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Abstract

MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general 

platform for building-block-based small molecule construction, largely due to the dramatic and 

general rate differences with which they are hydrolysed under various basic conditions. Yet the 

mechanistic underpinnings of these rate differences have remained unclear, hindering efforts to 

address current limitations of this chemistry. Here we show that there are two distinct mechanisms 

for this hydrolysis: one is base-mediated and the other neutral. The former can proceed more than 

three orders of magnitude faster, and involves rate-limiting attack at a MIDA carbonyl carbon by 

hydroxide. The alternative ‘neutral’ hydrolysis does not require an exogenous acid/base and 

involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms 

can operate in parallel, and their relative rates are readily quantified by 18O incorporation. 

Whether hydrolysis is ‘fast’ or ‘slow’ is dictated by the pH, the water activity (aw), and mass-

transfer rates between phases. These findings stand to rationally enable even more effective and 

widespread utilisation of MIDA boronates in synthesis.
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N-Methylimidodiacetic acid esters (1) of boronic acids (2) (“MIDA boronates”) have 

emerged as an increasingly general and automated platform for building-block-based small 

molecule synthesis,1 Figure 1a. One of the most important and yet poorly understood 

features that enable such utility is distinct rates of hydrolysis for MIDA boronates under 

various basic conditions.2,3 When ethereal solutions of MIDA boronates are treated with 

aqueous NaOH, they are hydrolysed within minutes at room temperature,2 whereas with 

aqueous K3PO4, slow hydrolysis takes several hours at elevated temperatures,3 Figure 1b. 

When performing cross-couplings of boronic acids (2) in the presence of anhydrous K3PO4, 

MIDA boronates (1) undergo little or no hydrolysis, even though small amounts of water are 

presumably formed via boronic acid oligomerisation.2

In contrast to other boronates,4 MIDA hydrolysis rates are remarkably insensitive to the 

structure of the organic fragment,2,3 and this generality has enabled these dramatic rate 

differences to be harnessed to great effect. The lack of hydrolysis under conditions that 

promote cross-coupling, combined with fast hydrolysis by NaOH, collectively enable 

iterative synthesis of small molecules from a wide range of halo-MIDA boronate building 

blocks in a manner analogous to iterative peptide coupling.2,5 Harnessing this approach, 

many different types of natural products (including highly complex macrocyclic and 

polycyclic structures), biological probes, pharmaceuticals, and materials components have 

now been prepared using just one reaction iteratively.1 A machine has also been created that 

can execute such building-block-based small molecule construction in a fully automated 

fashion.6 With suitably active catalysts, slow hydrolysis of MIDA boronates can release 

boronic acids at a rate that avoids their accumulation during cross-coupling. Using this 

approach, substantial improvements in yields have been achieved using MIDA boronates as 

stable surrogates for unstable boronic acids,3 including the notoriously unstable but very 

important 2-pyridyl systems.7 Careful modulation of the extent of base hydration can also be 

used to control hydrolysis and thus speciation in mixtures of boron reagents, allowing 

selective cross-coupling followed by MIDA redistribution.8 Collectively, these findings have 

provided substantial momentum towards a general and automated approach for small 

molecule synthesis.

Understanding the mechanism(s) by which these distinct rates of hydrolysis occur is critical, 

however, for addressing three areas of current limitations of this platform (Figure 1a) and 

thereby maximising its generality and impact. First, MIDA boronates can undergo undesired 

hydrolysis during selective cross-couplings. For example, iterative cross-couplings with 

more challenging Csp2 centers that are performed at higher temperatures and/or longer 

reaction times can be accompanied by undesired MIDA hydrolysis and thus suboptimal 

yields. Generalised iterative couplings with sp3 hybridised carbon and heteroatoms would be 

highly enabling,9,10 but such reactions can require even more forcing conditions, causing 

extensive MIDA hydrolysis. Transitioning this iterative cross-coupling platform to a flow 

chemistry format would open up many additional opportunities, and boronates that are 

unreactive under aqueous basic cross-coupling conditions would substantially facilitate this 

transition. Second, MIDA boronates can undergo undesired hydrolysis during building block 

synthesis. For example, executing iterative cross-coupling-based syntheses requires access to 

complex boron-containing building blocks, and doing so from simpler MIDA boronate 
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starting materials plays an important role in this process.11 However, such transformations 

can be hindered by competitive hydrolysis during various reactions, work-ups, and/or 

purifications. MIDA boronate hydrolysis under various mixed-phase HPLC conditions can 

also hinder analysis. Third, MIDA boronates sometimes demonstrate suboptimal generality 

and/or capacity for fine-tuning of their hydrolysis rates during deprotections. For example, 

we have noted that when performing deprotections using aqueous-ethereal NaOH some 

