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Abstract

Opsin family genes encode G protein-coupled seven-transmembrane proteins that bind a
retinaldehyde chromophore in photoreception. Here, we sought potential as yet undescribed
avian retinal photoreceptors, focusing on Opsin 3 homologs in the chicken. We found two
Opsin 3-related genes in the chicken genome: one corresponding to encephalopsin/panop-
sin (Opn3) in mammals, and the other belonging to the teleost multiple tissue opsin (TMT) 2
group. Bioluminescence imaging and G protein activation assays demonstrated that the
chicken TMT opsin (cTMT) functions as a blue light sensor when forced-expressed in mam-
malian cultured cells. We did not detect evidence of light sensitivity for the chicken Opn3
(cOpn3). In situ hybridization demonstrated expression of cTMT in subsets of differentiating
cells in the inner retina and, as development progressed, predominant localization to retinal
horizontal cells (HCs). Immunohistochemistry (IHC) revealed cTMT in HCs as well as in
small numbers of cells in the ganglion and inner nuclear layers of the post-hatch chicken ret-
ina. In contrast, cOpn3-IR cells were found in distinct subsets of cells in the inner nuclear
layer. cTMT-IR cells were also found in subsets of cells in the hypothalamus. Finally, we
found differential distribution of cOpn3 and cTMT proteins in specific cells of the cerebellum.
The present results suggest that a novel TMT-type opsin 3 may function as a photoreceptor
in the chicken retina and brain.

Introduction

Opsins are a family of membrane-bound, heptahelical G protein-coupled receptors character-
ized by their ability to bind retinaldehyde chromophores covalently via a Schiff base linkage
[1]. There are seven major opsin subfamilies in chordates: melanopsin (opsin 4);
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encephalopsin/panopsin and teleost multiple tissue (TMT) opsin (opsin 3); ciliary photorecep-
tor opsins including rod/cone opsins, pinopsin, and vertebrate-ancient (VA) opsin; Go-cou-
pled opsins; opsin 5 (formerly neuropsin); peropsin; and photoisomerases. Melanopsin is a
non-canonical opsin expressed in the inner retina that mediates non-image forming effects of
light on physiology, such as circadian photoentrainment [2]. Meanwhile, opsin 5, an ultraviolet
light sensor expressed in the retina, was found to be expressed in the light-sensitive paraventri-
cular organ of the avian hypothalamus as well, where it is involved in sensing day length and,
consequently, modulating the size of sex organs in male birds across seasons [3-5].

Encephalopsin and TMT opsin, which belong to the opsin 3 subfamily, were originally dis-
covered by database searches and low-stringency library screening; they have been observed to
be expressed in the brain as well as in multiple other tissues in humans, mice, and teleosts (zeb-
rafish and Fugu) [6-8]. Phylogenetic analyses have suggested that opsin 3 proteins are closely
related to vertebrate photoreceptor opsins including rod/cone opsins, pinopsin, and verte-
brate-ancient (VA) opsin [1,8,9]. TMT is expressed in hypothalamic neuro-sensory cells in tel-
eosts and has been implicated in peripheral photoentraining in teleosts [8,10], suggesting that
neuroendocrine photoregulation in vertebrates may involve TMT [9,11]. However, the expres-
sion patterns of opsin 3 genes in the avian retina and brain have not been examined.

The aim of the present study was to explore whether there are as yet unidentified potentially
photoreceptive cells in the avian retina and brain. We isolated two opsin 3-related genes
expressed in the chicken retina, examined their photosensitivity, and analyzed their expression
patterns in the chicken retina and brain.

Materials and Methods
Animals and ethics statement

Fertilized chicken eggs (Gallus gallus) were purchased from a commercial farm (Goto-furanjyo
Co., Ltd.; Gifu, Japan; http://www.gotonohiyoko.co.jp/) and incubated at 37.5°C in a humidi-
fied incubator until they reached predetermined experimental time points. Hatchlings were
housed in a 12:12 light-dark cycle with food and water ad libitum. Animals were anesthetized
with ether and perfusion fixation combined tissue fixation with euthanasia at 6-10 h after
lights on. The use of animals in these experiments was in accordance with the guidelines estab-
lished by the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The pro-
tocol was approved by the Committee on the Ethics of Animal Experiments of Okayama
University (Permit Number: OKU-2013171).

Isolation of chicken opsin 3-related genes

Partial cDNA fragments for two opsin 3-related genes were obtained by reverse transcriptase
polymerase chain reaction (RT-PCR) from embryonic day 17 (E17) retina with primers
designed according to predicted nucleotide sequences (S1 Table). Gene-specific primers were
designed according to sequences deposited in GenBank (S1 Table). In total, 35 PCR cycles
were performed at an annealing temperature of 58°C, generating PCR products of cDNA frag-
ments (761 bp, 656 bp) similar to two opsin 3-related genes. To obtain full coding sequences
for these genes, we first performed PCR with primers targeting regions containing translation
initiation sites or stop codons, according to the nucleotide database, and obtained a full coding
sequence for chicken encephalopsin, which we named chicken opsin 3 (cOpn3). For the other
gene, which resembled the gene encoding TMT, we performed 3’RACE with cDNA from P7
retina and isolated long (cTMT-L) and short (cTMT-S) forms (S2 Table, S1 Fig). The deduced
amino acid sequence of cTMT-S was identical to a sequence deposited in the Ensembl database
(ENSGALG00000016802).
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To obtain full-length cDNAs, RT-PCR was performed (primers shown in S1 Table). The
PCR products were cloned into plasmid vectors [pGEM-T Easy (Promega; Madison, WI) or
pCR4Blunt-TOPO (Invitrogen; Carlsbad, CA)] and multiple clones were sequenced to con-
firm that the entire coding cDNAs were obtained; cOpn3 (1228 bp), cTMT-S (992 bp), and
c¢TMT-L (1273 bp). The nucleotide sequence of these clones has been deposited in DDBJ/Gen-
Bank (accession numbers, AB436160, AB436159, and AB519059, respectively).

