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Abstract

Prostate cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-
related death, for men in the United States. Despite the approval of several new agents for
advanced disease, each of these has prolonged survival by only a few months. Consequently new
therapies are sorely needed. For other cancer types, immunotherapy has demonstrated dramatic
and durable treatment responses, causing many to hope that immunotherapies might provide an
ideal treatment approach for advanced prostate cancer. However, apart from sipuleucel-T, prostate
cancer has been conspicuously absent from the list of malignancies for which immunotherapies
have received recent FDA approval. This has left some wondering if immunotherapy will “work”
for this disease. In this review we describe current immunotherapy developments, including
approaches to engage tumor-targeting T cells, disrupt immune regulation, and alter the
immunosuppressive tumor microenvironment. We then describe the recent application of these
approaches to the treatment of prostate cancer. Given the FDA approval of one agent, and the fact
that several others are in advanced stages of clinical testing, we believe that immunotherapies offer
real hope to improve patient outcomes for prostate cancer, especially as investigators begin to
explore rational combinations of immunotherapies and combine these therapies with other
conventional therapies.
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Condensed Abstract: In this review we highlight the history of immunotherapeutic development
for prostate cancer and many of the strategies currently being explored. We conclude that
immunotherapies have promise for improving clinical outcomes, and that the greatest benefits will
come as immunotherapy approaches begin to be rationally combined with other therapies.
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Goals of Cancer Immunotherapy

The relationship between the human immune system and the development of cancer has
been both well-studied, and hotly-debated, for over a century. From the foundational work
by Paul Ehlrich in the early 1900s?, to Burnet and Thomas’s “cancer immunosurveillance”
hypothesis of the 1950s2, to the most recently revised theory of “cancer immunoediting” by
Schreiber and colleagues®, many have proposed a role for the immune system in controlling
the development of cancer. However, until recently there was little clinical evidence
demonstrating consistent anti-tumor responses following immune-based therapies. Many
recent clinical trials, however, have demonstrated that the immune system can have potent
anti-tumor activity in many cancer types. With recent trials demonstrating that CTLA-4 and
PD-1 blockade can increase survival for patients with metastatic melanoma and other
diseases*’, to the current phenomenal results observed with CAR T cells for B-cell
malignancies®, there is now no doubt that the immune system is a powerful anti-cancer tool.
In fact, the designation of cancer immunotherapy as the 2013 scientific breakthrough of the
year by Science effectively marked that cancer immunotherapy was no longer a theoretical
possibility but a practical realityS. Given the recent momentum and interest in this field,
many now believe that cancer immunotherapy will be a cornerstone of treatment for most
cancers.

There is great diversity among the many cancer immunotherapies currently under
investigation, but they can be loosely classified into three distinct categories based on their
end goal: eliciting tumor-targeting cytolytic lymphocytes, disrupting immune regulation, and
altering the tumor microenvironment (Figure 1). The first class of agents are designed to
supply or augment the frequency of T cells in a patient specific for one or more tumor-
associated antigens, or other non-antigen-specific anti-tumor effector cell populations such
as NK cells. This can be carried out both /n vivo, through the delivery of vaccines and
cytokines, or ex vivo, through collecting, modifying/expanding and reinfusing these cells.
Other cancer immunotherapies work by repressing the tumor’s ability to circumvent anti-
tumor immunity. Because cancers derive from a patient’s own cells, they can maintain and
exploit normal autoimmune defense mechanisms. Successfully disrupting these inhibitory
pathways co-opted by cancers have proven to be remarkably effective in the case of
checkpoint inhibitors. The last class of cancer immunotherapies work by altering the tumor
microenvironment, turning what is often an unfavorable environment for productive anti-
tumor immunity into one that is more favorable, typically by changing the types of cells that
might be present at the tumor site or by disrupting the tumor vasculature, making the tumor
environment more amenable to immune cell infiltration and destruction.

