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Abstract

Vision typically has better spatial accuracy and precision than audition, and as a result often 

captures auditory spatial perception when visual and auditory cues are presented together. One 

determinant of visual capture is the amount of spatial disparity between auditory and visual cues: 

when disparity is small visual capture is likely to occur, and when disparity is large visual capture 

is unlikely. Previous experiments have used two methods to probe how visual capture varies with 

spatial disparity. First, congruence judgment assesses perceived unity between cues by having 

subjects report whether or not auditory and visual targets came from the same location. Second, 

auditory localization assesses the graded influence of vision on auditory spatial perception by 

having subjects point to the remembered location of an auditory target presented with a visual 

target. Previous research has shown that when both tasks are performed concurrently they produce 

similar measures of visual capture, but this may not hold when tasks are performed independently. 

Here, subjects alternated between tasks independently across three sessions. A Bayesian inference 

model of visual capture was used to estimate perceptual parameters for each session, which were 

compared across tasks. Results demonstrated that the range of audio-visual disparities over which 

visual capture was likely to occur were narrower in auditory localization than in congruence 

judgment, which the model indicates was caused by subjects adjusting their prior expectation that 

targets originated from the same location in a task-dependent manner.
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1 Introduction

Many real-world objects produce both auditory and visual cues, which we integrate to 

estimate object location. This integration can occur even when there is spatial disparity 

between auditory and visual cues, which leads to an auditory location bias generally referred 

to as the “ventriloquism effect” (Howard and Templeton, 1966; Jack and Thurlow, 1973; 

Thurlow and Jack, 1973). Movie theaters provide an everyday example of this phenomenon, 

because the screen and speakers are typically located in different locations, but the 

corresponding visual and auditory signals are both perceived as originating from the screen. 

This mislocalization of auditory signal location can be framed as vision capturing auditory 

perception, which arises because vision typically has much better spatial precision and 

accuracy than audition (however, when visual precision is degraded vision can be in turn 

influenced by audition, as in Alais and Burr (2004)). The probability of visual capture 

occurring depends on a number of factors, including spatial disparity, temporal disparity, and 

semantic congruence between auditory and visual targets (Jack and Thurlow, 1973; Slutsky 

and Recanzone, 2001; Thurlow and Jack, 1973; Warren et al., 1981). Here, we focus on how 

spatial disparities influence visual capture, with a specific interest in the decrease in visual 

capture that occurs with increasing disparity.

In the laboratory, the effect of spatial disparity on visual capture is typically probed by 

presenting concurrent auditory and visual targets over a range of spatial disparities 

(including no disparity, i.e. spatial congruence), and asking subjects to report perceived 

attributes of these targets. Previous experiments have focused on having subjects judge 

whether or not the targets were congruent (i.e. if they originated from a common source) 

(Godfrey et al., 2003; Lewald and Guski, 2003; Slutsky and Recanzone, 2001; Thurlow and 

Jack, 1973), localize the perceived location of the auditory and/or visual targets (Warren et 

al., 1981; Wozny et al., 2010), or both judge congruence and localize the auditory target 

sequentially (Bertelson and Radeau, 1981; Hairston et al., 2003; Wallace et al., 2004). In the 

congruence judgment task, visual capture manifests as explicit reports that auditory and 

visual targets originated from a common source despite a spatial disparity between targets 

(also known as “binding”). In the auditory localization task, visual capture produces a bias in 

perceived auditory target location toward the spatially disparate visual target (also known as 

“cross-modal bias”). Typically, reports that auditory and visual targets originated from a 

common source are accompanied by auditory bias toward the visual target when both tasks 

are performed sequentially (Wallace et al., 2004). However, auditory bias has been 

demonstrated to occur even when subjects report that targets did not originate from a 

common source (Bertelson and Radeau, 1981), which provides some evidence that these 

measures, while related, may be distinct phenomena. Previously, Hairston et al. (2003) 

compared responses when subjects simultaneously performed judgment and localization 

with responses when subjects performed either task alone, although no direct comparison 

was made between the tasks when performed independently and only a limited set of 
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auditory target locations was used. Here, our goal is to explicitly compare judgment and 

pointing when performed independently, which we address by determining whether or not 

these tasks produce equivalent measures of visual capture as a function of spatial disparity.

To assess the relationship between judgment and pointing tasks, subjects performed each 

task independently across three separate sessions. For the first session, subjects were 

randomly assigned to perform either congruence judgment or auditory localization of audio-

visual target pairs. For the second session subjects switched tasks, and for the third session 

they switched back to the same task as in the first session. This allowed us to dissociate any 

experience-dependent changes from differences in performance across tasks. A Bayesian 

inference model was fit to data from each session and fit parameters were compared across 

sessions for each subject, to quantify performance differences across tasks.

2 Materials and Methods

Subjects performed three sessions of audio-visual spatial perception tasks. Each session 

started with unimodal auditory and visual localization, followed by either congruence 

judgment or auditory localization of bimodal targets. Subjects performed either congruence 

judgment or auditory localization in sessions 1 and 3 (counterbalanced across subjects), and 

the other task in session 2. This allowed us to dissociate experience and task-dependent 

differences.

2.1 Subjects

Eight volunteers (5 female, 3 male; age 19-26) recruited from the Rochester community 

participated in this experiment. All subjects were screened with routine clinical 

examinations to ensure they had normal hearing and normal or corrected-to-normal vision.

Experiment protocols were approved by the Institutional Review Board at the University of 

Rochester and were performed in accordance with the 1964 Declaration of Helsinki. All 

subjects gave informed consent and were compensated at a rate of $10 per hour for their 

participation.

2.2 Apparatus

Experiments were conducted in a dark, sound-attenuated chamber designed for the 

presentation of auditory and visual targets from a range of locations in space (for additional 

detail, see Zwiers et al. (2003)). Subjects were seated 2 meters from a speaker on a mobile 

robotic arm, which was hidden from sight by an acoustically transparent speaker cloth. 

Visual targets were presented by projecting a laser onto the speaker cloth, and could be 

positioned by adjusting the orientation of an electronic mirror system.

Subjects were head-fixed via bite bar, which was oriented such that, for each subject, Reid's 

baseline was horizontal and the subject's cyclopean eye (midway between the eyes) was 

pointed at the origin of the room. Eye movements were monitored continuously via 

electrooculogram, in order to detect any breaks of fixation between trials and during target 

presentation.
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Subjects manipulated a cylindrical joystick to perform congruence judgment and localization 

tasks, then pressed a button to enter their response. For congruence judgment, subjects 

pitched the joystick up or down to indicate response. For target localization, a LED pointer 

attached to the joystick was illuminated, and subjects pointed the LED to the perceived 

target location on the speaker cloth.

Continuous signals and event times were sampled at a rate of 1 kHz by a realtime Lab 

VIEW system (National Instruments, Austin, TX). Data analysis was performed in R 

(www.r-project.org) and Matlab (MathWorks Inc., Natick, MA).

2.3 Stimuli

Auditory targets were 50 ms broadband noise bursts (0.2-20 kHz, 65 dB SPL, 1 ms cos2 

on/off ramps, equalized to have a flat spectrum). Between trials, noise (Gaussian white noise 

at 65dB SPL) was presented from two speakers outside of the range of targets used in the 

experiment (±75° horizontal, +20° vertical behind screen) in order to mask robotic arm 

movement sound. All auditory stimuli were generated by a TDT RX8 Multi I/O Processor 

(Tucker-Davis Technologies, Alachua, FL).