Sequence and phylogenetic analysis

Assembly of predicted sequences, sequence analysis, and identity comparisons were under-
taken in GENETYX-SV/RC Version 15 (Genetyx Co., Ltd.; Tokyo, Japan; https://www.
genetyx.co.jp/). For phylogenetic purposes, amino acid sequences were aligned with MAFFT
[12]; neighbor-joining trees were constructed with bootstrap confidence values based on 1000
replicates in MEGA?7 software [13].

Bioluminescence imaging

Bioluminescence assays were conducted with a Ca* indicator, cpGL-CaM [14], which con-
tains a calmodulin-M13 Ca®" sensor domain fused to a firefly luciferase [15] rendering its bio-
luminescent activity dependent on Ca** concentration. Neuro2A cells (ATCC, http://www.
atcc.org/) were cultured in Dulbecco’s Modified Eagle Medium (Invitrogen) supplemented
with 10% fetal bovine serum, 50 U/mL penicillin, and 50 pg/mL streptomycin. To enable tran-
sient expression, cells were plated on a 35-mm glass-bottom dish (Iwaki Co., Ltd.; Chiba,
Japan; http://www.iwakipumps.jp/en), transfected with both cTMT-L and cpGL-CaM expres-
sion vectors (1 pg of each) facilitated by FuGENE HD transfection reagent (Promega), and
incubated at 37°C for 24-48 h in the medium. Transfected Neuro2a cells were treated with
11-cis-retinal (5 uM) in the medium for 60 min. This and following procedures were per-
formed in the dark. After retinal treatment, the cells were rinsed twice with basal salt solution
(130 mM NaCl, 5.4 mM KCl, 2 mM CaCl,, 1 mM MgCl,, 10 mM D-glucose, and 10 mM
HEPES, pH 7.4), and then soaked in basal salt solution supplemented with 2 mM D-luciferin.
The cells were allowed to stabilize for 30 min prior to being subjected to imaging experiments.

For the experiments, a culture dish was placed on a microscopic luminescence imaging sys-
tem (Lumino View LV200; Olympus; Tokyo, Japan) stage. Cells were observed with a 40x
objective and maintained at room temperature (~24°C) throughout the experiments. Stimulat-
ing light from a 100-W halogen bulb was passed through a 470- to 490-nm or 535- to 555-nm
band-pass filter and guided to illuminate the microscope stage. Optical power on the stage was
measured by an optical power meter (Advantest Co., Ltd.; Tokyo, Japan; https://www.advantest.
com/). Bioluminescence images (acquired immediately before and after, but not during light
pulses to protect the camera from light overload) were collected every 10 s by a cooled electron
multiplying charge-coupled device camera (iXon; Andor Technology Ltd.; Belfast, UK).

The resultant images were analyzed in MetaMorph software. Each cell was chosen as a
region of interest (ROI), and its luminescence intensity was measured at experimentally speci-
fied time points.

G protein activation assay

The cTMT-L action spectrum was obtained by plotting G protein activation efficiency of
c¢TMT-L recombinant proteins, prepared as described previously [16], as a function of wave-
length of light. The cTMT-L cDNA was inserted into pMT4 mammalian expression vector and
transfected into HEK293T cells. After 1 day of incubation, 11-cis retinal was added to the
medium (final concentration, 5 uM). After an additional 1-day incubation in the dark, the cells
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were collected. Collected cells were suspended in 50% (w/v) sucrose in PM buffer [50 mM
HEPES (pH 7.0), 140 mM NaCl, and 3 mM MgCl,], sonicated, and centrifuged. cTMT-L-
expressing membranes in the supernatants were precipitated by a three-fold dilution with PM
buffer. A G protein activation assay was carried out as described elsewhere [16]. Go-type G pro-
tein was purified from pig cerebral cortex according to Katada et al.’s method [17]. The
cTMT-L-expressing membranes were mixed with G protein solutions and then pre-incubated
for 1 h at 0°C. Samples were irradiated with light from a 1-kW tungsten-halogen projector
lamp that had passed through the following combined interference/cut-off filters: BP400
(Kenko Tokina Co., Ltd.; Tokyo, Japan; http://www.kenkoglobal.com/) + L39 (Toshiba; Tokyo,
Japan); KL42 + L39 (both Toshiba), BP440 (Kenko) + L39 (Toshiba); BP450 (Kenko) + L39
(Toshiba); BP460 (Kenko) + Y44 (Toshiba); BP470 (Kenko) + Y44 (Toshiba); BP480 (Kenko)
+ Y44 (Toshiba); BP500 (Kenko) + Y44 (Toshiba); KL52 + Y44 (both Toshiba); BP540 (Kenko)
+ Y44 (Toshiba); and KL58 + Y44 (both Toshiba). The photon density at the sample location in
each light condition was 2.3 x 10" photons/mm?, as measured by an optical power meter
(Nova laser power meter and energy meter; Ophir Optronics; Jerusalem, Israel) with a power
sensor (30A-P-17; Ophir Optronics). After irradiation, the GDP/GTPyS exchange reaction was
started by adding GTPyS solution to the pigment and G protein mixture. The final assay mix-
ture consisted of 50 mM HEPES (pH 7.0), 140 mM NaCl, 1 mM MgCl,, 5 mM DTT, 250 nM
GTPyS, 5 uM GDP, and 500 nM G proteins. The reaction was terminated after 1 min by adding
stop solution (20 mM Tris/Cl, pH 7.4, 100 mM NaCl, 25 mM MgCl,, 1 uM GTPYS, and 2 uM
GDP) and immediate filtering of the sample through a nitrocellulose membrane to trap G pro-
tein-bound [*’S]GTPyS. Membrane-associated [*°S]GTPYS was quantitated by a liquid scintil-
lation counter (Tri-Carb 2910 TR; PerkinElmer; Waltham, MA).

Fixation and sectioning

After being perfused with ice-cold 4% paraformaldehyde in phosphate-buffered saline (PBS),
chicken heads were dissected quickly and the anterior segment of each eye was removed. The
dissected heads were postfixed for 3 h at 4°C and then transferred to 20% sucrose until they
sank. The tissue samples were embedded in optimal cutting temperature compound (Sakura
Finetek Japan Co., Ltd.; Tokyo, Japan) and then cut into 20-pm sections with a cryostat (Leica
Biosystems; Wetzlar, Germany). The sections were thaw-mounted onto SuperFrost Plus slides
(Fisher Scientific; Pittsburgh, PA), dried at room temperature, and stored at -30°C until they
were analyzed.