MIDA boronates initially hydrolyse rapidly and then relatively slowly, requiring extended 

reaction times for complete hydrolysis. Eliminating such effects would substantially enable 

efforts towards faster and more generalised automation. There are also cases where finely 

tuned increases or decreases in boronate hydrolysis rates would enable the slow-release 

cross-coupling strategy to be more effective and/or boron-selective deprotections of 

polyboronated inermediates to be achieved. For all of these reasons, we set out to understand 

the mechanism(s) by which MIDA boronates hydrolyse, both fast and slow.

Results

Distinction of limiting mechanisms for ‘fast’ and ‘slow’ release

After preliminary tests with alkyl and aryl MIDA boronates, we focussed on 1a (Figure 1c) 

using in situ 19F NMR (Nuclear Magnetic Resonance) to analyse a range of conditions (A to 

G, Figure 2a). We began by study of ‘fast release’2 (conditions A), where a key aspect is the 

heterogeneity of the medium: addition of aq. NaOH to a vigorously agitated solution of 1a 
in THF (tetrahydrofuran) generates a metastable emulsion. If addition rates are too fast, 

phase-separation begins to occur. Full phase-separation leads to precipitous reductions in 

hydrolysis rates (~10−3; conditions B, C).

The ‘slow release’ conditions,3 (aq. K3PO4, 7.5 equiv.) rapidly induce full phase-separation, 

with less than 3% hydrolysis of 1a occurring prior to this, irrespective of the stirring rate 

(conditions D, E). Hydrolysis of 1a proceeds in the absence of any exogenous base 

(conditions F) and does so faster than under ‘slow release’ conditions (D). This phenomenon 

arises from partial dehydration of the organic phase by the K3PO4 (Figure 2c).

We also tested strongly acidic conditions (pH = 0, conditions G). These induce only modest 

rate accelerations (about 5-fold, see Supplementary Figure 26). Three distinct hydrolytic 

regimes (Figure 1b) were thus identified: acid (kH+), neutral (k0) and basic (kOH).

Further insight came from 13C{1H} NMR analysis of the MIDA ligand liberated by 

hydrolysis of [13C2]-1a in THF/H2
18O (9.1 M), Figure 2d. Two distinct reactivity patterns 

emerged: under basic or acidic homogeneous conditions (A and G), hydrolysis leads to 

mono 18O-incorporation, whereas under neutral conditions (F) there is no significant 18O-

incorporation. For conditions B to E, intermediate between strongly basic and neutral, a 

quantifiable transition between the two outcomes is evident. Importantly, it can be seen that 

‘slow-release’ with K3PO4 (conditions D, E) predominantly, but not exclusively, proceeds 

via neutral hydrolysis, with mixing efficiency dictating base transport rates into the upper 

organic phase, and in turn, the extent of 18O-incorporation (6%-25%).

Gonzalez et al. Page 3

Nat Chem. Author manuscript; available in PMC 2017 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the context of MIDA boronate hydrolysis for cross-coupling,2,3 there are thus two 

competing processes to consider: neutral (k0) and basic (kOH). Base-mediated hydrolysis is 

by far the fastest (>103 fold), provided that an emulsive state is attained by vigorous 

agitation during dispersive slow-addition of the NaOH. These conditions result in C-O 

cleavage in just one of the two esters in 1a, as identified by single 18O incorporation in 3. 

Neutral hydrolysis solely cleaves [B-OC(O)] bonds, resulting in no 18O incorporation in 3 at 

all.