Visual targets were 50 ms green laser points projected onto the speaker cloth. Between trials, 

a red center fixation laser was projected at 0°, to provide a visual fixation reference point. 

Both the visual target and fixation laser had a diameter of 0.1°.

2.4 Experimental Procedure

Each subject performed three experimental sessions. Each session started with 108 unimodal 

auditory and visual localization trials (54 in each modality), followed by 146 trials of either 

congruence judgment or auditory localization of bimodal targets (Figure 1 A), for a total of 

254 trials per session. Subjects performed either congruence judgment or auditory 

localization in sessions 1 and 3 (counterbalanced across subjects), and the other task in 

session 2 (Figure 1B).

2.4.1 Unimodal Auditory and Visual Localization—In each unimodal localization 

trial, a single visual or auditory target was presented. Following target presentation, subjects 

were instructed to look at the remembered target location, orient the LED pointer to that 

location, and press the button. Targets ranged from −40° to −5° and 5° to 40° azimuth in 2° 

increments. Targets at ±10°, ±20°, ±30°, and ±40° were presented three times to provide 

more data for estimating accuracy and uncertainty as a function of target azimuth, while 

targets were presented once at all other azimuths. All targets were constrained to 0° 

elevation. Between trials, subjects fixated on a center light (0° azimuth, 0° elevation) and 

aimed the LED pointer at it. The center light was extinguished 100 ms before target 

presentation. Targets within ±5° of the center light were excluded from the target array, to 

minimize the possibility that responses would be biased by the remembered center light.

2.4.2 Congruence Judgment Task—In each congruence judgment trial, an auditory 

and a visual target were presented synchronously from the set of locations in Figure 1C. 

Following target presentation, subjects were instructed to indicate whether the auditory and 
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visual targets came from the same location or two separate locations. Subjects were 

instructed to pitch the pointer (without the light on) up to indicate “same location” or down 

to indicate “two different locations”, then press the button. Note that the specific phrasing of 

the task requirements can alter performance (Lewald and Guski, 2003), so we might expect 

performance to differ if subjects were instead told to indicate if targets came from a 

“common source”. We chose to have our instructions focus specifically on the spatial aspects 

of this task because the auditory localization task also focuses solely on spatial location, and 

to facilitate comparison with previous studies which have used similar phrasing (Hairston et 

al., 2003; Wallace et al., 2004). Subjects were told that “sometimes the targets will originate 

from the same location, and sometimes they will not”. This wording was specifically chosen 

in order to discourage subjects from always giving one type of response without explicitly 

establishing an expectation of how often the targets would originate from the same location. 

Targets were distributed as shown in Figure 1C, with auditory and visual targets ranging 

between −40° to −5° and 5° to 40° azimuth. Targets were always constrained to the same 

hemifield in order to avoid any potential confounding influence of the recently extinguished 

center fixation light. Spatial audio-visual disparity varied across trials, from a minimum 

disparity of 0° (same location) and maximum disparity of 35°. Each pair of locations was 

presented once. Target sequence was fixed for each session and for all subjects regardless of 

task, but was random across sessions. Subjects fixated on the center light between trials.

2.4.3 Auditory Localization Task—As in the congruence judgment task, each auditory 

localization trial started with presentation of synchronous auditory and visual targets from 

the set of locations in Figure 1C. Following target presentation, subjects were instructed to 

look at and orient the LED pointer to the remembered auditory target location, then press the 

button. As in the congruence judgment task, subjects were told that sometimes the targets 

would originate from the same location, and sometimes they would not. Subjects fixated on 

and aimed the LED pointer at the center light between trials.

2.5 Bayesian Inference Modeling

The different forms of response in the congruence judgment and auditory localization tasks 

preclude direct comparison of data across experiment sessions. However, if we assume that 

the processes that perform spatial perception remain the same regardless of task, we can 

make inferences about the percepts that lead to a given subject's responses. Specifically, we 

assume that the computations underlying auditory and visual cue encoding and common 

source estimation are constant, with only task strategy changing across tasks, as shown in 

Figure 2.

We used a Bayesian inference model of audio-visual spatial integration (Körding et al., 

2007; Sato et al., 2007; Wozny and Shams, 2011; Wozny et al., 2010) to compare 

performance across congruence judgment and auditory localization tasks. The majority of 

the approach used here has been described previously (Körding et al., 2007; Wozny and 

Shams, 2011; Wozny et al., 2010), so we will summarize the model and highlight 

differences here. The full set of model equations are available in the appendix.
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The model starts with the encoding of perceived location (auditory and visual target location 

in Figure 2), denoted XA and XV for auditory and visual percepts, of auditory and visual 

targets with physical locations SA and SV. Sensory encoding is inherently uncertain and 

subject to biases, so it is best represented as conditional probability distributions, p(XV|SV) 

and p(XA|SA) (Wozny and Shams, 2011). Previous research has demonstrated that perceived 

target locations tend to be normally distributed, although they are subject to idiosyncratic 

offsets, a tendency to overshoot auditory target azimuth, a tendancy to undershoot visual 

target azimuth, and reliability that decreases with distance from midline (Dobreva et al., 

2011, 2012; Odegaard et al., 2015; Razavi et al., 2007). To model these aspects of 

perception, we assume normal distributions with means that are scaled and offset with 

respect to target location. The scaling parameters (i.e. spatial gain) are denoted GV and GA, 

which can model a pattern of overshooting (G > 1) or undershooting (G < 1) target azimuth. 

Constant offsets in target location are denoted μV and μA. Recent studies have modeled 

localization inaccuarcies by applying a corrective factor for each target location (Odegaard 

et al., 2015, 2016), although the relatively large number of target locations used here 

precludes a similar approach. Localization uncertainty (inverse reliability) is represented by 

σV and σA. This model also includes parameters that model increase in uncertainty as a 

function of distance from midline, given as GσV, and GσA. Note that linear scaling of 

uncertainty ignores the strong increase in visual precision at the fovea (Dobreva et al., 2012), 

but the target range is limited to avoid presenting targets near the fovea. Putting these terms 

together in a normal distribution gives the equations:

(1)

(2)

The next step in the model is to use the perceived target locations to calculate the probability 

that the targets originated from a common source (denoted p(C = 1|XV, XA)), as represented 

by the Probability of a Common Source block in Figure 2. This computation was identical to 

previous papers (Körding et al., 2007; Wozny and Shams, 2011), in which Bayes’ Rule is 

used to express p(C = 1|XV, XA) as a function of perceived target location, prior expectation 

of a common source (i.e. bias for or against integration, denoted pcommon) and prior 

expectation of target distribution (modeled as a normal distribution and denoted 

). Prior expectation terms are typically stable over time and are 

independent of the trial-by-trial calculation of common source probability (Beierholm et al., 

2009), but experimental conditions designed to heavily skew responses toward integration or 

segregation can cause changes in prior terms (Van Wanrooij et al., 2010). Because the target 

array used here was designed to equally elicit both integration and segregation responses, we 

assume that prior terms are invariant within an experimental session.