In situ hybridization (ISH)

RNA probes for cOpn3 and cTMT were generated from partial 761-bp and 656-bp cDNA frag-
ment templates, respectively. Digoxigenin-labeled antisense and sense control riboprobes were
generated by in vitro transcription. ISH was carried out on 20-um-thick frozen sections
according to published protocols [18]. For double staining with anti-Lhx1 antibody, retinal
sections not subjected to proteinase K digestion during ISH were labeled with primary anti-
body (anti-Lhx1; S4 Table), followed by Alexa Fluor 488-conjugated anti-mouse secondary
antibody diluted 1:750 in PBS. Micrographs were taken with a Nikon digital camera (DS-Ril;
Nikon; Tokyo, Japan) mounted on a Leica microscope (DM5000B) and processed in Adobe
Photoshop CS 5.1 (Adobe Systems Inc., San Jose, CA).

Antibodies

Specific polyclonal antibodies were raised in guinea pigs to the C-termini of cOpn3, cTMT-S,
and ¢cTMT-L. Each antibody was raised against a C-terminal 17-amino-acid synthetic peptide
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conjugated to keyhole limpet hemocyanin by Tanpaku-Seisei-Kogyo Co., Ltd. (Gunma, Japan;
http://pro-purify.co.jp/laboratory/), according to their standard procedures. The resultant
antibodies were affinity purified with antigen peptides by Tanpaku-Seisei-Kogyo. We con-
firmed that the pre-immune sera gave no signals similar those of post-immune sera. The char-
acteristics of the primary and secondary antibodies used are summarized in S4 Table. We
evaluated the specificity of the primary antibodies by comparison with published results. Sec-
tions incubated with secondary antibodies alone were devoid of fluorescence, indicating that
signals observed in sections incubated with primary antibodies were not due to nonspecific
binding of secondary antibody or tissue autofluorescence.

Western blotting

Chicken embryonic tissues (heart, retina, and cerebellum at E19) were dissected and snap-fro-
zen in liquid nitrogen. Frozen tissues were ground up with a pestle in a chilled mortar and sol-
ubilized immediately in RIPA buffer [10 mM Tris-HCl (pH 7.4), 1%
octylphenoxypolyethoxyethanol, 0.1% deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 0.15
M NaCl, 1 mM ethylenediaminetetraacetic acid]. Solubilized tissues were sonicated and centri-
fuged at 19000 xg at 4°C for 15 min. The tissue lysate was subjected to SDS-polyacrylamide gel
electrophoresis (PAGE), transferred onto a polyvinylidene difluoride membrane, and probed
with anti-cOpn3 or anti-cTMT-L antibody, both diluted 1:3,000 in Immuno Shot (Cosmo Bio
Co. Ltd.; Tokyo, Japan). After washing, secondary antibody (anti-guinea pig IgG) was added at
1:10,000 dilution and signals were detected by with an ImmunoStar LD (Wako Pure Chemical
Industries Ltd.; Osaka, Japan). To ascertain immunolabeling specificity, immunogen peptide
preabsorption tests were performed with a solution in which the molar ratio of anti-cOpn3 or
anti-TMT antibody and the indicated antigen peptides was 1:20.

Immunohistochemistry (IHC)

Fluorescent immunolabeling was performed using standard techniques. Briefly, all slides were
blocked for 30 min at room temperature in PBS Triton X-100 (0.25%) (PBST) with 5% goat
serum (Vector Laboratories; Cambridgeshire, UK). Primary antibodies were diluted (1:500 for
anti-cOpn3, 1:2000 for anti-cTMT-L) in PBST with 5% serum and secondary antibodies in
PBS. All wash steps included three 5-min washes with PBST. Primary antibodies were incu-
bated for 6 h at room temperature or for 16 h at 4°C. Secondary antibodies were incubated for
1.5 h at room temperature. For double fluorescent labeling experiments, the slides were incu-
bated with primary antibodies (anti-cOpn3 or anti-cTMT-L) and secondary antibodies in a
sequential manner: followed by anti-Lhx1 or other antibodies. The slides were mounted with
anti-fade mountant supplemented with 4’, 6-diamidino-2-phenylindole (DAPI) (Vector Labo-
ratories). We collected fluorescent images using a Leica TCS-SP5 or a Zeiss LSM 780 (Carl
Zeiss Microscopy GmbH; Jena, Germany) confocal laser-scanning microscope with 405-nm,
488-nm, and 543-nm excitation wavelengths and 424-489-nm, 505-539-nm, and 551-618-nm
emission wavelengths for DAPI, green, and Cy3, respectively.

Results
Comparison of the genomic structures of opsin 3-related genes

Based on phylogenetic comparisons, we determined that two novel opsin 3-related genes
found in the chicken genome should be classified as an Encephalopsin (Opn3) and TMT2,
respectively (Fig 1). Here we call them cOpn3 and ¢TMT, respectively. Comparisons of the
intron-exon structures of cOpn3 and ¢cTMT with mouse and zebrafish genes recorded in
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Fig 1. Phylogenetic tree of opsin 3-related proteins. The opsin proteins are depicted by the neighbor-
joining method. Bovine rhodopsin was used as the outgroup. The scale bar is calibrated to substitutions per
site. Numbers show bootstrap confidence values. Amino acid sequences used in the tree construction were
deduced from the nucleotide sequences listed in S2 Table.

doi:10.1371/journal.pone.0163925.9001

genomic databases (Fig 2) revealed that cOpn3 consisted of four coding exons with an intron-
exon structure consistent with that in mouse and zebrafish homologues (Fig 2A). Meanwhile,
we found that cTMT-S and ¢cTMT-L, from the same gene, consisted of three and four exons,
respectively (Fig 2B). A phylogenetic tree of opsin 3-related proteins from 11 species showed
that there were at least three TMT opsin subgroups, TMT1, TMT2, and TMT3 as reported pre-
viously (Fig 1, S2 Table) [9, 19]. The novel chicken TMT opsin belongs to the TMT?2 subgroup
(Fig 1A). Comparison of the flanking genes of cT'MT with those of a zebrafish TMT2 gene,
zZT'MT2B (]X293362), showed that cTMT shares synteny with zT'MT2B (Fig 2B). The intron-
exon junctions in ¢TMT-L at nucleotides 337, 662, and 895 were found to be similar to those of
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Fig 2. Intron-exon structure of Opn3(A) and TMT (B) in chicken, mouse, and zebrafish. Exons and
introns are indicated with open boxes and solid bars, respectively. Approximate gene sizes are shown.
Flanking genes (see S3 Table) are shown in parenthesis. Direction of transcription is indicated with an arrow.
Note that the fourth exon of cTMT-L is in the intron of the next gene, st6gal2.

doi:10.1371/journal.pone.0163925.9002

zTMT?2B at nucleotides 366, 694, and 927, indicating that intron-exon structure was conserved
between cTMT-L and zZTMT2B.