Rate laws for basic (kOH) and neutral (k0) hydrolysis

The kinetics of ‘fast-release’ (kOH), were determined by UV at low reactant concentrations 

using stopped-flow techniques, Figure 3a. The data are indicative of rate-limiting attack by a 

single hydroxide (rate = kOH[1a][NaOH]; kOH = 6.1 M−1 s−1) with 1a being similarly 

reactive to a p-NO2-benzoate ester.13 A linear free energy relationship for kOH was 

established across a series of ArB(MIDA) substrates. In the context of attack by hydroxide, 

the relative insensitivity of the aromatic ring (log(kX/kH) = 0.5σ) weighs strongly against a 

pathway involving rate-limiting generation of a boronate anion. The acid catalysed pathway 

(Figure 2, G) is even less sensitive to aryl substitution, log(kX/kH) ≤ 0.01σ.

The kinetics of neutral hydrolysis (k0) were measured across a wide range of water 

concentrations (0.5 to 20 M). Clean pseudo first-order decays in 1a (kobs, s−1) were observed 

in all cases, however, despite the hydrolysis being ‘slow’, determination of an overall rate 

law was not straightforward, Figure 3b.

Analysis of kobs as a function of water concentration gave a profile in which there is a rate-

plateau, suggestive of a change in rate-limiting step, as might occur if pre-dissociation of the 

B-N bond in 1a, to give a reactive “open-1a” intermediate was involved. However, this was 

not consistent with the entropy of activation (ΔS‡ = −16 cal K−1 mol−1, 9.0 M H2O) and 

tests for “open-1a”, using diastereoselectively deuterated [2H1.6]-1a, were negative (Figure 

3c). Indeed, [2H1.6]-1a required heating to 100 °C before significant rates of interconversion 

with iso-[2H1.6]-1a were detected (ΔG‡ = 31 kcalmol−1). Moreover, near-identical kinetic 

isotope effects, vide infra, were obtained for hydrolysis of 1a at 0.5 M and at 9.1 M H2O, 

above and below the rate plateau, suggestive of mechanistic continuity. Aqueous THF forms 

non-ideal mixtures,14 and by inclusion of a higher-order term for the water activity (aw)15 

the kinetic dichotomy is resolved (Figure 2b). The resulting correlation (k0 = k'aw
2.8) 

suggests rate-limiting attack of 1a by water clusters (H2O)n, with average n = 2.8. The linear 

free energy relationship for neutral hydrolysis (log(kX/kH) = 0.8σ; 9.1 M H2O) indicates 

moderate charge accumulation at the aromatic ring, as for example in a partially-developed 

boronate anion.

Kinetic Isotope Effects (KIEs)

Further information on the sites of attack of 1a (at C versus at B) during the rate-limiting 

events (kOH, k0, kH+) was deduced from KIEs. Heavy-atom KIEs were determined by 

double-labelling, analysing [1H4] / [2H4] ratios in [aryl-2Hn(B,C,N)]-1a mixtures (ΔδF = 

0.56 ppm) as a function of fractional conversion. First-order competitive rates (krel) were 
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extracted by non-linear regression, and corrected for independently-determined 2H-KIEs, to 

yield 10/11kB, 12/13kc and 14/15kN, under basic, neutral and acidic conditions, Figure 4a-d.

For basic hydrolysis (kOH), syringe-pump addition of aq. NaOH, via a submerged narrow 

bore needle into a vigorously stirred solution of 1a (10 mM), ensured reactions proceeded in 

a basic aqueous-organic emulsion, prior to phase-separation. The KIE (12/13kC = 1.049; 

Figure 4b) together with the rate-law, indicates that a carbonyl group in 1a is attacked by 

hydroxide in the rate-determining step, without direct involvement of either B or N. The 

outcome for acid-catalysed hydrolysis was analogous (12/13kC = 1.041, Figure 4c), indicative 

of rate-limiting ester hydrolysis (kH+), albeit much less efficient (kH+ / kOH = 1 × 10−5).

For neutral hydrolysis (k0), the KIEs (10/11kB = 1.032, 14/15kN = 1.017; Figure 4d) are 

complementary to those for the acid/base mechanisms, with no KIE detected at carbon. 