Additionally, the auditory localization task requires calculating the estimated auditory target 

location when the auditory and visual targets originated from a common source (denoted 
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ŜA,C=1) or from two different sources (denoted ŜA,C=2), as represented by the Common 

Source Location block in Figure 2. Estimated auditory target location (ŜA) is the weighted 

sum of perceived auditory target location (XA), perceived visual target location (XV), and 

mean expected target location (μP) in the common source case (C = 1), and is the weighted 

sum of auditory target location (XA) and mean expected target location (μP) in the two 

difference sources case (C = 2) (Körding et al., 2007; Wozny and Shams, 2011).

The final step in the model is to use preceding calculations to predict responses to the task 

(Task Strategy blocks in Figure 2). In the congruence judgment task, the output is a binary 

decision of whether the auditory and visual target came from the same location or two 

different locations (denoted C = 1 and C = 2, respectively). In the auditory localization task, 

the output is a continuous estimate of auditory target location (denoted ŜA). Previous studies 

have indicated that task strategy for auditory localization can vary across individuals (Wozny 

et al., 2010), so we considered multiple strategies for both tasks. For the auditory 

localization task we consider three strategies: averaging, model selection, and probability 
matching (see Wozny et al. (2010) for more detail). The averaging model computes the 

average of ŜA,C=1 and ŜA,C=2, weighted by p(C = 1|XV, XA). The model selection strategy 

always chooses the most likely explanation for the perceived targets, i.e. respond ŜA = 

ŜA,C=1 if p(C = 1|XV, XA) > 0.5. The probability matching strategy randomly chooses 

between explanations at a rate commensurate with their probability, i.e. if p(C = 1|XV, XA) = 

0.7 respond ŜA = ŜA,C=1 70% of the time. For the congruence judgment task we only 

consider model selection and probability matching, since responses are constrained to one of 

two outcomes.

The above approach can be used to estimate the probability distribution of responses for a 

given set of inputs, model parameters, and task strategy. Responses are simulated by 

sampling perceived target location, XV and XA, from equations 1 and 2 10,000 times. Each 

pair of samples is used to calculate the probability of a common source, p(C = 1|XV, XA). 

These values are then used to calculate a response to the task (C or ŜA, respectively). 

Additionally, it is possible that on some trials a subject may lose focus on the task, and 

simply guess. To model this, responses are replaced with a guess based solely on prior 

expectation (for congruence judgment, p(C = 1|XV, XA) = pcommon, and for auditory 

localization, ) at the model's inattention rate (denoted λ). 10,000 

simulated responses are generated by this process, which can be used to estimate a 

histogram of responses. For congruence judgment, the histogram only had two values, C = 

{1, 2}, while for auditory localization responses were binned in 1 degree intervals. This 

histogram can be compared to subject data to estimate the likelihood of an observed subject 

response resulting from the given model parameters and task strategy.

The ultimate goal of this model is to compare perception across tasks, in order to identify 

task-related changes in how spatial disparity influences visual capture. If we assume that the 

model parameters described above are sufficient to describe visual capture, then this goal 

can be reframed as comparing the model parameters that best explain observed responses 

across tasks. To achieve this goal, we estimated a set of optimal parameter values by 

searching for the set of values that maximizes the likelihood of the observed data in each 

session for each subject, using an implementation of Pattern Search (Hooke and Jeeves, 

Bosen et al. Page 7

Biol Cybern. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1961) in Matlab. To obtain a distribution of optimal value estimates and reduce the potential 

for the search algorithm to get stuck in local minima, the search was run 120 times from 

random starting values. The search reaches a different set of optimal value estimates each 

time it is run due to the stochastic nature of likelihood estimation that arises from using 

simulated sampling to estimate response probability. As a result, the distribution of optimal 

value estimates demonstrates the sensitivity of the model fit to each parameter, with wide 

distributions indicating low sensitivity and narrow distributions indicating high sensitivity. 

The distribution of optimal value estimates for each parameter was compared across sessions 

for each subject to test for significant differences due to task and experience.

3 Results

3.1 Unimodal Localization

Figure 3 shows a representative example of unimodal localization from one session. 

Responses were similar to previous experiments (Dobreva et al., 2011, 2012; Razavi et al., 

2007), with subjects demonstrating better accuracy and precision with vision than with 

audition. Simple linear regression was used to estimate auditory and visual spatial gain, 

offset, and uncertainty for each session, as summarized in Table 1. Offset (μ) and gain (G) 

were defined as the regression intercept and slope respectively, and uncertainty (σ) was 

defined as the standard deviation of the residual error. Spatial gains were consistently higher 

in audition than in vision, indicating that subjects are likely to be biased more toward the 

center when localizing visual targets and biased more toward the periphery when localizing 

auditory targets, in agreement with previous studies (Odegaard et al., 2015). Additionally, 

auditory localization showed a small bias to the left, which has also been previously 

observed (Odegaard et al., 2015). To our knowledge there is no analytic method of 

estimating changes in standard deviation as a function of a continuous variable (in this case, 

target position) without repeatedly sampling at several discrete locations, so the results in 

Table 1 assume uncertainty was constant across space (i.e. Gσ = 0).

Regression results were used to calculate corrected audio-visual disparity, which was the 

physical disparity (auditory target location minus visual target location) corrected by 

auditory and visual localization fits for each subject at the respective target locations, as 

illustrated in Figure 3B. Corrected audio-visual disparity was used to analyze the 

congruence judgment and auditory localization data, as described below.

3.2 Congruence Judgment and Auditory Localization

Figure 4 shows congruence judgment and auditory localization data from three 

representative subjects. Data collected when targets were in the left hemifield were mirrored 

through the origin after correction, so negative corrected audio-visual disparity corresponds 

to visual targets located farther from midline than auditory targets and positive values 

correspond to visual targets located closer to midline than auditory targets. For congruence 

judgment data, we estimated the Probability of Same Location by binning responses in 5° 

increments along corrected audio-visual disparity, and calculating the percentage of “same 

location” responses in each bin. For auditory localization data, we calculated corrected error 
as the distance between a localization response and the response location predicted by the 
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unimodal auditory fit. Subjects 1 and 3 performed auditory localization for session 1, while 

subject 2 performed congruence judgment in session 1. Regardless of task, responses 

appeared to be similar between sessions 1 and 3.

In the congruence judgment task, audio-visual integration manifests as explicit report that 

targets came from the same location (i.e. binding). As shown, when corrected audio-visual 

disparity was near zero, the probability of subjects reporting that the two targets came from 

the same location was close to 1, and decreased quickly as corrected disparity magnitude 

increased.

In the auditory localization task, audio-visual integration manifests as an error in corrected 

auditory location toward the visual target (i.e. auditory bias). If localization responses were 

based solely on the auditory target location (denoted by blue flat lines), responses should 

have a distribution equal to the responses in the unimodal task, and corrected error should 

have zero mean. However, subjects 1 and 2 had pointing responses that showed a strong 

error toward the common source location (ŜA,C=1, denoted by broken red lines) when 

disparity was small, indicating that the visual target was biasing auditory perception. As 

corrected disparity magnitude increased, the distribution of responses returns toward zero, 

indicating that they were no longer influenced by the visual target. However, subject 3 

showed little auditory bias toward the common source location in the auditory localization 

task, indicating that he was able to segregate corrected auditory and visual location even at 

small corrected audio-visual disparities. To guide visual estimation of the trend in corrected 

error, a cubic spline (black line) was fit to the data.