Prostate cancer is one malignancy for which there has been much exploration of
immunotherapeutic agents. Due to its typically slow progression, abundance of tissue-
specific target antigens, a reliable serum marker to assess clinical responses, and the non-
essential nature of the target tissue (reducing concerns about autoimmune destruction of
normal prostate cells), prostate cancer is in many ways an ideal malignancy for evaluating
new immunotherapy treatments. And because prostate cancer remains the most commonly
diagnosed cancer and second leading cause of cancer-related death for men in the United
States, new therapies are sorely needed’. However, apart from sipuleucel-T, prostate cancer
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has been conspicuously absent from the list of malignancies for which new immunotherapies
have been recently FDA approved, leaving many wondering if immunotherapy can provide
any real hope for improving patient outcomes. In this review we highlight the history of
immunotherapeutic development for prostate cancer and many of the strategies currently
being explored. We conclude that immunotherapies have real promise for improving clinical
outcomes, and that the greatest benefits are yet to come as immunotherapy approaches begin
to be rationally combined with other therapies.

History of Immunotherapy for Prostate Cancer

Cytokines

The first class of immunotherapies are agents designed to increase the frequency or activity
of T cells specific for one or more targets overexpressed by tumors (tumor-associated
antigens, TAAs). Some of these first attempts were through the delivery of cytokines, as
prior work had shown that the delivery of IL-2 could successfully expand tumor-reactive T-
cell populations and elicit anti-tumor immune responses in patients with melanoma or renal
cell cancer89. A phase | trial explored the intratumoral delivery of IL-2 in prostate cancer
patients with either locally advanced or recurrent disease following prostatectomy°.
Although the treatment was well tolerated and they observed increased T-cell infiltration into
tumors, only modest changes in prostate-specific antigen (PSA) levels were observed.
Another group examined the safety and efficacy of an IL-2 immunocytokine, EMD 273066
(huKS-IL2), a human EpCAM-targeting antibody fused with IL-2. This treatment was also
well tolerated, but also showed little signs of anti-tumor activityl. Another group examined
the efficacy of subcutaneous IL-2 in combination with interferon-alpha (IFNa) in patients
with metastatic prostate cancer and again observed no improvements in regards to PSA
levels or survivall2. Together, all of these trials demonstrated that, although well tolerated,
IL-2 cytokine therapy (in various formats) was not able to elicit a meaningful anti-tumor
immune response as a monotherapy, and thus its evaluation in prostate cancer therapy has
essentially been discontinued.

Similarly, phase | trials treating patients with either intratumoral IFNa, or with intratumoral
tumor necrosis factor-alpha (TNFa) along with systemic IFNa2b, demonstrated that these
treatments again were well tolerated but exhibited little clinical activityl3:14. Conversely,
clinical trials examining systemic treatment with GM-CSF as a monotherapy have shown
some signs of efficacy (Table 1-line 1, Table-L1). In a Phase Il trial examining treatment of
patients with CRPC with GM-CSF in combination with thalidomide, nearly all patients
experienced a transient decrease in PSA levels, and a trial employing similar treatment in
patients with non-castrate resistant prostate cancer also demonstrated a marked decrease in
PSA levels in nearly 90% of patients1>-16. Another trial also demonstrated that long-term
treatment of GM-CSF in patients with recurrent disease was well tolerated and that a
substantial fraction of patients experienced long-term disease control’. Taken together,
these findings suggest that, while well tolerated, the systemic or intratumoral delivery of
cytokines seems able to elicit only marginal anti-tumor responses in prostate cancer patients
when given as single agents. There may be promise for GM-CSF as a monotherapy, but
there has been more interest in the combination of cytokines with other immunotherapies.
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As a more specific means of amplifying tumor-specific T cells, others have explored the use
of anti-tumor vaccines. This approach is especially relevant to prostate cancer given the
abundance of target proteins that are nearly exclusively expressed in prostate tissue,
dampening concerns about off-target side effects. Previous data have also shown that T cells
(and antibodies) specific for several of these prostate-specific targets can exist in the
peripheral blood of prostate cancer patients, suggesting that vaccines may be useful to
augment prostate-specific T-cell populations8-19,

An early vaccine to enter clinical testing for prostate cancer was GVAX-PCa, a mixture of
irradiated PC-3 and LNCaP cell lines engineered to overexpress GM-CSF, with the goal of
eliciting T cells specific for one or more TAAs2C. Phase I/l trials indicated that the
treatment was well tolerated and induced antibody responses to various proteins in the cell
lysates, suggesting the vaccine was eliciting antigen-specific immune responses20:21, Higher
doses of treatment appeared to be associated with prolonged survival compared to lower
doses. However, two independent phase 111 trials were closed prematurely due to lack of
superior clinical efficacy compared to chemotherapy in one trial, and an increase in patient
mortality observed in the other trial (hazard ratio, 1.03 [95% C.I. 0.83-1.28], P=0.78)%2.

