNA methylation and RNA-sequencing data. Therefore, the final set of RNA-

sequencing samples contained 1105 samples.

Code and dataset availability

The EDec software is available as an R package. It can be downloaded from https://

github.com/BRL-BCM/EDec. Documentation and usage examples are also available on that 

same page. All datasets associated with this publication can be found at http://genboree.org/

theCommons/projects/edec. Primary human breast tumor tissue and adjacent normal tissue 
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were obtained with local Institutional Review Board (IRB# PRO11090404) from the 

University of Pittsburgh’s Health Science Tissue Bank.

Accession Numbers

The accession number for the targeted bisulfite sequencing data reported in this paper is 

GEO: GSE87297.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• EDec infers cell types within tissues and molecular profiles of 

constituent cells

• EDec deconvolutes molecular profiles of breast tumors within the 

TCGA collection

• EDec-estimated immune infiltration predicts prognosis for basal-like 

breast tumors

• Switch from adipose to fibrous stroma enhances oxidative metabolism 

of cancer cells
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Figure 1. Description of the EDec method
(a) The EDec method has 2 main stages (Stages 1 and 2), preceded by a preparation stage 

(Stage 0). In Stage 0, a set of reference methylation profiles is used to select a set of 

genomic loci or array probes with distinct methylation levels across groups of references 

representing different constituent cell types. Methylation profiles of complex tissue samples 

over the set of loci/probes selected in Stage 0 are used as the input for the Stage 1 of the 

EDec method. In Stage 1, EDec estimates both the average methylation profiles of 

constituent cell types and the proportions of constituent cell types in each input sample using 

an iterative algorithm for constrained matrix factorization using quadratic programming. 

Stage 2 of EDec takes as input the gene expression profiles of the same tissue samples 

profiled for DNA methylation, as well as the proportions of constituent cell types for those 

samples, estimated in Stage 1, and outputs the gene expression profiles of constituent cell 

types. (b) Representation of the model associated with Stage 1 of EDec method. (c) 
Representation of the model used for gene expression deconvolution in Stage 2 of the EDec 

method.
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Figure 2. EDec validation on simulated mixtures, experimental mixtures, and solid tumors
(a) Estimated versus true methylation levels for each constituent cell type and locus involved 

in the simulated mixtures dataset. (b) Estimated versus true proportions for each constituent 

cell type in each of the samples involved in the simulated mixtures dataset. (c) Estimated 

versus true methylation levels for each constituent cell type and locus profiled in the 

experimental mixtures dataset. (d) Estimated versus true proportions for each constituent 

cell type in each of the samples profiled in the experimental mixtures dataset. (e) Heat map 

representing the level of correlation between the estimated methylation profiles from the 

application of EDec to the targeted bisulfite sequencing dataset and the reference 

methylation profiles. Red boxes indicate the highest level of correlation for each estimated 

methylation profile. The estimated methylation profiles were labeled as cancer epithelial, 

normal epithelial, immune, or stromal based on what reference methylation profile was most 

correlated to each of them. (f) Proportion of constituent cell types estimated by EDec for 

samples in the targeted bisulfite sequencing dataset versus pathologist estimated proportions 

(H&E staining). Color key for all panels: orange (MCF-7), blue (HMEC), green (CAF), and 

red (T-cell).
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Figure 3. Analysis of DNA methylation profiles of breast tumors samples from the TCGA 
collection using EDec
(a) Heat map representing the methylation levels over the chosen set of array probes for the 

reference methylation profiles. (b) Heat map representing the correlation between the 

methylation profiles estimated by EDec and the reference methylation profiles. Red boxes 

indicate the highest correlation for each estimated methylation profile. (c) Scatterplot of 

EDec cell type proportion estimates for 9 TCGA samples based on targeted bisulfite 

sequencing (y-axis) and microarray (x-axis). (d) Scatterplot between EDec and pathologist 

(H & E) estimates of proportions of constituent cell types for a subset (six samples) of the 

TCGA dataset for which H&E staining-based estimates were available. (e) EDec estimated 

proportions of constituent cell types for samples in the TCGA dataset. Side bar represents 

separation of TCGA cancers samples into PAM50 expression subtypes. The red box 

highlights the samples best explained by the cancerous epithelial 2 profile which are almost 

exclusively classified as basal-like. (f) Kaplan-Meier plot indicating the significant 

difference in prognosis (p-value < 0.01) for patients within the group of samples best 

explained by the cancer epithelial 2 profile (red box in panel F; basal-like) with high versus 

low estimated immune cell type proportion. See also Figures S1 and S2.
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Figure 4. Cell type specific gene expression
(a) Bar-plots represent the estimated expression profiles of 12 different genes within 

constituent cell types for each of the breast cancer intrinsic subtypes, as well as for the set of 

normal breast (control) samples. (b) Summary of main enriched gene sets among up- or 

down-regulated genes between cancer and normal breast in each cell type. See also Figures 

S3 and S4.
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Figure 5. Switch from adipose to fibrous stroma influences the metabolic phenotype of the tumor
(a) Enrichment of either OXPHOS or GLYCOLYSIS gene sets (hallmark gene sets MSigDB 

(Liberzon et al., 2015)) among those up- or down-regulated in epithelial or stromal cells of 

breast cancer. Cell type specific differential expression analysis was performed with either 

by applying EDec to TCGA dataset, or in the LCM dataset. Dashed lines represent a p-value 

of 0.01. (b) Estimated stromal expression of either adipocyte or CAF markers across breast 

cancer subtypes. (c) Representative H&E staining images of matched tumor and normal 

breast samples from TCGA (TCGA-BH-A0B2). (d) Histogram of correlations between 

stromal expression of OXPHOS genes and stromal expression of marker genes of either 

adipocyte or CAF across breast cancer subtypes. (e) Histogram of correlations between 

epithelial expression of OXPHOS genes and stromal expression of marker genes of either 

adipocyte or CAF across breast cancer subtypes.
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