We further compared the genes flanking cOpn3 with those flanking opn3 genes of different
species indexed in the Ensembl database (Fig 3A, S3 Table). The kmo and fh genes are located
between opn3 and rgs7 in the genomes of marsupials (opossum) and eutherians (mouse and
human), but the loci of wdr64 and rgs7 are conserved between sauropsid (birds and reptiles)
and human genomes. In zebrafish, most of the flanking genes are different, except for kmo.
This gene order surrounding the zOpn3 gene was conserved in the medaka genome. By con-
trast, the genes flanking cTMT, namely uxsI and st6gal2, were found to be conserved relative
to zebrafish (zTMT2B) (Fig 2B) and clawed frog TMT2 (data not shown). Two types of TMT
opsin genes, TMT1 and TMT2, have been observed in birds [20]. In the flycatcher and lizard
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Fig 3. Syntenic regions encompassing the Opn3(A) and TMT1 (B) loci. The Opn3and TMT1 genes are
indicated as opn3and tmtop1 in red, respectively. The same colored boxes designate orthologous genes.
Open boxes indicate non-orthologous gene displacement. Gene products and symbol definitions are listed in

S3 Table.

doi:10.1371/journal.pone.0163925.9003

genomes, the tmtopl (TMT1) locus is situated between the st6gall and gpr35loci (Fig 3B). Our

Blast search indicated that an uncharacterized 131-amino-acid protein, similar to DNA-

(apurinic or apyrimidinic site) lyase 2, is encoded at this locus in the chicken genome. Alto-
gether these comparisons indicate that Gallus gallus has two opsin 3-related genes, Opn3 and
TMT?2 orthologs belonging to the opsin 3 group.

Key features of opsin 3-related proteins

Multiple alignment of the amino acid sequences of opsin 3-related proteins revealed several
conserved key features (S1 Fig). These features include seven putative transmembrane o-heli-
ces and a lysine residue at position 296 (in the bovine rhodopsin numbering system) required
to form the Schiff base with the chromophore, which is characteristic of opsin proteins. The

canonical motifs of rhodopsin-like G protein-coupled receptors, such as the (D/E)R(Y/W)

motif at the end of transmembrane domain 3 (TM3), the CWxP motif in TM6, and the NPxxY
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motif in TM7, are conserved (S1 Fig). The positively charged Schiff base is balanced by a coun-
terion from an acidic amino acid, which was postulated to be an aspartate residue at position
113 (D113) in TM3 [21, 22], or a glutamate or aspartate residue at position 181 (E/D181) in
the second extracellular loop [23] in Opn3. By contrast, an aromatic amino acid tyrosine occu-
pies position 113 (Y113) in the TMT group. Thus a conserved E181 can function as the coun-
terion in TMT opsins.

Photosensitivity of cTMT protein

Luminescence was visualized in Neuro2a cells transfected with cpGL-CaM and cTMT-L,
c¢TMT-S, or cOpn3 expression vectors. Upon 10-s stimulation with blue light through a band-
pass filter (470-490 nm, 0.2 uW/mm?®), a transient decrease in luminescence was observed in
Neuro2a cells containing 11-cis-retinal-reconstituted cTMT-L (Fig 4). However, upon stimu-
lation with green light through a band-pass filter (535-555 nm), the cells did not exhibit light-
induced changes in the bioluminescence of the indicator (Fig 4). On the other hand, no biolu-
minescence changes were observed in cells transfected with cTMT-S or cOpn3 in either condi-
tion (not shown). These results suggest that retinal-reconstituted cITMT-L serves as a blue-
light absorbing photoreceptor involving Ca>* signaling.

Before illumination Afterillumination

Intensity —>

Relative Luminescence (Lt/L0)

0.4

0 10 20 30 40 50 60
Time (min)

Fig 4. Ca®* responses after light stimulation of cTMT-L-expressing cells. Cells transfected with both
CcTMT-L and cpGL-CaM were treated with 11-cis-retinal (5 uM) and luciferin (2 mM). Luminescence intensity
in images acquired every 10 s was calculated relative to that measured at imaging onset (Lt/LO) for cells in the
indicated ROI (upper left) as shown in the trace. Representative bioluminescence images acquired before
(upper center) and after (upper right) illumination are shown. Relative bioluminescence signals (Lt/LO) of
cTMT-L-expressing cells decreased following blue light pulses (470-490 nm; 10 s at 0.2 pW/mm?; blue
arrows), but not with green light pulses (535-555 nm; 10 s at 0.2 uW/mm?; green arrows). Representative
imaging data from three independent experiments are shown. Scale bars: 50 um.

doi:10.1371/journal.pone.0163925.9004
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Relative G protein activation
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Fig 5. Wavelength dependence of Go activation efficiencies of cTMT-L. An action spectrum was
constructed from wavelength-dependent Go activation efficiencies of cTMT-L-transfected (closed circle) or
mock-transfected (open circle) HEK293T cell membranes. G protein activation efficiency was measured by
irradiation with eleven different light wavelengths of various intensities (S2 Fig). The relative Go activation
efficiencies obtained by irradiation at around 2.3 x 10'® photons/mm? were calculated by normalizing the
maximum value to 1.0. The data were best fitted to a Govardovskii template with a Amax of 463 nm (solid
curve). All data represent the mean + S.D. of four independent experiments.

doi:10.1371/journal.pone.0163925.9005

We found that membranes expressing recombinant cTMT-L proteins reconstituted with
11-cis retinal activated Go-type G protein in a light quantity-dependent manner in HEK293T
cells (S2B Fig). Blue light (~470 nm) was particularly effective for G protein coupling by
cTMT-L (S2A Fig). Based on G protein activation levels induced by various wavelengths of
light, we plotted relative G protein activation efficiency as a function of peak wavelength of
light transmitted through band-pass filters. The action spectrum for G protein activation fitted
with a Govardovskii template [24] peaked at 463 nm (Fig 5, solid curve), a wavelength similar
to the absorption spectra of fish TMT opsins [16, 19].