Proton inventory19 (Figure 4e) for neutral hydrolysis (k0) in H2O/D2O/THF identified 

simultaneous primary (kH/D = 1.59) and secondary (kH/D = 0.84) KIEs; the effect of 

deuteration on the water activity in the neutral reaction (k0) is expected to be negligible.20 

The three normal primary KIEs (kH, kB, kN) indicate that an O-H bond in the attacking 

water cluster, (H2O)n, is cleaved in the rate-determining event, and that the B-N bond, not 

the carbonyl unit, in 1a is involved in this process. The inverse secondary kH/D arises from 

changes in solvation and H-bonding of the residual (non-transferred) water proton(s).21

Discussion

Pathways for hydrolysis

The data reported above allow a large number of mechanistic possibilities to be ruled out. 

The unassisted cleavage of B-N to generate “open-1a” (Figure 3c) is 6-12 kcal mol−1 greater 

in energy than the experimentally determined hydrolysis rates (kOH, k0, and kH+) thus 

eliminating SN1-like pathways. Processes consistent with the rate-limiting events are attack 

of 1 at the carbonyl carbon by OH− (kOH) or H+/H2O (kH+), and at the B-N unit by water 

(k0). The slow (kH+) or undetected (kOH; k0), rates of 16/18O-exchange in 1a are 

inconclusive as the oxygen atoms in the tetrahedral intermediates remain inequivalent, 

irrespective of proton exchange rates.22 Nonetheless, in none of the hydrolyses were 

intermediates detected by NMR (1H, 19F, 11B), or UV (isosbestic points) suggesting that 

after rate-limiting addition of (H+/H2O), OH−, or (H2O)n, hydrolytic evolution to the boronic 

acid (2a) and MIDA ligand (3) is rapid. Substantial additional insight to the ‘fast-release’ 

(kOH) and ‘slow-release’ (k0) pathways relevant to coupling conditions2,3 was gained by 

computations, using Gaussian 0923 at the M06-2X24/6-31G*25/PCM26(THF) level of theory. 

In Figures 5a and 6a we provide a summary of the key stages of the two pathways identified. 

Below both pathways we also outline some of the other processes considered. Full details of 

these pathways are provided in Supplementary Figures 33-64.

In the fast-release (kOH) pathway, the minimum energy pathway begins with the rate-

limiting, irreversible, attack by hydroxide at one of the two ester carbonyls in 1a (C-Attack 

TS-5, ΔG‡ = 2.2 kcal/mol, Figure 5a). Fast (ΔG‡ ≤5 kcal/mol), highly exothermic, 

irreversible collapse of the now tetrahedral carbonyl carbon (TS-7) generates ring-opened 

intermediate 8 (ΔG = −29.9 kcal/mol).
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Due to the presence of a pendent carboxylate and increased lability of the B-N bond, 8 is 

substantially more prone to hydrolysis than neutral 1a. Stage 2 hydrolysis proceeds via 

attack of 8 at the boron by water (TS-9, ΔG‡ = 10.6 kcal/mol), leading to 10, and thus to 

final products (2 + 3) via B-O bond cleavage and ionization/salt formation. NaOH-mediated 

rate-limiting C=O attack is consistent with experiment (computed 12/13kC KIE 1.03), the low 

sensitivity to aryl substituents (ρ = 0.5), and the absence of experimentally 

observable 14/15kN or 10/11kB KIEs.

In the slow-release (k0) pathway, the minimum energy pathway begins with the rate-limiting 

insertion of water into a stretching, but not cleaved, B-N bond (Frontside-B-SN2-

Attack,TS-12, +25.7 kcal/mol), Figure 6a. At higher water concentrations, B-N cleavage by 

(H2O)n, n = 1,2,3 has similar free energy barriers, and KIEs for these were computed with a 

range of levels of theory.27 The best quantitative agreement was found in a late transition 

state using M06L/6-311++G**. As the B-O bond is formed to a great degree, with 

significant proton transfer to the nitrogen, there is negative charge accumulation at B (ρ 0.4 

to 1.0). Stage 2 hydrolysis again involves a ring-opened intermediate (15), which via 

intramolecular deprotonation of boron-coordinated water (TS-18), rapidly leads to complete 

hydrolysis. Rate-limiting B-N cleavage by H2O is consistent with experiment (computed 

KIEs 14/15kN 1.01, 10/11kB 1.03, 1/2kH 0.9 and 1.4) the sensitivity to aryl substituents (ρ = 

0.8), and the absence of experimentally observable 12/13kC KIE.