Theoretically, the audio-visual disparity at which this transition from integration to 

segregation occurs can be qualitatively compared across tasks to provide an estimate of their 

agreement. However, we were surprised that the range of capture for some subjects fell 

outside of the most sampled region of the target array, since the array was designed based on 

previous studies to most heavily sample the region in which the transition from integration 

to segregation occurs. As a result, any comparison of the raw data is limited by the amount 

of data available and response noise in the auditory localization task, so quantitative 

comparison requires a different approach, as described in the next section.

3.3 Model Fit With All Parameters Free

In order to test the model's ability to explain the data collected in this experiment, it was first 

fit with all model parameters free. For each session, 120 runs of a global optimization 

algorithm were run from random starting points to find the set of parameters that minimized 

the negative sum log-likelihood of the model predictions of subject response data. This 

approach fit the data well, with median generalized R2 values (Nagelkerke, 1991) of 0.98 for 

the auditory localization task and 0.51 for the congruence judgment task. We used a null 

model that simulated subjects always guessing as if no targets had been presented, i.e. λ = 1. 

The difference in generalized R2 values can be attributed to the difference in null model 

ability to guess correct responses by chance, because in congruence judgment the null has 

only two options to choose from, whereas in auditory localization the null model has many 

possible options (for purposes of comparison, the data and model were considered in 

agreement if responses fell within the same 1°bin). The negative sum log likelihoods for the 
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fit and null models in the congruence judgment task ranged from 32.6 - 82.8 and 97.3 - 

150.9, respectively, whereas the negative sum log likelihoods for the fit and null models in 

the auditory localization task ranged from 350.7 - 513.0 and 692.6 - 841.27 (smaller values 

indicate better fits). The difference between fit and null models is larger for auditory 

localization, which accounts for the difference in generalized R2 values, but the negative log 

likelihoods are much lager for both the fit and null models in auditory localization than in 

congruence judgment, indicating that the auditory localization data is overall harder to fit. 

Therefore, the smaller difference (and lower generalized R2) for congruence judgment 

reflects the fact that the congruence judgment data is easier to predict, not that the model is 

inappropriate for both tasks.

Example model fits are shown in Figure 5 for data from subject 2 in Figure 4. Examples 

were generated by stepping in half-degree increments through physical audio-visual 

disparities such that |SV + SA| = 45° (corresponding to the largest diagonal of target 

locations in Figure 1C), simulating 100,000 responses, and estimating the distribution of 

those simulated responses. Negative values of audio-visual disparity indicate when the visual 

target was to the right of the auditory target, and vice versa. Congruence judgment model 

predictions are represented as a single curve, corresponding to the probability of a “same 

location” response at a particular audio-visual disparity. As shown, the probability of a 

“same location” response is high when audio-visual disparity is small, and decreases sharply 

beyond about 10°. Note that the window in which “same location” responses are likely is 

dependent on several factors, and varies from subject to subject. Auditory localization model 

predictions are represented as a probability distribution at each audio-visual disparity, with 

higher probabilities corresponding to darker regions in the figure. At small audio-visual 

disparities, the probability distribution is narrow and has a roughly linear pattern of error, 

which corresponds to auditory bias toward the visual target. Additionally, the distribution 

gets wider with increasing auditory target distance from midline (negative audio-visual 

disparity in the left hemifield, positive audio-visual disparity in the right hemifield), since 

GσA causes auditory uncertainty to increase with distance from midline.

Model sampling of target locations includes spatial gain and offset (fequations 1 and 2), so 

audio-visual disparity is not corrected for perception as it was in Figure 4. Corrected audio-

visual disparity is a function of spatial gain and offset in each sense, so interactions between 

these terms can introduce asymmetries in corrected disparity across hemifields. This is 

evident when comparing across hemifields for the congruence jugment data, where higher 

corrected audio-visual disparities in the right hemifield (due to a leftward bias and a spatial 

gain greater than 1 in corrected auditory location) resulted in lower probabilties of “same 

location” responses than at the same physical audio-visual disparity in the left hemifield.

Probability matching was used to simulate session 1, and averaging was used to simulate 

session 2, which were the best (lowest negative sum log-likelihood) model strategies for 

each session in this subject. Switching task strategies produced characteristic changes in 

probability distributions as previously demonstrated by Wozny et al. (2010), but changes 

were generally minor and are therefore not shown here.
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Our estimation method produced a distribution of optimal parameter estimates for each 

session performed by each subject, from which we computed the median and 95% range 

(out of 120 estimates, remove the 3 largest and 3 smallest values). Median values were 

reported for each parameter because the difference in log-likelihood of the best and second 

best fits for each session were often small (ranging from 0.012 to 3.24, median 0.367), 

indicating that different runs of the fitting algorithm could produce similarly good fits. Given 

that the objective function was stochastic, differences in log-likelihood of this magnitude 

could easily be due to noise, and so we opt to report the range and median of the fit results, 

rather than best fit values. Cross-subject heterogeneity of each parameter was observed by 

comparing median values, and model estimate sensitivity to each parameter could be 

observed in 95% ranges within each session. Generally, optimal model parameter estimates 

were similar to previously reported values, as shown in Table 2. Subjects tended to overshoot 

auditory spatial perception, undershoot visual spatial perception, and had small offsets. 

Uncertainties were similar to those previously reported by our lab (Dobreva et al., 2012), 

although it should be noted that auditory and visual uncertainty differ across labs (e.g. Alais 

and Burr (2004); Hairston et al. (2003); Recanzone et al. (1998); Wozny and Shams (2011)). 

The prior mean location and range reflected the wide range of potential target locations, and 

were similar to values previously reported in other labs (Wozny and Shams, 2011). Model 

fits demonstrated a wide range of values for prior expectation of common source, with a 

median in the middle of the parameter bounds. Inattention rate was low for all subjects, 

confirming that subjects rarely missed target presentation.

For each session, log-likelihoods were compared for each task strategy, to determine if one 

particular strategy best predicted subject responses. We classified a model as significantly 

better if the log-likelihood difference between the lowest and second lowest log-likelihoods 

was greater than three, as in Wozny et al. (2010). For the auditory localization task, 6 

sessions were best explained by the averaging strategy, 2 by matching, 0 by selection, and 4 

were indeterminate (no strategy had a log-likelihood at least 3 better than all other 

strategies). One subject switched best fits between session 1 and 3, from matching to 

averaging. For congruence judgment, 4 sessions were best explained by matching, 2 by 

selection, and 6 were indeterminate. This indicates that our subject population has a similar 

heterogeneity for task strategy as has been reported previously (Wozny et al., 2010), 

although due to a relatively small number of subjects we cannot compare population 

percentages across studies. Qualitatively, task strategies produced similar parameter 

estimates, although for congruence judgment fitting with the matching strategy consistently 

estimated pcommon to be higher than fitting with the selection strategy. To prevent this bias 

across task strategies from confounding analysis we only compared model parameters 

estimated with the same task strategy.