Other groups have explored the use of vaccines encoding one or more specific prostate
cancer TAA, such as sipuleucel-T (Provenge®, Dendreon Corporation), an autologous
antigen-presenting cell (APC) vaccine in which a patient’s peripheral blood APC are
isolated, pulsed with recombinant GM-CSF fused to the TAA prostatic acid phosphatase
(PAP), and then re-infused 72 hours later (Table-L3). In a phase 111 trial, patients receiving
sipuleucel-T had a greater median overall survival (25.8 months) versus patients receiving
placebo (21.7 months), leading to its FDA approval in 2010 (hazard ratio, 0.78 [95% C.1I.
0.61-0.98]; P=0.03)23. This made sipuleucel-T the first FDA-approved vaccine for the
treatment of any cancer, and provided the first solid evidence that vaccines could provide a
real benefit in disease outcome for prostate cancer patients.

Many other groups have explored different vaccine platforms and target antigens. A highly
anticipated vaccine currently under development is PSA-TRICOM (Prostvac®, Bavarian
Nordic), a vaccinia and fowlpox viral vector approach encoding PSA (Table-L4)24. Early
phase trials demonstrated the tolerability and immunological activity of PSA-TRICOM and
two independent phase Il studies reported an increase in overall survival for patients
receiving PSA-TRICOM compared to placebo or historical controls25:26. A phase 111
approval trial is currently underway in patients with mCRPC (NCT01322490).

Other groups have explored different vaccine constructs targeting these or similar antigens.
Both PAP and PSA have been targeted using DNA-based vaccination, with a DNA vaccine
encoding PAP currently being evaluated in a randomized phase I trial (Table-L7,
NCT01341652)2728, These and other trials have demonstrated the tolerability of DNA
immunization and their ability to elicit antigen-specific T cells, using a simpler platform
than those of either Prostvac or sipuleucel-T. Still others are exploring the use of Listeria
monocytogenes as a potentially more potent means of antigen delivery, particularly given
evidence of clinical activity of listeria-based vaccines for pancreatic cancer2?. Specifically,
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recombinant listeria encoding PSA, PAP, and other TAAs are under investigation for treating
advanced prostate cancer (Table-L15,16; NCT02625857, NCT02325557). While the
approval of sipuleucel-T suggests that tumor vaccines have a place in the treatment of
prostate cancer, it is not currently known if one vaccine approach is superior to another in
terms of anti-tumor effects. Trials comparing different vaccine strategies, as well as trials
combining vaccines with other immune-modulating agents, are eagerly anticipated.

CAR T cells and Bispecific Antibodies

As a more direct means of providing tumor-reactive T cells, others have explored the use of
adoptive cell therapy using ex vivo expansion of tumor-reactive T cells, or T cells
engineered to be specific for a particular TAA by modifying their T cell receptors (TCRS).
Recent studies have demonstrated dramatic anti-tumor activity using T cells engineered to
express a chimeric antigen receptor (CAR) that permits recognition of a cell-surface protein
using an antibody-recognition domain fused to the TCR signaling domain30. Specifically,
CAR T cells targeting CD19 have led to complete responses in some B cell malignancies,
prompting exploration of CAR T cells for other malignancies3. The availability of tissue-
specific membrane proteins has limited development of this approach for many solid tumors.
However, for prostate cancer some groups are exploring targeting prostate-specific
membrane antigen (PSMA) using CAR T cell approaches32:33. A phase | dose-escalation
trial evaluating PSMA-specific CAR T cells is currently underway (Table-L29,
NCT01140373).