Localization of cTMT mRNA in the embryonic and hatchling retina

Because we were able to isolate partial cOpn3 and cTMT cDNA fragments from E17 retina, a
few days before hatching, we first examined the expression pattern of both mRNAs in E17 ret-
ina. ISH performed with an RNA probe generated from a cTMT ¢cDNA fragment common to
both cTMT-S and ¢cTMT-L, and thus unable to discriminate between the two, revealed that
c¢TMT mRNA was expressed by subsets of cells in the inner nuclear layer where retinal inter-
neurons reside (S3A Fig). In contrast, cOpn3 mRNA was not detected by ISH in the E17 retina
(S3C Fig).

Because non-canonical opsin mRNA has been detected earlier in development than classical
photopigments [25], we performed ISH on a series of developing retinal sections to detect the
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timing of the developmental onset of cTMT expression. At E7, cTMT mRNA was not detected
in the retina (not shown). By E10, cTMT was expressed diffusely (Fig 6A); the negative control
experiment with a sense probe did not produce any signal (Fig 6B). At E14, cTMT was
expressed by subsets of cells in the ganglion and inner nuclear layers (Fig 6C). At E17, cTMT
mRNA was detected clearly in small subsets of cells in the ganglion cell layer (Fig 6D), and the
innermost and middle regions of the inner nuclear layer (Fig 6E and 6F for a negative control).
By day 5 post-hatching (P5), cTMT was expressed in the outermost layer of the inner nuclear
layer, where horizontal cells (HCs) reside, as well as by a small subset of cells in the ganglion
cell and inner nuclear layers (Fig 6G-61, 6] and 6K). Examination of the sections under high
magnification revealed that not all HCs were positive for cTMT mRNA (Fig 6L).

To identify whether cTMT-expressing retinal HCs in chickens are the axon-bearing or
axon-less HC morphology type [26], we performed IHC with an antibody targeting Lhx1, a
homeobox gene-encoded protein specific to axon-bearing HCs [27], following in situ hybrid-
ization with our ¢TMT probe. We found that cTMT-expressing HCs were Lhx1-IR (Fig 6L
6N), demonstrating cTMT expression by axon-bearing HCs in the post-hatch chicken retina.

Localization of cTMT protein in the retina

Opsin 3 protein localization in the chicken retina was examined with polyclonal anti-cOpn3
and anti-cTMT antibodies raised by our group. Because it was reported recently that different
TMT isoforms might exhibit distinct distribution in the retina [28-30], we attempted to raise
separate cTMT-S- and cTMT-L-specific antibodies, but did not succeed in raising specific
anti-cTMT-S antibodies. Our antibodies were validated in western blot analyses (S4 Fig).
Bands at the predicted molecular weights of cTMT-L (~41 kDa) and cOpn3 (~43 kDa) were
detected in the retina and cerebellum just before hatching (S4A and S4B Fig). Blots incubated
with antigen-absorbed antibodies yielded no bands at corresponding molecular weights (S4A
and S4B Fig).

IHC of the retina showed the distinct presence of cTMT-L in P10 HCs (Figs 7A-7C and
S5C); no signal was detected in the negative control experiment when antigen-absorbed anti-
c¢TMT-L antibody was used (S5D Fig). cTMT-L- immunoreactivity was observed in somata
aligned at the outermost layer of the inner nuclear layer, and in their brush-shaped processes
(Fig 7B and 7C). Relatively few cTMT-immunoreactive (IR) cells were found in the ganglion
cell layer (Fig 7A and 7D, high magnification) and inner nuclear layer (Fig 7E).

Clarification of cTMT-positive HCs in the retina

To investigate the type of cTMT-IR HCs in the P10 retina, we performed double-IHC with
antibodies raised against the HC markers Isletl, Calretinin, and TrkA together with anti-Lhx1
antibodies (Figs 7F-7T and S6). cTMT-IR cells were first labeled with the pan-HC antibody
anti-Prox1 [27]. We confirmed that all cTMT-L-IR HCs were Prox1-positive, though there
were cTMT-L-negative, Prox1-positive HCs (Fig 7F-7H). We observed a weak Lhx1-labeling
subpopulation among the cTMT-IR HCs (Fig 7I-7K). With a few exceptions, most cTMT-IR
HCs were Isletl-negative (Fig 7L-7N).

IHC for expression of Calretinin, characteristic of brush-shaped axon-bearing HCs, and
anti-TrkA, characteristic of axon-less HCs, [27, 31] indicated that cTMT-IR HCs were Calreti-
nin-positive (Fig 70-7Q) and TrkA-negative (Fig 7R-7T). Furthermore, the cTMT-IR HCs
had a brush-shaped morphology (Fig 70) consistent with that found in Calretinin-positive
HC:s (Fig 7P). Because most Calretinin-positive HCs are Lhx1-positive (~52% of all HCs), with
a small number being Isletl-positive (~8%) [27], these findings indicate that cTMT-L was
localized in Calretinin-positive, brush-shaped axon-bearing HCs.
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Fig 6. In situ hybridization of cTMT in the developing and post-hatch retina. Central retina is shown,
vitreal side up, unless otherwise indicated. Negative sense-probe controls are shown in panels B, F, and I. (A)
Diffuse cTMTmRNA in the E10 retina. (C) cTMT expression in subsets of cells in the gcl and inl at E14. (D, E)
cTMT-expressing cells (arrowheads) in the gcl or inl are distinctly observed at E17. (G, H) cTMT expression in
HCs at P10. Putative ganglion and amacrine cells (arrows) are enlarged in panels J and K, respectively, and
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peripheral retina is shown in panel G. (L-N) The same sections, showing the HCs with cTMT mRNA shown in
blue (L), Lhx1 protein shown in green (M), and a merged view (N). Abbreviations: gcl, ganglion cell layer; inl,
inner nuclear layer; ipl, inner plexiform layer; onl, outer nuclear layer; rpe, retinal pigment epithelium; GC,
putative ganglion cell; AC, putative amacrine cell; HC, putative horizontal cell.