From the model fits, we calculated the spatial range over which visual capture occurred for 

each experimental session. Capture range was defined as the distance between the perceived 
auditory and visual locations at which the probability of integrating or segregating the 

auditory and visual targets was equal (p(C = 1|XV, XA) = 0.5, as calculated by equation 8 in 

the appendix). For this calculation, we fixed |XV| + |XA| = 45°, XV > XA, used only the 

matching task strategy to avoid bias across task strategies, and used the uncertainties 

associated with target locations in the middle of the array so that the uncertainty gains would 
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have their mean influence. Note that, because uncertainty is dependent on target distance 

from the midline (equations 1 and 2), these calculated values will change depending on the 

distance of each target from the midline, and is not solely dependent on the distance between 

the targets as this calculation simplifies it. Despite this simplification, this calculation 

provides an approximation of the capture range that can be compared across tasks. Pairwise 

differences were calculated between each session (session 1 and 2, session 1 and 3, session 2 

and 3, with sign corrected to be consistent across task type comparisons) for each parameter, 

and nonparametric rank comparison (Kruskal-Wallis H test) was used to test for significant 

changes in difference across session pairs. The capture range was significantly larger for 

congruence judgment than for auditory localization (df = 1, χ2 = 5.86, p = 0.016), as 

summarized in Table 3. Repetition of this analysis using the selection task strategy produced 

the same result (df = 1, χ2 = 5.01, p = 0.025), indicating that it is not specific to one task 

strategy, but represents a small but significant difference in capture range across tasks.

Additionally, we compared the difference in each model parameter across sessions. Pairwise 

differences were calculated as for capture range and the same nonparametric rank 

comparison was used. The only significant difference observed was for pcommon (df = 1, χ2 

= 9.4, p = 2.2 × 10−3). Post-hoc comparison demonstrated that pcommon was significantly 

lower in auditory localization than congruence judgment (difference between sessions 1 and 

2 and sessions 2 and 3) when compared against repetitions of the same task (difference 

between sessions 1 and 3). However, this observation could be explained as an interaction 

between model terms that changes across tasks, so we re-ran the model fit with pcommon as 

the only free parameter to confirm this observation.

3.4 Model Fit With Only pcommon Free

To ensure that the difference in pcommon across tasks wasn't an artifact of model over-fitting, 

the model fit was re-run with only pcommon as a free parameter. Parameters that could be 

estimated from unimodal data were fixed to the estimated value from each session, and all 

other parameters except pcommon were set to a constant value across all subjects. This 

approach was used to eliminate the possibility that the difference in pcommon across tasks 

could be attributed to covariation with other free parameters in the model fit. For each 

session, GA, GV, μA, and μV were fixed to corresponding coefficients in the unimodal linear 

fits, and σA and σV were fixed at the standard deviation of the residual of the unimodal 

linear fit (from Table 1). GσA, and GσV were fixed at zero, since their values could not be 

estimated from the unimodal data and tended to be relatively small in the model fit with all 

parameters free. For all sessions, μP was set to 0° and σP was set to 40°, which corresponds 

to the physical range of targets. λ was set to 0.01, which is close to its average value across 

subjects in the model fit with all parameters free. Fit values did not substantially suffer as a 

result of this simplification, with median generalized R2 values of 0.95 for the auditory 

localization task and 0.51 for the congruence judgment task. These generalized R2 values 

were calculated with respect to a null model that used the same fixed parameters as the 

model with only pcommon free, which prevents direct comparison with the values from the fit 

with all parameters free. Instead, AIC values (Akaike, 1974) were calculated, and were 

significantly better for the model fit with all free parameters for most (43 out of 60) model 

fits, indicating that although the model with only pcommon free was still a good 

Bosen et al. Page 12

Biol Cybern. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



representation of subject responses, it missed some of the detail that the model fit with all 

free parameters could provide.

Figure 6 shows the correlation of pcommon across sessions in the model fit with only pcommon 

free. Simple linear regression for repetitions of the same task (top left panel) did not produce 

a significant intercept term (p = 0.75), indicating that pcommon values did not significantly 

change across repetitions of the same task. This is consistent with previous studies of audio-

visual integration, which similarly showed that integration tended to be stable over 

repetitions of the same task (Odegaard and Shams, 2016). As was found in the model with 

all parameters free, pcommon was significantly lower in the auditory localization task than in 

the congruence judgment task (shown in the bottom left and top right panels) relative to the 

difference when the task was repeated (i.e. the intercept of the correlation is lower in the 

comparisons across tasks than when the same task is compared to its repetition, Kruskal-

Wallis H test, df = 1 across groups, χ2 = 11.08, p = 8.7 × 10−4). Critically, restricting the 

model to one free parameter did not change the relationship between tasks, indicating that 

this finding reflects a true perceptual difference, not model overfitting. Additionally, pcommon 

was significantly correlated across repetitions of the same task (simple linear regression, p = 

1.7 × 10−4, adjusted R2 = 0.53), and across tasks (session 1 and 2, p = 5.4 × 10−3, adjusted 

R2 = 0.40; session 2 and 3, p = 2.0 × 10−4, adjusted R2 = 0.61), indicating that results from 

these tasks are still related, but biased relative to one another.

4 Discussion

The objective of this work was to compare estimates of visual capture across congruence 

judgment and auditory localization tasks when performed independently. Results presented 

here demonstrate that the prior expectation that targets originate from a common source is 

larger in congruence judgment than in auditory localization. This difference in prior 

expectation produces capture over a larger range in congruence judgment than in auditory 

localization, indicating that these two methods do not produce equivalent measures of visual 

capture.

Both the congruence judgment and auditory localization results show qualitative agreement 

with previous findings. As has been demonstrated, when audio-visual disparity is small, 

there is a high probability subjects will report that the auditory and visual targets came from 

the same source in the congruence judgment task (Lewald and Guski, 2003; Slutsky and 

Recanzone, 2001), and a corresponding pattern of auditory bias toward the visual target in 

the auditory localization task (Hairston et al., 2003; Wallace et al., 2004). This shift is 

weighted in accordance to relative cue reliability, so that the more precise visual target 

captures perception of the less precise auditory target in a manner consistent with optimal 

estimation (Alais and Burr, 2004; Battaglia et al., 2003). As audio-visual disparity increases, 

visual capture becomes less likely to occur, and both reports that targets came from the same 

source and auditory bias drop off in the corresponding tasks. Additionally, previous 

experiments have found that visual capture in congruence judgment varies with auditory and 

visual target location (Godfrey et al., 2003), with visual capture being more likely when the 

visual target was farther from midline than the auditory target. This can be explained by our 

model as auditory and visual spatial gains altering perceived audio-visual disparity. In 
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particular, visual spatial gains tended to be smaller than auditory spatial gains (see Table 1), 

so visual targets will be perceived as being closer to the auditory targets when the visual is 

farther from the midline than the auditory, and therefore visual capture is more likely to 

occur.

Caution is required when comparing the range of visual capture observed here to data 

obtained in other labs, since several perceptual factors (notably σA, σV, and pcommon) govern 

the limits of visual capture, and they may co-vary across labs. In particular, several labs have 

reported much larger auditory and visual uncertainties (σA ≈ 8° and σV ≈ 3.25°) (Alais and 

Burr, 2004; Hairston et al., 2003; Körding et al., 2007; Wozny and Shams, 2011) than those 

observed in our lab (Dobreva et al., 2011, 2012; Razavi et al., 2007; Zwiers et al., 2003), 

indicating that there are unidentified factors that influence perceptual uncertainty across 

experimental setups. These differences across labs may be explained by differences in the 

number of targets in and the total spatial span of the target array. Specifically, Hartmann et 

al. (1998) demonstrated that measures of auditory localization uncertainty (i.e. RMS 

pointing error) depends on an interaction between true localization uncertainty, the number 

of targets in the array, and the spatial span of the array, with small numbers of targets and 

narrow spans artifically increasing the measured uncertainty. The difference may also 

depend on whether or not subjects know the number and location of targets, because 

Odegaard et al. (2015) hid their target locations from subjects and measured uncertainty 

similar to our current results, despite using only a few targets over a narrow spatial span. 