Another means to increase the reactivity of T cells to tumor cells is through the use of
bispecific antibodies (e.g. BITEs®, Amgen). These consist of the binding domain of two
antibodies, one specific for the T cell, such as CD3, and the other specific for a desired
membrane-associated TAA, fused together34. These dual antibodies then force the physical
encounter of tumor cells by T cells. Work in preclinical models has demonstrated that a
CD3xPSMA bispecific antibody was able to efficiently direct T cells toward tumors and
could initiate cytolytic responses3®. The one major benefit of these over CAR T cells is that
they are effectively an “off-the-shelf” product, as they do not require the collection and
reinfusion of a patient’s autologous T cells. This could allow bispecific antibodies to be a
more cost-effective, and therefore hopefully more widely accessible, treatment option.
However, like CAR T cells, they carry the same concerns regarding off-target toxicity for
targets that are not completely tumor-specific, including PSMA. These concerns will be
more thoroughly understood following the completion of two currently underway phase |
trials examining the safety and efficacy of CD3xPSMA or CD3xEpCAM bispecific
antibodies in patients with CRPC (Table-L30-32; NCT01723475, NCT00635596).

T-Cell Checkpoint Blockade

The second class of immunotherapies works by disrupting the tumor cells’ ability to repress
anti-tumor immunity. Because cancer cells derive from a patient’s own cells, they retain and
can exploit defense mechanisms that cells have developed to avoid autoimmune destruction.
These mechanisms include interference with molecules on T cells that regulate their
expansion and function, known as immune checkpoints. Early work in this field identified
the first of these T-cell checkpoint molecules, CTLA-4, as a major inhibitor of cytolytic anti-
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tumor T-cell responses38. Preclinical and subsequent clinical work demonstrated that
antibodies blocking CTLA-4 (preventing its ligation by CD80/CD86) could prevent this T-
cell repression from occurring, ultimately leading to the approval of ipilimumab (Yervoy®,
Bristol-Myers Squibb) for the treatment of metastatic melanoma®. Subsequent work has
identified many other checkpoint molecules similar, but not redundant, to CTLA-4 including
most notably PD-1, TIM-3, and LAG-3. Ligation of these molecules by tumor-expressed
molecules also leads to decrease in T-cell effector function. Antibodies blocking PD-1 have
recently received FDA approval for the treatment of melanoma, non-small cell lung cancer,
and renal cell cancer3’-39,

In the case of prostate cancer, an early phase I/11 trial treating mCRPC patients with
ipilimumab (Table-L34) as either a monotherapy or in combination with radiotherapy
demonstrated that some patients receiving the combination had a decrease in PSA levels and
stable disease (with one complete response)*. This led to a randomized phase IlI trial in
patients with mCRPC receiving either ipilimumab or placebo after radiotherapy*!. This trial,
although demonstrating a difference in progression-free survival between the two groups,
did not demonstrate a significant difference in overall survival (ipilimumab: 11.2 months;
placebo: 10.0 months; hazard ratio, 0.85 [95% C.I. 0.72-1.00]; P=0.053).

More recently, groups have also examined the treatment of prostate cancer with PD-1
blockade (Table-L33,36). Two independent phase I trials conducted using PD-1 blockade in
patients with many types of solid tumors included those with mCRPC#243, No objective
responses were observed in the 25 mCRPC patients who were treated in both of these trials.
A phase Il trial is currently underway more thoroughly examining the anti-tumor efficacy of
PD-1 blockade in patients with mCRPC (NCT02312557). However, results to date
examining either CTLA-4 or PD-1 blockade alone have suggested little role for these
treatments as monotherapy for prostate cancer. It remains to be seen if other checkpoint
inhibitors will be more effective in prostate cancer, or if CTLA-4 or PD-1 blockade will be
more effective when used in combination, as is currently underway (NCT01420965).