doi:10.1371/journal.pone.0163925.9006

Localization of cOpn3 protein in the retina

Although cOpn3 mRNA was not detected in the retina, IHC revealed cOpn3 protein expres-
sion in a subset of inner nuclear layer cells at E17 (Figs 8A/8A’ and S5A) and P10 (Fig 8B-
8C’). Typically, cOpn3-IR retinal cells are heavily labeled in the soma from which a single long
process emerges. This staining pattern was never observed when antigen peptide-absorbed
anti-cOpn3 antibody was used in IHC (S5B Fig). The failure of our standard ISH experiment
to detect cOpn3 mRNA in the E17 retina (S3C Fig) although RT-PCR analysis showed expres-
sion of cOpn3, suggests that a very small amount of cOpn3 mRNA is expressed in the retina
whereby accumulation of the protein enabled detection of cOpn3-IR cells. Alternatively, this
anti-Opn3 antibody is polyclonal and might cross-react to other proteins than Opn3 as
revealed by multiple bands in Western blot analysis (S4B Fig).

Localization of cOpn3 and cTMT proteins in the brain

We next examined whether cOpn3 and cTMT-L proteins were present in the chicken brain
given that previous studies revealed encephalopsin mRNA in the mouse brain [6, 32] and
TMT opsin in the zebrafish brain [9]. We found that cOpn3 protein was localized to Purkinje
cells of the cerebellar cortex at P10 (Fig 9A-9C). We also found that cTMT-L protein was pres-
ent close to the Purkinje cell layer and in neurites located in the granule cell layer (Fig 9D-9F).
In the vicinity of Purkinje cells, there are basket cells in the molecular layer and Golgi cells in
the granule cell layer [33]. Double staining showed that cTMT-IR cells were negative for the
stellate/basket cell marker [34, 35] Calretinin (Fig 9G-9I). Thus, we deduced that the cTMT-IR
cells in the chicken cortex were likely Golgi cells in the granule cell layer. cTMT-immunoreac-
tivity was also observed in mossy fibers and cerebellar glomeruli (Fig 9G), with partial colocali-
zation with Calretinin (Fig 9H and 9I) [35].

Encephalopsin mRNA has been detected in mouse thalamic nuclei and cerebellum [6]. We
found that cOpn3 was expressed by a subset of cells in the dorsomedial (Fig 10A and 10B) and
medial geniculate (Fig 10C and 10D) nuclei of the thalamus. cTMT-L immunoreactivity was
not observed in any thalamic nuclei (data not shown), but was found in subsets of cells in the
paraventricular nucleus of the hypothalamus, dorsal to tyrosine hydroxylase-IR neurons in the
nucleus anterior medialis hypothalami (Fig 11A and 11B), and in the subgeniculate nucleus
(Fig 11C and 11D). cTMT-L IR was not detected in the light-sensitive paraventricular organ
(S7 Fig).

Discussion

Our phylogenetic tree of opsin 3-related proteins indicated that most vertebrate species have
one encephalopsin (Opn3)-like protein, whereas the number of TMT opsin-like proteins var-
ies across species (Fig 1 and S2 Table) [9,16,19]. In clawed frogs, Xenopus tropicalis, the Opn3-
like gene (XM_002935666) possesses a lysine-to-isoleucine substitution at a site essential to
retinal binding, implying that it has become a pseudogene. There are no TMT opsin-like pro-
teins in eutherians, one TMT opsin-like protein in marsupials, one or two in birds, and three
in lizard, frog, and shark. In teleosts, three TMT opsin paralogs are further diversified [16].
Our phylogenetic tree is largely consistent with the findings of recent reports [9,16,19].
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Fig 7. Localization of cTMT-L protein in P10 retina. Immunoreactivity for cTMT-L is shown in green (white
in panel B), and DAPI counterstained nuclei appear blue. (A) A cTMT-IR cell in the gcl (arrow). Intense
cTMT-L labeling in the processes of HCs in the opl (arrowheads). (B) Highly magnified cTMT-IR HCs. Note the
intense signal in the processes of opl HCs. (C) Merged image of section highlighted in B with DAPI nuclear
counterstain. (D) Highly magnified cTMT-IR cell in the gcl (arrow in A). (E) cTMT-IR cells in the inl abutting the
ipl. (F-T) Sections double labeled for cTMT-L (left panels) and HC markers (middle panels). Merged images
are shown in the right panels. Arrows highlight cTMT-IR HCs. In J, there are Lhx1-positive (+) and weakly
positive (w) cells among cTMT-IR cells. In M, there is a mixture of Islet1-positive (+) and -negative (-) cTMT-IR
cells. Abbreviations: gcl, ganglion cell layer; inl, inner nuclear layer; ipl, inner plexiform layer; onl, outer nuclear
layer; opl, outer plexiform layer. Scale bars: 50 ymin A, 12.5 ymin B-E, and 25 ymin F-T.

doi:10.1371/journal.pone.0163925.9g007
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E17 P10

Fig 8. Localization of cOpn3 protein in E17 (A, A’) and P10 (B-C’) retina. cOpn3 immunoreactivity is
shown in white in the upper panels (A—C) and in green together with DAPI nuclear counterstain in blue in the
lower panels (A’-C’). Highly magnified cOpn3-IR cell are shown in C/C’. cOpn3-IR cells can be seen in the inl
abutting the opl with processes directed upward toward the ipl. Typically, each cOpn3-IR cell is heavily labeled
in the soma from which a single long process emerges. Z-stack images (14 um for B/B’, 13 uym for D/D’).
Abbreviations: gcl, ganglion cell layer; ipl, inner plexiform layer; inl, inner nuclear layer. Scale bars: 100 ymin
A,25uminBand C,and 10 pmin D.

doi:10.1371/journal.pone.0163925.9008

Alignment of opsin 3-related proteins shows that the amino acid sequence for the C-terminal
region of TMT opsins is diversified across species; and the two TMT isoforms in chicken indi-
cates further diversification within the same animals. By contrast, the amino acid sequence of
Opn3 is well conserved (S1 Fig). Thus, the molecular properties of Opn3 proteins may be con-
served, while those of TMT opsins may vary across species, perhaps in relation to animals’
light environments or habitats.