We also extensively probed alternative mechanisms for fast and slow hydrolysis, at both the 

first- and second-stages. For stage one of fast hydrolysis (Figure 5b), B-N bond cleavage by 

backside-B-SN2 or frontside-B-SN2 attack of hydroxide is disfavoured over TS-5 by ≥16 

kcal/mol. The barrier for attack of 8 by hydroxide in stage two, at carbon or at boron (the 

latter being slightly favoured ΔΔG‡ 2.2 kcal mol−1), is also prohibitively high. The kinetics, 

KIEs, and 18O incorporations, indicate that a similar overall pathway (attack of a C=OH+ 

intermediate by H2O, then attack at B) operates under acid catalysis (kH+). Slow hydrolysis 

(k0) proceeds without exogenous acid or base, and no transition state for H2O attack at 

carbon (C-Attack, Figure 6b) could be located. Nonetheless, simple esters do slowly 

hydrolyse in pure water (ΔG‡ = 21-28 kcal/mol),28 a process for which water chains,28,29 

and water autoionisation mechanisms (ΔG‡ = 23.8 kcal/mol)30 have been proposed. Thus, 

irrespective of whether hydrolytic cleavage (k0) of B-N in 1a (ΔG‡ = 23.6 kcal/mol) involves 

transient water autoionisation, or concerted transfer (as in TS-12), appropriate dynamic 

fluctuations of water chains31 will be required to facilitate it.

An alternative mechanism for stage one slow-hydrolysis involves Backside-B-SN2-Attack 

(Figure 6b) leading to a weakly bound complex, from which water-deprotonation by 

carboxylate cleaves the B-O bond. This is computed to have a higher energy barrier than 

Fronstide-B-SN2-Attack (TS-12) and to result in a large primary KIE (1/2kH ≈ 3.8), 

inconsistent with experiment (Figure 4e and Supplementary Table 26). Overall, the differing 

rates and sites of first stage attack (OH− at C in TS-5, versus H2O at B-N in TS-12) can be 

rationalised by: i) hydroxide being much more nucleophilic than water (kOH[OH] >> 

k0[H2O]n); ii) the anionic charge from attacking hydroxide being delivered to an 

electrophilic site (C=O); and iii) that B-N in 1 can simultaneously function as a Bronsted 

base and Lewis acid to provide a ‘receptor’ for activating water. After the stage one rate-
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limiting processes (kOH, k0 and kH+), all pathways converge at stage two, albeit with 

different net charges, with flexible ring-opened intermediates (e.g. 8 and 15) providing 

intramolecular assistance to hydrolysis at boron.

MIDA boronate hydrolysis under conditions of application

We have identified two general mechanisms (ester versus B-N cleavage) for hydrolysis of 1a 
operating under basic, neutral and acidic conditions. Of these, kOH is by far the most 

efficient, becoming the major pathway when [NaOH] ≥ 3 μM. At concentrations used for 

synthesis, the conditions for ‘fast’ and ‘slow’ release, Figure 1, result in separation into 

aqueous and organic phases. Maintaining high rates of fast release (kOH) is assisted by 

generation of a transient emulsion, usually attained by vigorous agitation during slow 

dispersive addition of aq. NaOH. In the fully phase-separated medium, boronate (1a) 

undergoes slow hydrolysis in the bulk organic-aqueous upper phase, the rate being mildly 

dependent on stirring and mass-transfer rates between phases, and the activity of the water 

(aw) in the bulk organic phase. This detailed mechanistic understanding of the rate-limiting 

events for both hydrolysis pathways, and the physicochemical factors that govern their 

partitioning, enable rationalisation of many of the phenomenological observations 

previously recorded with the MIDA platform.