Microenvironment Disruptors

The last class of immunotherapy agents is those designed to disrupt or otherwise modify the
immunosuppressive tumor microenvironment, making it more amenable to a cytolytic
immune response. Many tumors are infiltrated by regulatory T cells and/or myeloid-derived
suppressor cells (MDSCs), which have been shown to repress anti-tumor immune responses
by either direct cell-cell interactions or secretion of inhibitory molecules such as I1L-10,
nitric oxide or indoleamine 2,3-dioxygenase (IDO). Tumors are also known to have altered
or disorganized vasculature, often not expressing the appropriate ligands necessary for
immune cell trafficking. Agents designed to disrupt the tumor vasculature and/or deplete
tumor-infiltrating regulatory cells have been shown to have antitumor activity in many
cancer types. Among several of the approved agents targeting the vascular endothelial
growth factor receptors, one agent, sunitinib (Sutent®, Pfizer), has been shown to inhibit
tumor angiogenesis and also deplete MDSCs from tumors (Table-L38)**. Several
independent phase I trials examining sunitinib as monotherapy for patients with mCRPC
demonstrated signs of efficacy, as marked by PSA declines and objective responses, leading
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to a randomized, placebo-controlled phase 111 trial of sunitinib in patients with mCRPC#5:46,
This trial revealed that sunitinib increased progression-free survival, but did not impact
overall survival compared to placebo (sunitinib: 13.1 months; placebo: 11.8 months; hazard
ratio, 0.914 [95% C.1. 0.762-1.097]; P=0.17)*’. Combinations of VEGFR-targeting agents
with chemotherapy have similarly not demonstrated significant benefit in prostate cancer4S.
Nonetheless, there remains interest in combination treatment using these agents specifically
with immune-targeted therapies. In addition, chemotherapy and radiation therapy, agents
already used in the management of prostate cancer that can disrupt tumor vasculature, are
also being explored in combination with immune-targeted therapies (NCT02649855).

Another immunotherapy shown to impede the recruitment of MDSCs and to have
antiangiogenic activity, tasquinimod#®-, has been evaluated in patients with recurrent
prostate cancer. Early trials demonstrated it was well tolerated and led to a significant
increase in progression-free survival and overall disease control (stable disease and objective
responses) compared to placebo®l. An international double-blind, placebo-controlled phase
I11 trial in men with mCRPC, however, showed no significant increase in overall survival
(hazard ratio, 1.097 [95% C.I. 0.938-1.282])°2. Despite this, there remains interest in the use
of tasquinimod in combination with other immunotherapies.

Likelihood of Success

Of all immunotherapy approaches currently being pursued for prostate cancer, the most
successful to date have been vaccines. Vaccines have been shown to be well tolerated, able
to elicit both antibodies and cytolytic T cells specific for TAAs, and to prolong overall
survival in prostate cancer patients. This is intriguing given the relatively disappointing
results vaccines have shown for most other malignancies. Prostate cancer is currently the
only malignancy for which a vaccine is FDA approved and for which another vaccine is
currently in phase 111 approval testing. In contrast, T-cell checkpoint inhibitors to date have
shown less activity in the treatment of prostate cancer, at least as monotherapies, relative to
other solid tumors. These findings suggest there could be differences in the immunogenicity
of prostate tumors relative to other cancer types. In fact it has been suggested that prostate
tumors have a lower frequency of infiltrating immune cells compared with many other solid
tumor types®3. Consequently, it is conceivable that anti-tumor vaccines have demonstrated
activity for this disease simply by increasing the number of tumor-specific infiltrating T
cells, compared with other tumors in which there may already be abundant T-cell infiltration.

Even with the potential that vaccines have shown in treating prostate cancer patients, the
benefit shown to date by sipuleucel-T is fairly modest in terms of overall survival. This
treatment has struggled to gain widespread use, possibly due to high cost, or median survival
benefit of only 4 months, or because it is a first-in-class drug with which clinicians are less
familiar. This has prompted many to study other simpler vaccines, study vaccines in
combination with other therapies, or study vaccines at different stages of disease. In
modeling the treatment effect of PSA-TRICOM, Madan and colleagues have suggested that
vaccines may work to slow disease progression. In this case, vaccines may have their
greatest effect in earlier stages of disease or combined with therapies to reduce tumor
burden®*. Numerous trials are currently underway examining the efficacy of either
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sipuleucel-T or PSA-TRICOM at delaying disease progression in patients with earlier stages
of disease (Table-L4, NCT02326805, NCT01431391, NCT00779402).