Our genomic analysis confirmed that chicken TMT opsin belongs to the TMT?2 subgroup
(Figs 1 and 2B). Since marsupials have retained TMT?2, while the eutherians have no TMT
genes, TMT2 opsin might confer some advantage in the species in which it is retained. The
loss of the TMT genes in eutherian mammals may be related to the evolution of Placentalia
reproduction mode.

In spite of its encoding protein structures being conserved among sauropsids, marsupials,
and mammals, Opn3 has undergone some rearrangements on the flanking side where the
pigm/kmo gene resides (Fig 3A). Given the opn3 to kmo juxtaposition in fish genomes, it is
conceivable that opn3 and kmo first came to occupy loci between wdr64 and rgs7 during the
evolution toward terrestrials. It appears, that kmo was then lost and, subsequently, pigm (in
sauropsids) or fh (in marsupials and eutherians) was acquired. These genomic rearrangements
may affect the species-specific expression of Opn3. Human Opn3 gene has been observed to be
widely expressed across tissues, including the retina [7], while mouse Opn3 is expressed exclu-
sively in the brain and testis [6, 32]. Although synteny (conserved flanking gene order) cannot
explain this distinct expression pattern in mammals, susceptibility to gene arrangement might
correlate with diversification of cis-elements that drive the expression of Opn3.
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Fig 9. Localization of cOpn3 (A-C) and cTMT (D-l) proteins in P10 cerebellum (sagittal sections). cOpn3 or cTMT,
Calbindin (Purkinje cell marker) or Calretinin (stellate and basket cell marker), and cell nuclei (DAPI) are shown in green,
magenta, and blue, respectively. (A-C) cOpn3 is localized to Calbindin-IR Purkinje cells. Arrow in B shows a soma of a
Purkinje cell. (D, G) cTMT-L is present in small Calbindin-negative cells near Purkinje cells and in neurofibers in the
cerebellar granule cell layer. (E) Calbindin-labeled Purkinje cells. Arrow in E shows a soma of a Purkinje cell. (F)
Calbindin-negative cTMT-IR cells. (H) Calretinin-labeled stellate and basket cells (arrows) in the molecular layer. Mossy
fibers and cerebellar glomeruli in the granule cell layer are also labeled by Calretinin (magenta). (I) Calretinin-negative
cTMT-IR cells. Abbreviations: ml, molecular layer of the cerebellum; pl, Purkinje cell layer; gl, granule cell layer. Scale
bar: 50 ym in all. Z-stack images (10 um) are shown in (D-F, G-1).

doi:10.1371/journal.pone.0163925.9009

The discovery of intrinsically photosensitive retinal ganglion cells has overthrown the long-
held belief that rods and cones are the exclusive retinal photoreceptors [2,36,37]. The present
study shows that cTMT-L (a TMT2 opsin) is present in axon-bearing retinal HCs. Retinal HCs
are interneurons that provide pathways for interactions between photoreceptors with adjust-
ments in HCs themselves and from adjacent bipolar cells [26]. They have been known to have
hyperpolarizing slow responses to light called S-potentials. In the pigeon retina, axon-bearing
HCs connect to rods and cones via their axons and have inputs from cones on their dendrites
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Fig 10. Localization of cOpn3 protein in P10 thalamus (sagittal sections). Expression of cOpn3in the
dorsomedial anterior nucleus (DMA) (A) and medial geniculate nucleus (MG) (C) of the thalamus. High
magnification views of boxed areas in A and C are shown in B and D, respectively. Calbindin-IR neurons are
present posterior to the MG (C). Z-stack images (7 um for B, 4 ym for D). Abbreviations: DMA, dorsomedial
anterior nuclei; DMP, dorsomedial posterior nuclei; MG, medial geniculate nuclei. Scale bars: 50um.

doi:10.1371/journal.pone.0163925.g010

[38]. Thus, it is conceivable that, in the chicken retina, axon-bearing HCs may respond directly
to blue light via TMT opsin and modulate visual information processed by photoreceptors. A
fish TMT2 opsin has been known to possess a unique molecular property: Its active state can-
not photo-convert back to the resting state, which suggests that it can accumulate the active
state in proportion to light intensity under weak light conditions and can completely convert
to the active state under bright light conditions [16]. Thus, TMT2-expressing HCs may utilize
such photoreceptive property for visual processing.

The chicken melanopsins Opn4m and Opn4x are also blue light sensors and Opn4x is local-
ized to axon-less HCs [31,39-41]. Axon-less HCs in mammals and sauropsids have a prepon-
derance of inputs from cones [26]. Furthermore, electrophysiological studies have shown that
cone HCs are photosensitive and express melanopsin in teleost catfish [42]. Hence, retinal
HC:s can be regarded as non-classical photoreceptors that respond to blue light through TMT
opsin or melanopsin photopigment in particular species.

A number of opsin-related genes are expressed in the developing retina [25, 39]. Here, we
observed that opsin 3-related proteins are already present in the inner retina at E17 in chick-
ens, as was found previously for a chicken opsin 5 gene [3]. It remains to be determined
whether these non-canonical opsin-positive cells in the inner retina, especially cTMT-L-
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Fig 11. Localization of cTMT protein in P10 anterior hypothalamus (coronal sections). (A) Arrowheads
show cTMT-IR neurons dorsal to tyrosine hydroxylase (TH)-IR neurons and lateral to the third ventricle
(asterisk). (B) Highly magnified cTMT-L-IR neurons. (C) cTMT-IR neurons in the subgeniculate nucleus
(SubG). (D) Highly magnified cTMT-IR neurons (arrowheads in C). Abbreviations: AH, anterior hypothalamic
area; AM, nucleus anterior medialis hypothalami, Apir, amygdalo-piriform transition area; Co, optic chiasm;
LH, lateral hypothalamic area; Lv, lateral ventricle; Pa, paraventricular nucleus; lllv, third ventricle. Scale bar:
50 um.

doi:10.1371/journal.pone.0163925.g011

positive HCs, are functional photoreceptors before hatching or are present only in anticipation
of hatching.