Additionally, the amount of visual capture observed varies substantially across individuals 

(i.e. the broad range of values for pcommon), which further highlights the heterogeneity in the 

spatial range of visual capture. Finally, the range over which visual capture is likely to occur 

in both tasks was often much broader than auditory spatial uncertainty, which indicates that 

perceptual discrimination thresholds alone cannot predict the range of visual capture, in 

contrast to conclusions from some earlier studies (Slutsky and Recanzone, 2001).

Despite the ability of both tasks to measure visual capture, our evidence suggests that they 

do not produce equivalent estimates when performed independently. Specifically, model fits 

to each session show that pcommon is lower in auditory localization than it is in congruence 

judgment, indicating that prior expectation is sensitive to task requirements. Critically, no 

other model parameter showed a difference across tasks, indicating that the difference in task 

performance observed here is solely attributable to modulation of prior expectation, and not 

a change in sensory precision or accuracy. This difference in visual capture when tasks were 

performed independently does not occur when tasks are performed together (Wallace et al., 

2004), indicating that responses to each task interact to bring them into agreement with one 

another. To fully address the influence of pcommon on visual capture in each task, future 

experiments should focus on systematically manipulating prior expectation, either by 

manipulating instructions given to subjects (as in Lewald and Guski (2003); Warren et al. 

(1981)), or by providing subjects with previous experience in which audio-visual 

congruence is highly likely or unlikely to occur (as in Van Wanrooij et al. (2010)). 

Additionally, the 95% ranges for pcommon were wide for some sessions (as shown by error 

bars in Figure 6), which may be due to insufficient data to precisely estimate pcommon. 

Although the relatively small number of trials in this experiment is offset by the dense target 
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array used here (Figure 1C), future experiments would likely also benefit from more trials 

per session and more subjects.

The neural mechanisms that implement the computations described here are likely complex 

and distributed through the nervous system. Recent fMRI work by Rohe and Noppeney 

(2015) used auditory and visual localization to demonstrate that independent auditory and 

visual location (XA and XV) are best predicted by activity in the respective primary sensory 

areas, wheras fused audio-visual location (ŜA,C=1) is best predicted by activity in posterior 

intraparietal sulcus, and the final decision about target location (ŜA) is best precited by 

activity in anterior intraparietal sulcus. These results suggest that behavioral differences in 

pcommon observed here across tasks may also be reflected in neural activity in posterior 

intraparietal sulcus. Although the computational components of this model are reflected by 

activity in different neural regions, it is unlikely that the brain performs the exact 

calculations described here, because the nervous system is restricted to computations that 

can be performed with neural circuits. Wei and Stocker (2015) demonstrated that 

constraining causal inference models with efficient coding requirements causes the model to 

make predictions that deviate from those made by an optimal encoder, but agree with 

previously observed biases in visual perception. Similar mechanisms may also account for 

the inaccurate spatial perception (i.e. SG ≠ 1 and μ ≠ 0) observed here and in previous 

localization experiments, which highlights the need to further study the underlying neural 

mechanisms that could implement the calculations described in the current model.

In other forms of audio-visual integration, subjects can partially, but not completely, 

suppress cross-modal bias in a context-dependent manner (Bizley et al., 2012; Mishra et al., 

2010; Soto-Faraco and Alsius, 2007; van Atteveldt et al., 2013). It is possible that a similar 

effect is responsible for the current findings. In congruence judgment, subjects are required 

to explicitly attend the relationship between auditory and visual targets, whereas in the 

auditory localization task subjects only need to attend the auditory target location. This 

modulation of attention across tasks could be responsible for the difference in visual capture 

demonstrated here. However, previous studies have shown that selectively attending only 

one stimulus modality versus attending both in auditory localization does not alter pcommon 

(Odegaard et al., 2016), indicating that this explanation may not be the case. Alternatively, 

the threshold for subjects to report visual capture in the congruence judgment task may 

simply be lower than in the auditory localization task, because subjects may decide that 

auditory and visual targets are “close enough” to judge them as coming from the same 

location, when the same percept might not produce a bias in perceived auditory location.
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Appendix: Bayesian Inference Modeling of Auditory Localization and 

Congruence Judgment Tasks

This model simulates the perception of temporally synchronous but spatially disparate 

auditory and visual targets, and subsequent performance of two perceptual tasks (auditory 

localization and congruence judgment). The model described here is a modified version of 

previously published work (Körding et al., 2007; Wozny and Shams, 2011; Wozny et al., 

2010).

Perception of Visual and Auditory Target Locations

Targets locations are constrained to a fixed elevation and a range of azimuths within the 

frontal field, denoted as SV and SA for visual and auditory targets, respectively. Previous 

research has demonstrated that spatial perception is inherently uncertain and subject to 

biases, so the first step of this model is to produce a probability distribution that represents 

the set of percepts that could be generated by a given target. The generated percepts for 

visual and auditory targets are denoted XV and XA, respectively, and the probabilities of a 

percept occurring given a particular target are denotedp p(XV|SV) and p(XA|SA). Previous 

research has demonstrated that perceived target locations tend to be normally distributed, 

although they are subject to idiosyncratic biases, a tendency to overestimate eccentricity for 

auditory targets, and reliability that decreases with eccentricity (Dobreva et al., 2012; 

Odegaard et al., 2015). To model these aspects of perception, we assume normal 

distributions with means that are scaled and offset with respect to target location, similar to 

Odegaard et al. (2015, 2016). The scaling parameters are denoted GV and GA, which can 

model a pattern of overestimating (SG > 1) or underestimating (SG < 1) target eccentricity. 

Constant biases in target location are denoted μV and μA. Localization uncertainty (inverse 

reliability) is represented by σV and σA. This model also includes parameters that model 

increase in uncertainty as a function of eccentricity, given as GσV and GσA. Putting these 

terms together in a normal distribution gives the equations:

(3)

(4)

Perception is simulated by sampling XV and XA from these distributions. For convenience in 

later equations, the standard deviation parameters are expressed as as σSV = σV + GσV |SV| 

and σSA = σA + GσA |SA|. In addition, we assume the existence of a prior bias in target 

locations, which limits target locations to the frontal field.

(5)
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Estimating The Probability That Targets Originate From A Common Source

In order to combine auditory and visual information in a behaviorally advantageous manner, 

it is necessary to be able to estimate whether or not crossmodal signals originate from a 

common source. Note that this process does not necessitate conscious decision making, as it 

could be performed early in the crossmodal sensory pathway. A common method of 

representing the probability of a common source for two targets (denoted p(C = 1|XV, XA)) 

is given by Bayes’ Theorem:

(6)

pcommon is the prior expectation that targets originate from a common source (C = 1). We 

assume that the number of targets in the room is limited to either 1 or 2 (C = 1, C = 2). 

Therefore, the law of total probability states that p(XV, XA) can be expressed as:

(7)

Substituting into equation 6 gives:

(8)

In order to obtain the conditional probabilities for target location, we integrate over the latent 

variable Si.

(9)

(10)

The Analytic solutions to these integrals are (Körding et al., 2007):

(11)
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(12)

Substituting these integrands into equation 8 enables the probability of common source (p(C 
= 1|XV, XA)) to be computed.