The more than three orders of magnitude difference in rate attainable for fast versus slow 

hydrolysis results from the distinct mechanisms underlying these processes. The remarkable 

insensitivity of these rates to the structure of the appended organic fragment is consistent 

with minimal charge build-up at the boron center during attack at the carbonyl during fast 

release and the presence of a common intramolecular base for facilitating insertion of water 

into the N-B bond during slow-release. The stability of MIDA boronates in anhydrous 

solvents in the presence of inorganic bases, essential for iterative coupling, is consistent with 

the requirement for substantial water in the organic phase in order to promote neutral 

hydrolysis. MIDA boronates bearing exceptionally lipophilic organic fragments induce 

accelerated phase-separation when treated with NaOH, resulting in resulting in more rapid 

switching to neutral hydrolysis and thus significantly extended reaction times for their 

complete hydrolysis. The slow-release cross-coupling of boronic acids proceeds via MIDA 

boronate hydrolysis in the upper aqueous-organic phase, while the inorganic base remains in 

the lower aqueous phase. The rates of hydrolysis under these slow-release conditions are 

highly reliable because the activity of water in THF,15 and in dioxane,32 is approximately 

constant (aw ≈ 0.8–1.0) above concentrations of 3.0 M. The stability of MIDA boronates to 

many acidic conditions is consistent with their substantially slower rates of hydrolysis 

observed at low versus high pH.

This advanced mechanistic understanding also stands to practically enable more effective 

and widespread utilisation of MIDA boronates in synthesis. For example, simply increasing 

the dielectric constant of aqueous phases during reaction work-ups should help avoid 

undesired hydrolysis of MIDA boronates in organic phases and thereby enable more 

effective iterative cross-coupling as well as building block syntheses. Using more organic 

soluble hydroxide salts should help further generalize the rates of MIDA boronate 

deprotections via fast hydrolysis, even for highly lipophilic MIDA boronate intermediates. 
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The rates of “slow-release” of unstable boronic acids from their MIDA boronate 

counterparts3 can now be rationally tuned by simply varying the conditions to increase or 

decrease the contribution of basic vs. neutral hydrolysis mechanisms. Using buffered HPLC 

(high performance liquid chromatography) eluents should maximise MIDA boronate 

stability during analysis and purifications. This same understanding forms the basis for 

rational design of new MIDA boronate analogues where both modes of hydrolysis are 

deliberately retarded or accelerated by modifications to the iminodiacetic acid backbone. 

Such ligands stand to broadly enable advanced applications of organoboron compounds in 

synthesis, including expanding the range of reaction conditions compatible with complex 

building block construction and iterative assembly, opening new opportunities for selective 

boron deprotections and even one-pot pre-programmed iterative synthesis, and faciltating a 

transition in automation platforms from batch to flow chemistry. Such efforts can also now 

be guided by quantitatively tracking the relative contributions of the mechanisms of 

hydrolysis (kOH / k0) simply by determining the 18O-incorporation in the cleaved ligands (3) 

when conducting reactions in labelled water. Collectively, these advances stand to 

powerfully assist in the development of a more general and automated approach for small 

molecule synthesis.

Methods

General

DFT calculations of full reaction profiles for MIDA boronate solvolysis in basic and neutral 

aqueous THF were conducted at the M06-2X/6-31G* level of theory with solvation using a 

polarized continuum model (PCM) for THF. The level of theory that provided best 

quantitative agreement between predicted and observed kinetic isotope effects for k0 was 

M06L/6-311+G** with solvation in both THF and water computed as a single point using 

the default PCM settings in Gaussian0923 combined with the same level of theory. The 

MIDA boronates were prepared from the corresponding labelled boronic acids 

(2a, 2H4-2a, 10B-2a, 11B-2a) and N-methyliminodiacetic acids (3, 15N-3, 13C2-3) using 

standard procedures,2 and purified via silica-gel column chromatography (Et2O/MeCN 4:1) 

then recrystallisation (MeCN-Et2O).