The avian hypothalamus, a deep brain structure, is photosensitive and exhibits expression
of VA opsin and opsin 5 [43]. This study adds a third avian deep brain photoreceptor, namely
a TMT opsin. The maximum absorption wavelengths for opsin 5 (chicken Opn5m), TMT
opsin (Fugu), and VA opsin (frog) are 360 nm, 460 nm, and 501 nm, respectively [5,19,44].
Thus, the chicken brain may be responsive to ultra-violet, blue, and green light through photo-
receptors in different hypothalamic nuclei. It will be intriguing to elucidate the functional dif-
ferences between these suggested photoreception abilities. In particular, it will be important to
determine whether these photoreception abilities have distinct physiological consequences.

Unfortunately, we were not able to determine with certainty whether the chicken Opn3,
encephalopsin is photosensitive or not. Nevertheless, cOpn3 protein was localized to Purkinje
cells of the cerebellum and thalamic nuclei in the chicken, similar to the expression observed
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in the mouse brain [6, 32]. It could be that chicken Opn3 protein mediates other roles, such as
regulating apoptosis or immune modulation [45,46]. A recent study has shown that a chimeric
chicken Opn3, in which the third intracellular loop was replaced with that of a jellyfish opsin,
forms a blue-sensitive pigment [47]. Given that zebrafish Opn3 has a an absorption maximum
at around 465 nm when it is expressed in mammalian cultured cells [47], the intact chicken
Opn3 may retain the similar property.

Chicken melanopsin (cOpn4x) is expressed in the cerebellum [48]. Both cOpn4x [40] and
c¢TMT are blue light sensors at least functioning in cultured cells. This study shows that cTMT
is present in Golgi cells, and perhaps other cells, as well in the cerebellum. Since there have
been no data indicating that the cerebellum is photoreceptive so far, it would be of great inter-
est to elucidate photosensitivity of the chicken cerebellum per se and the functions of these
blue light sensors in situ.

Supporting Information

S1 Fig. Alignment of predicted amino acid sequences encoded by opsin 3-related genes.
Chicken TMT opsin (¢cTMT) and chicken encephalopsin (cOpn3) are aligned with other opsin
3-related proteins. Bovine rhodopsin is used as reference for counterion position. (A) Trans-
membrane domain 3 (TM3), intracellular loop 2 (ICL2), TM4, and extracellular loop 2 (ECL2)
are shown. E113, (D/E)R(Y/W) motif, and E181 are highlighted. (B) TM6, ECL3, TM7, and C
terminal domains are shown. CWxP motif, K296, and NPxxY motif are highlighted.

(PDF)

S2 Fig. Wavelength dependence of Go activation efficiencies of chicken TMT. (A) Go acti-
vation efficiencies of cTMT-L in HEK293T cell membranes were measured by irradiation of
selected wavelength light in the region of light intensity where linear relationships between Go
activation efficiency and light intensity were mostly observed. The measurements were per-
formed with lights of eleven different wavelengths at 0°C. The plotted data were calculated by
subtracting the activity without light irradiation from that measured with irradiation within
each light conditions. (B) Go activation profile of cTMT-L in HEK293T cell membranes fol-
lowing irradiation with 462 nm-light of different intensities. The data were fitted with a Hill
equation: y = Basal + (Max — Basal) / (1 + ECsq / x), (Hill coefficient = 1, solid curve) and the
ECs, value was calculated to be 2.12 x 10" photons/mm”.

(TIF)

S3 Fig. Expression pattern of chick TMT (A) and Opn3 (C) genes in the E17 retina. Results
of negative control experiments using sense probes are shown in panels B and D.
(TIF)

S4 Fig. Western blot analysis of chicken TMT (A) and Opn3 (B) proteins. SDS-PAGE of
protein samples (50 pg) derived from E19 chick heart, retina, and cerebellum. Proteins were
transferred to polyvinylidene difluoride membrane and then stained with Coomassie Brilliant
Blue to confirm that protein bands transferred fully to the membrane for western blot analysis.
Slightly smaller chicken TMT-L protein was detected in the retina and cerebellum (~41 kDa)
than in of chicken Opn3 protein is detected in the heart, retina, and cerebellum (~43 kDa).
Antigen peptide-absorbed antibodies gave essentially no bands. Original blots with molecular
size markers are shown in C. All blots are shown with molecular weight ladder in kDa.

(PDF)

S5 Fig. Verification of antibody specificity. Antibody specificities were verified by incubating
with antigen-absorbed anti-chicken Opn3- or anti-chicken TMT-antibodies in chicken retina
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and cerebellum. No specific labeling was detected with absorbed antibodies (pep [+]). Scale
bars: 20 pm in A-D and 50 pm in E-H. Abbreviations: gcl, ganglion cell layer; ipl, inner plexi-
form layer; inl, inner nuclear layer. ml, molecular layer of the cerebellum; pl, Purkinje cell
layer; gl, granule cell layer.

(TIF)

S6 Fig. Large magnification of horizontal cells as shown in Fig 7F-7T. Left panels show
localization of cTMT-L (green), middle panels show horizontal cell markers (magenta), and
right panels show merged views.

(TIF)

$7 Fig. Chicken TMT immunoreactive (IR) cells are not present in the paraventricular
organ (PVO) of chick hypothalamus at P10. PVO is a photosensitive organ where Opn5m (a
type of opsin 5) and serotonin are expressed in birds [5]. Left: Schematic diagram of chick
brain through the posterior hypothalamus, showing the location of the PVO. Serotonin-IR
cells (magenta) in the PVO are not positive for chicken TMT-L. Co, optic chiasm; IIlv, third
ventricle. Scale bar: 50 um.

(TIF)

S1 Table. PCR primers used in this study.
(XLSX)

S2 Table. List of accession numbers of the genes whose sequences were used to construct
Figs 1 and S1.
(XLSX)

§3 Table. Genes flanking the opn3 locus shown in Figs 2 and 3.
(XLSX)

S$4 Table. Antibodies used in IHC.
(XLSX)
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