Performing the Congruence Judgment Task

The congruence judgment task is a two alternative forced choice paradigm in which the 

subject decides whether the visual and auditory targets came from the same location (C = 1) 

or two different locations (C = 2). This decision can be made directly from the probability of 

a common source, p(C = 1|XV, XA), in one of two ways: model selection and probability 

matching. These two models can be directly compared for a data set, to determine which 

decision model best explains the observed data.

Model Selection

One approach to selecting a response is to always choose the most likely response, i.e. if p(C 
= 1|XV, XA) > 0.5 choose C = 1 (Körding et al., 2007).

(13)

Probability Matching

A second possible approach is to choose each response in proportion to its probability, i.e. if 

p(C = 1|XV, XA) = 0.7 choose C = 1 70% of the time (Wozny et al., 2010).

(14)

Performing the Auditory Localization Task

In the auditory localization task, subjects use a laser to point to the estimated location of the 

auditory target, ŜA. Estimating the auditory target location requires integrating the percept 

from each sense, XA and XV, with the probability they originated from a common source, 

p(C = 1|XV, XA). ŜA is calculated for both C = 1 and C = 2 (equations 15 and 16 (Körding et 

al., 2007)), then combined in one of three ways: averaging, model selection, and probability 
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matching (Wozny et al., 2010). As before, these models can be directly compared for a given 

data set.

(15)

(16)

Averaging

One approach to estimating auditory target location is to perform a weighted average of 

ŜA,C=1 and ŜA,C=2 based on their probability (Körding et al., 2007):

(17)

Model Selection

As in the congruence judgment task, subjects may simply choose the most likely explanation 

for the observed signals (either C = 1 or C = 2) and respond based solely on that explanation 

(Wozny et al., 2010).

(18)

Probability Matching

Also as in the congruence judgment task, subjects may choose explanations at a rate 

commensurate with their probability (Wozny et al., 2010).

(19)

Simulating Task Performance

The above equations can be used to estimate the probability distribution of responses for a 

given set of inputs, model parameters, and task strategy. Responses are simulated via 
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repeated sampling perceived target locations, XV and XA, from equations 3 and 4 10,000 

times. Each pair of perceived target locations is used to calculate the probability of a 

common cause, p(C = 1|XV, XA), from equation 8. XV, XA, and p(C = 1|XV, XA) for each 

sample are then used to compute a response from one congruence judgment or auditory 

localization task strategy (C or ŜA, respectively). Additionally, it is possible that on some 

trials a subject may lose focus on the task, and simply guess. To model this, responses are 

replaced with a guess based solely on prior expectation (for congruence judgment, p(C = 1|

XV, XA) = pcommon, and for auditory localization, ŜA ~ (N)(μP, σP)) at a probability equal to 

the Inattention Rate parameter (λ). This produces a total of 10,000 simulated responses, 

which can be used to estimate the probability distribution of responses. This probability 

distribution can be compared to subject data to estimate the likelihood of an observed 

subject response occurring given a set of model parameters and task strategy. For 

congruence judgment, the histogram only had two values, C = 1, 2, while for auditory 

localization responses were binned in 1 degree intervals.

Comparing Common Underlying Processes Across Both Tasks

The ultimate goal of this model is to be able to compare perception across task types, in 

order to identify any differences in visual capture across task types. If we assume that the 

model parameters described above are sufficient to describe visual capture, than this goal 

can be reframed as comparing the model parameters that best explain observed responses 

across task types. Therefore, we need to find the model parameters and task strategy that 

best explain each data set.

Table 4 provides the limits for each parameter in this model. For each data set, we searched 

for a set of parameter values that maximizes the likelihood of the observed data in that set. 

Specifically, Matlab's Pattern Search algorithm was used to search for a set of parameters 

that minimized negative log likelihood. Negative log likelihood was computed by estimating 

the probability distribution of responses to each target pair via the simulation described 

above, then summing the negative log of the probability of the response given for each target 

pair. Essentially, this penalized a parameter set for predicting that a set of subject responses 

has a low probability of occurring. If the negative log likelihood was ever infinite (i.e. the 

probability of a response was zero), it was replaced by a large, non-infinite value (10,000) to 

prevent the search algorithm from failing. The search algorithm starts from a random point 

(independently drawn for each parameter from a uniform distribution between the limits in 

Table 4) in the parameter space, computes the negative log likelihood of a set of ordinal 

points (referred to as a mesh) centered on the current point, and selects the point with the 

smallest negative log likelihood as the new current point. If no point with a smaller negative 

log likelihood than the current point is found, the size of the mesh is reduced and the search 

is repeated with the same point (Hooke and Jeeves, 1961). The search algorithm stops when 

the change in mesh size, change in current point, or change in likelihood value drops below 

a set tolerance (1*10−4 for Mesh size, 1*10−4 for current point, and 1*10−2 for likelihood). 

Unimodal localization trials were included in optimization, with probability in unimodal 

localization trials computed analytically from equations 3 and 4.

Bosen et al. Page 20

Biol Cybern. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This approach is complicated by the fact that the objective function is stochastic, which may 

lead to different best model parameters each time the minimization algorithm is run. Pattern 

Search is an ideal algorithm for this condition, since it does not compute derivatives (Hooke 

and Jeeves, 1961) and is therefore robust for stochastic objective functions. However, it is 

still capable of finding different solutions or getting stuck in local minima each time it is 

run. To address this concern, the search was run 120 times from a random starting point each 

time. To ensure the parameter space was well conditioned, the space of parameter values was 

normalized relative to the upper and lower bounds for each parameter in the search 

algorithm, then un-normalized when computing likelihood. Medians, and 95% confidence 

intervals were computed for each parameter from the search results.
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Fig. 1. 
Experimental protocol. A, Trial timeline for both tasks. Between trials, subjects look at the 

center fixation light and maintain fixation until after target presentation. At the start of a 

trial, the center fixation light was extinguished, and 100 ms later an auditory and a visual 

target were presented from independent locations, in order to produce a disparity in azimuth 

between them. After target presentation, subjects were instructed to either indicate whether 

or not the targets came from the same location (Congruence Judgment) or point a LED 

pointer to the auditory target (Auditory Localization). B, Task sequence across experimental 

sessions. Subjects were randomly assigned to perform either the auditory localization or 

congruence judgment task in sessions 1 and 3, and the other task in session 2. C, Target 

array for both tasks. Auditory and visual target pairs were distributed in azimuth as shown, 

with each dot representing one pair of auditory and visual target locations. Location pairs 

were selected from the array in a pseudorandom order, and presented once each. Audio-

visual disparity ranged from 0° (i.e. no disparity, black line) to 35° (visual target at ±5° and 

auditory target at ±40°, or vice versa) in azimuth. The highlighted point indicates the 

example target locations in panel A.
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Fig. 2. 
Audio-visual spatial integration model. Auditory and visual target locations are encoded by 

their respective sensory pathways, in accordance with each pathway's accuracy and 

precision. Encoded locations are combined with prior expectation to compute the common 

source location (weighted sum of encoded target locations), and the probability that the 

targets originated from a common source. At this point the model diverges based on task, 

with the auditory localization task dependent on common source location and probability, 

and the congruence judgment task dependent on common source probability alone. This 

model allows us to directly compare performance across tasks by estimating model 

parameters that are decoupled from task.
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Fig. 3. 
Representative unimodal task data. A, In each session, subjects localized remembered 

auditory and visual targets presented in isolation. Both modalities were subject to 

idiosyncratic inaccuracies, with visual localization generally being more precise and 

accurate than auditory localization. Linear fits to localization error provided estimates of 

offset (intercept, uniform errors in azimuth) and spatial gain (slope, tendency to overestimate 

or underestimate target azimuth), which were used to correct target locations in the bimodal 

task. The labeled visual and auditory corrections were applied to the highlighted point in 