As described above, the T-cell checkpoint inhibitors that have been investigated to date,
while active as monotherapies for many solid tumors, have been relatively disappointing as
treatments for prostate cancer. However, as checkpoint inhibitors work by enhancing the
activity of tumor-reactive T cells otherwise repressed by the tumor, and as prostate cancer
may have fewer of these infiltrating T cells, these findings are perhaps not surprising. Other
groups have also shown that the malignancies for which checkpoint blockade tends to be
most effective are those with the highest mutational loads, presumably because T cells that
can recognize these aberrantly expressed high-affinity neo-epitopes have high levels of
checkpoint receptors and are otherwise dysfunctional in the absence of checkpoint
blockade®®. Prostate tumors are known to have a lower mutational burden than many other
tumor types, decreasing the frequency with which T cells might recognize a mutated neo-
epitope antigen leading to tumor-infiltrating T cells®. These findings suggest that
checkpoint blockade may be more effective for prostate cancer when combined with
vaccines or other therapies that augment tumor-specific T cells. In fact, it has recently been
demonstrated that treating patients with either sipuleucel-T or another prostate cancer
vaccine led to the upregulation of the checkpoint ligand PD-L1 on the surface of tumor cells,
and that antigen-specific immune responses could be enhanced when combined with PD-1
blockade5”. Groups have also demonstrated in pre-clinical models that anti-tumor vaccine
efficacy could be enhanced when combined with checkpoint blockade58:59. Many groups
have therefore begun exploring the combination of anti-tumor vaccines with checkpoint
blockade in clinical trials. One recently reported trial which examined GVAX-PCa combined
with ipilimumab for patients with mCRPC found that the combination treatment was
generally well tolerated and was able to elicit anti-tumor responses (as measured by PSA
decline) in some patients®9. Another trial combining PSA-TRICOM with ipilimumab had
similar findings®1. Many other clinical trials examining these combination approaches are
currently underway (Table-L16, NCT02499835, NCT02325557, NCT02506114,
NCT01804465).

Radiation therapy, chemotherapy, and androgen deprivation therapy are all standard
treatments in the management of prostate cancer, and all also have immune modulating
activities. All three treatments can cause tumor cell death, potentially leading to release of
prostate tumor antigens. Androgen deprivation has distinct immune-modulating activities by
leading to thymic release of naive T cells and can specifically lead to T-cell infiltration of
prostate tumors82, Radiation therapy and chemotherapy can also disrupt tumor vasculature,
raising the possibility that these treatments may make the tumor microenvironment more
amenable to the development of an immune response. For all of these reasons, there is a
strong rationale for combining these standard therapies with immunotherapies. On the other
hand, both chemotherapy and radiation therapy can have immunosuppressive effects,
underscoring the importance of careful planning and trials needed to determine optimal
treatment strategies for patients with various stages of disease.
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A Model for Success — Rational Combination Approaches

As recurrent prostate cancer is one of the leading causes of cancer-related death in the
United States, there is a great need for the development of novel therapies. Within the last
five years several targeted agents have been approved for prostate cancer, but each has
demonstrated a median prolongation of survival of only a few months. The field of cancer
immunotherapy continues to grow and several agents have demonstrated dramatic successful
anti-tumor activity for some diseases, including responses that continue after treatment has
been discontinued. To date, while different immunotherapy approaches have been
investigated for prostate cancer, including vaccines, checkpoint inhibitors, and tumor
microenvironment disrupting agents, the results from each of these treatments as
monotherapies has been more modest. Notwithstanding, clinical signals have been observed
with cytokine-based therapies, CTLA-4 blockade, and with treatments that affect the
immune regulatory populations within the tumor microenvironment. And prostate cancer is a
disease for which vaccines have demonstrated clinical activity as single agents, with
sipuleucel-T being the first vaccine to receive FDA approval for the treatment of any
malignancy. These findings and observations suggest that optimal treatment effect may be
observed when immunotherapy agents will be used in combination, and specifically
combining treatments aimed at increasing the frequency tumor-reactive T cells (e.g. by
vaccination, androgen deprivation, radiation therapy, or chemotherapy) with agents to
increase their effectiveness (e.g., cytokines, checkpoint blockade, or regulatory cell function
blockade). Many clinical trials evaluating these approaches are currently underway, and we
believe that the rational combination of immunotherapies with other standard cancer
therapies will lead to markedly improved treatments for patients with prostate cancer over
the next decade.
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Figure 1. Schematic of Immunotherapy Classes
Shown is a schematic of the classes of immunotherapy approaches being investigated for the

treatment of prostate cancer including (1) approaches to increase tumor-targeting cytolytic
lymphocytes (e.g. vaccines, cytokines, adoptive transfer of cytolytic anti-tumor cells, or
bispecific antibodies); (2) approaches to disrupt immune regulation; and (3) approaches to
disrupt the immunosuppressive tumor microenvironment.
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