Kinetics of MIDA Boronate Solvolysis in Basic Organic Emulsion (Fast Release)

A stopped-flow system (TgK Scientific) was employed to deliver solutions of the isolated 

reactants (1a, 0.5 to 2.5 mM and NaOH, 2.5-7.5 mM) in aqueous THF ([H2O] = 9.1 M) in 

1 : 1 volume ratio, via thermostatted reagent lines, into a fused-silica UV-vis cuvette 

(pathlength 10 mm) with integral pre-mixer (dead-time < 8 msec). Spectra were collected at 

10 msec intervals on an Ocean Optics USB4000 detector and data processed (Kinetic 

Studio; TgK Scientific) to afford the rate of change in absorbance (A) at 264 nm. To 

determine heavy atom KIEs, samples of [aryl-2Hn]-1a, as an approximately 1: 1 mixture of n 
= 0 and n = 4, with isotopically labelled MIDA boronate moieties (10B/11B/13C2/15N), in 

one or other sample, were dissolved in 50 mL THF to give a total concentration of 10 mM. 

4,4'-bis-(CF3)-biphenyl was added as an internal standard. Aliquots (5 mL) were then 

transferred to round-bottom flasks, and vigorously stirred (> 1000 rpm) as 1 mL of an 

aqueous solution of NaOH was added via syringe pump, through a narrow-bore needle, over 
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5 minutes. A series of NaOH concentrations (1-30 mM) were delivered to the sequence of 

aliquots to attain a suitable range of fractional conversions under metastable locally 

emulsified conditions. Immediately after addition of the requisite volume of NaOH solution, 

the reactions were chilled in ice, and sufficient anhydrous MgSO4 added to inhibit further 

hydrolysis (both kOH and k0). The solutions were concentrated (40 °C, 150 mBar) to 

approximately 0.5 mL and the isotope ratio and conversion analysed by 19F NMR.

Kinetics of Solvolysis of MIDA Boronate 1a in the Absence of Exogenous Base (Slow 
Release)

Reactions were conducted in 5 mm NMR tubes kept at constant temperature (± 0.5 °C) in a 

thermostatted environment. A 0.6-x mL aliquot of a stock solution of MIDA boronate 1a in 

THF containing 4-CF3-bromobenzene as internal standard, followed by x mL of aqueous 

THF, were added to the tube to establish final concentrations of 0.1 M 1a and 9.1 M H2O. 

The sample was vigorously mixed, a sealed glass capillary containing DMSO-d6 added, the 

NMR tube sealed (J-Young valve) and then inserted into the NMR spectrometer (Bruker 

Advance; 376.3 MHz 19F). After the spectrometer had been 2H-frequency-locked to the 

DMSO-d6, a series of 19F NMR spectra were recorded. The spectra were processed, as a 

block, and the integration of the 19F NMR signals (inter-FID delays > 5 T1) for the internal 

standard, 1a and 2a used to calculate concentrations. The pseudo-first order rate constant 

(kobs) was obtained from plots of ln([1a]0/[1a]t) = kobs·t; correlations were generally 

excellent (r2 typically ≥ 0.99). Reactions were conducted across a wide range of other initial 

water concentrations (0.5 to 20.0 M), and with mixtures of H2O/D2O; [L2O] = 9.1 M. The 

same procedure was employed to determine heavy atom KIEs, except that [aryl-2Hn]-1a, as 

an approximately 1: 1 mixture of n = 0 and n = 4; with isotopically labelled MIDA boronate 

moieties (10B/11B/13C2/15N), in one or other sample, were employed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Hydrolytic Deprotection and Coupling of MIDA boronates
(a) Iterative coupling platform for small molecule synthesis from MIDA boronate (1) 

building blocks. Current limitations include suboptimal generality and/or fine tuning of 

hydrolysis rates during deprotections, and undesired hydrolysis during building block 

syntheses and selective cross-coupling; these all stand to benefit from better understanding 

of the mechanism(s) of MIDA boronate hydrolysis; (b) Deprotection of MIDA boronates 1 
under ‘fast’ and ‘slow’ conditions, kREL ≥ 3 × 103 at 21 °C in homogeneous THF / H2O; (c) 
Fluorinated substrate (1a) selected for mechanistic investigation, including kinetics, pH 

profile, homo/heterogeneity, Hammet ρ, ΔS‡, site of cleavage (18O), water 

activity, 2H, 11B, 13C, and 15N KIES, and DFT (M06-2X/6-31G* & M06L/6-311++G**)
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Figure 2. Distinction of limiting pathways for basic (fast, A), neutral (slow, F) and acidic (G) 
hydrolysis of 1a
(a) Schematic representation of conditions A-G; (b) pH rate profile; arbitrary pH scale 