Figure 1 for this session's bimodal data analysis. B, Unimodal responses were used to 

estimate perceived target locations in bimodal tasks. Physical target locations were corrected 

for spatial gain and offset in each sense, and corrected values were used to estimate 

corrected audio-visual disparity. Corrected disparity was used as the basis for bimodal data 

analysis.
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Fig. 4. 
Representative data from congruence judgment and auditory localization tasks in three 

subjects. For congruence judgment sessions the probability of a same location response is 

given as a function of corrected audio-visual disparity. Targets in the left hemifield were 

mirrored through the origin after correction, so negative corrected audio-visual disparity 

corresponds to visual targets located farther from midline than auditory targets and positive 

values correspond to visual targets located closer to midline than auditory targets. For all 

subjects, “same location” responses are more likely when disparity is small, and become less 

likely as the disparity magnitude increases. Gray regions represent Clopper-Pearson 95% 

confidence intervals, and vary in size with the number of points in the histogram bin. In 

comparison, for auditory localization sessions, corrected localization error relave to each 

subject's unimodal localization responses (indicated by the horizontal line) was plotted as a 

function of corrected audio-visual disparity. In subjects 1 and 2, auditory localization shows 

a pronounced shift toward the common source location (broken line, slope is the ratio of 

visual to auditory weight), whereas in subject 3 no shift toward common source location is 

evident. For reference, the solid diagonal line indicates where responses would fall if they 

were based solely on the visual target.

Bosen et al. Page 26

Biol Cybern. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Example Bayesian inference model fits with all parameters free. For session 1 (congruence 

judgment task) the model simulates responses to estimate the probability of a “same 

location” response for all audio-visual disparities (black line). For comparison, data from 

this subject is plotted with filled circles indicating “same location” responses and hollow 

circles indicating “different location” responses. For session 2 (auditory localization task), 

the model predicts the probability of pointing errors for all audio-visual disparities 

(grayscale coloration, with darker shades indicating higher probabilities). The model 

successfully reproduces the auditory bias toward visual targets observed at small audio-

visual disparities, which fits the subject's responses (black points) well. Model fits 

demonstrate an asymmetry across hemifields, which is due to interactions between offset 

and spatial gain.
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Fig. 6. 
Prior Expectation of a Common Source (pcommon) correlated across sessions. Each point 

represents a pair of median model fit values for pcommon from the same subject and task 

strategy, across two different sessions. Each pairwise correlation of parameters across 

sessions is represented by a separate subfigure. As shown, when the same task was repeated 

subjects generally demonstrated good agreement in fitted values, but across tasks pcommon 

was significantly lower in the auditory localization task than in the congruence judgment 

task (black trend line was significantly lower in cross-task comparisons, Session 1 vs 

Session 2 and Session 2 vs Session 3, than in the Same Task comparison). Multiple task 

strategies were considered as in Wozny et al. (2010), although parameter estimates were 
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similar across task strategies and group trends were consistent regardless of task strategy. 

Error bars represent 95% parameter ranges, estimated from the 120 runs of the model fitting 

algorithm. Standard Major Axis Regression (Legendre, 2013) was used to fit trend lines.
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Table 1

Medians and range of medians for each measured parameter in the unimodal task. Bold values indicate grand 

medians, with ranges in parentheses indicating the maximum and minimum medians across all sessions.

Parameter Medians

Auditory Perception

Auditory Offset μ A −1.9° (−8.0° - 3.1°)

Auditory Spatial Gain GA 1.00 (0.88 - 1.55)

Auditory Uncertainty σ A 4.09° (3.4° - 9.6°)

Visual Perception

Visual Offset μ V −0.5° (−1.8° - 1.5°)

Visual Spatial Gain GV 0.92 (0.86 - 1.12)

Visual Uncertainty σ V 1.80° (1.10° - 2.83°)
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Table 2

Medians and range of medians for each model parameter. Bold values indicate grand medians, with ranges in 

parentheses indicating the maximum and minimum medians across the subject population. Within-session 

ranges indicate the maximum and minimum values for the 95% range across all sessions.

Parameter Medians Within-Session Ranges

All Parameters Free

Auditory Perception

Auditory Offset μ A −1.8° (−6.2° - 2.4°) 0.8° - 9.0°

Auditory Spatial Gain GA 1.04 (0.91 - 1.97) 0.06 - 0.56

Auditory Uncertainty σ A 3.01° (1.47° - 7.61°) 1.68° - 6.99°

Auditory Uncertainty Gain GσA 0.109 (0.028 - 0.210) 0.082 - 0.424

Visual Perception

Visual Offset μ V −0.1° (−1.2° - 0.9°) 0.6° - 2.0°

Visual Spatial Gain GV 0.93 (0.87 - 1.18) 0.03 - 0.15

Visual Uncertainty σ V 0.38° (0.14° - 0.75°) 0.67° - 3.34°

Visual Uncertainty Gain GσV 0.0729 (0.042 - 0.176) 0.051 - 0.205

Prior

Prior Mean Location μ P 4.0° (−26.2° - 38.4°) 5.4° - 76.0°

Prior Uncertainty σ P 23.79° (12.5° - 87.6°) 4.1° - 81.4°

Prior Expectation of a Common Cause pcommon

Congruence Judgment Task 0.61 (0.20 - 0.98) 0.03 - 0.26

Auditory Localization Task 0.41 (0.01 - 0.98) 0.01 - 0.95

Inattention Rate λ 0.008 (0.006 - 0.037) 0.014 - 0.057

Only pcommon Free

Prior Expectation of a Common Cause pcommon

Congruence Judgment Task 0.63 (0.26 - 0.99) 0.01 - 0.08

Auditory Localization Task 0.48 (0.01 - 0.98) 0.02 - 0.95
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Table 3

Median and range of capture range for each task, calculated from the probability matching task strategy model 

fits. Bold values indicate grand medians, with ranges in parentheses indicating the maximum and minimum 

medians across the subject population. Paired differences (judgment minus localization) indicate capture 

occurred over a wider range in judgment than in localization.

Congruence Judgment Auditory Localization Paired Difference

11.1° (8.7° - 22.3°) 9.8° (0° - 19°) 2.8° (−6.5° - 11.4°)
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Table 4

Bounds for each model parameter.

Parameter Lower Bound Upper Bound

Auditory Offset μ A −20 20

Auditory Spatial Gain GA 0 2

Auditory Uncertainty σ A 0 30

Auditory Uncertainty Gain GσA 0 2

Visual Offset μ V −20 20

Visual Spatial Gain GV 0 2

Visual Uncertainty σ V 0 10

Visual Uncertainty Gain GσV 0 2

Prior Mean Location μ P −40 40

Prior Uncertainty- σ P 0 100

Prior Expectation of a Common Cause pcommon 0 1

Inattention Rate λ 0 1
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