(autoprotolysis constant of 0.5 mol-fraction aq. THF estimated as pKapp = 20).12 Hydrolysis 

of water-soluble Me-B(MIDA) in aqueous buffer (pH 1-11) confirms kobs = kH+[H+] + k0 + 

kOH[OH−]. (c) Impact of K3PO4 on hydrolysis rate under heterogeneous conditions. Line 

through data is an aid to the eye. (d) 13C{1H}NMR Sub-spectra (178.70-178.85 ppm; 

ΔδC
18O/16O = 30 ppb) of MIDA ligand (3) from hydrolysis of [13C2]-1a in THF/18OH2 

under conditions A to G; see Supplementary Figures 4 and 5 confirming slow 18O exchange 

in 1a but not in 3 under acidic conditions (Gearly:25% conversion, Gend:>98 % conversion) 
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and no exchange in 1a, and very slow 18O exchange in 3 (≤1.4%, 48 h) under neutral 

conditions.
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Figure 3. Kinetics of fast and slow hydrolysis of MIDA boronate 1a
(a) Homogeneous basic conditions analysed by stopped-flow UV (ΔA264 / s−1). Oxidation16 

of nascent 2a to the phenol (4-F-C6H4OH) is accounted for in the analysis. (b) 

Homogeneous neutral conditions, analysed by 19F NMR. Hydrolysis rates correlate with 

water activity, k0 = k'(aw)2.8; k' = 2.3 × 10−5 s−1, 21 °C. As hydrolysis proceeds, nascent 

zwitterion 3 either precipitates from solution ([H2O] ≤ 3 M), or induces minor phase-

separation. Control experiments confirmed these phenomena had negligible impact on rates. 

(c) Tests (negative) for “open 1a” under conditions of homogeneous neutral hydrolysis.
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Figure 4. Kinetic isotope effects (KIEs) for Ar-B(MIDA) (1a) hydrolysis
(a) outline of methodology allowing KIE values to be extracted by a standard pseudo first-

order competition model; heavy atom KIEs shown are those after correction for aryl 

deuteration,17,18 net-σD = −6.3(±0.15) × 10−3, and competing processes (kH+ + k0). (b) Fast 

hydrolysis: substoichiometric aq. NaOH added to vigorously stirred solutions of 1a (10 mM) 

to attain a suitable span of fractional conversions. Hydrolysis post phase-separation inhibited 

by addition of anhydrous MgSO4. (c) Acidic hydrolysis (1M HCl) analysed in situ. (d) 
Neutral hydrolysis analysed in situ. Identical KIES (Δ≤ ±0.002) were obtained with 0.5 M 

H2O. (e) Proton inventory conducted with 1a in THF/L2O (9.1 M, L = H, D). The net 

solvent KIE (χD = 1) increases from 1.4 to 2.0 as [D2O] is decreased from 9.1 to 0.5 M.
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Figure 5. Fast-release Hydrolysis (kOH)
(a) Summary key computational data for hydrolysis of 1a via C-O cleavage (TS-5). 

Computed minimum-energy pathway and experimental data are fully self-consistent. 

Nonetheless, these computed results do not resort to exhaustive, time-dependent sampling, 

and should thus be taken only as a model of the processes taking place in solution. (b) Other 

key processes considered, but eliminated on the basis of energy or kinetic isotope effects.
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Figure 6. Slow-release Hydrolysis (k0)
(a) Summary key computational data for hydrolysis of 1a via B-N bond cleavage (TS-12). 

Computed minimum-energy pathway and experimental data are fully self-consistent. 

Nonetheless, these computed results do not resort to exhaustive, time-dependent sampling, 

and should thus be taken only as a model of the processes taking place in solution. (b) Other 

key processes considered, but eliminated on the basis of energy or kinetic isotope effects.
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