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Abstract

The mesenchymal-to-epithelial transition (MET) is an intrinsically mechanical process describing 

a multi-step progression where autonomous mesenchymal cells gradually become tightly linked, 

polarized epithelial cells. METs are fundamental to a wide range of biological processes, including 

the evolution of multicellular organisms, generation of primary and secondary epithelia during 

development and organogenesis, and the progression of diseases including cancer. In these cases, 

there is an interplay between the establishment of cell polarity and the mechanics of neighboring 

cells and microenvironment. In this review, we highlight a spectrum of METs found in normal 

development as well as in pathological lesions, and provide insight into the critical role mechanics 

play at each step. We define MET as an independent process, distinct from a reverse-EMT, and 

propose questions to further explore the cellular and physical mechanisms of MET.

Graphical Abstract

†author for correspondence: lad43@pitt.edu, address: 3501 Fifth Avenue, 5059-BST3, University of Pittsburgh, Pittsburgh PA 15213.
*contributed equally

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Semin Cell Dev Biol. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Semin Cell Dev Biol. 2017 July ; 67: 113–122. doi:10.1016/j.semcdb.2016.05.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

MET; EMT; cell mechanics; phenotypic plasticity; cell and tissue polarity; epithelial-to-
mesenchymal transition; re-epithelialization; reverse-EMT; epithelialization; polarization

1. Introduction

Mesenchymal-to-epithelial transition (MET) refers to the progressive phenotypic change 

from loosely associated motile cells to tightly bound cells with a distinct apical-basal 

polarity. MET is a fundamental cellular process that underlies a range of developmental, 

regenerative and pathological events relevant to human health. The emergence of MET in 

eukaryotes likely played a key role in the evolution of multicellular organisms from loose 

associations of single cells [1]. The invention of specialized intercellular junctions, including 

tight and adherens junctions, enabled cell-cell communication and allowed the creation of 

microenvironments isolated from the outside world in the form of lumens. As organisms 

became increasingly multifaceted in composition and physiological function, so did the 

programs of morphogenesis, which would require multiple sequences of EMT and MET. 

Cellular programs of MET from development eventually would be recapitulated during 

regeneration and under pathological conditions, driving formations of tumors and fibrotic 

lesions.

In this review, we will highlight extant cases of MET during development, examining the 

initiation and progression of METs in various contexts of self-assembling tissues, from early 

embryogenesis to metastatic tumor formations. We direct the interested reader to the 

excellent reviews that have focused on the molecular signaling pathways that establish cell-

cell junctions and apical-basal polarity [2, 3]. Here, we will focus on the specific steps of 

MET and the contribution of mechanical processes in driving MET, e.g. cell contractility, 

tensile forces and the mechanical properties of surrounding microenvironment. By relating 

the mechanical processes that drive mesenchymal cells to more polarized phenotypes we 

note many parallels with role of mechanics in regulating cellular processes including EMTs 

[4, 5], cell survival and proliferation, and stem cell differentiation [6, 7]. In our conclusion 

we pose several questions to guide future research to elucidate how mechanical cues from 

the dynamically changing microenvironment influence the molecular signaling pathways 

driving polarity establishment.

2. Defining the Role of Mechanics in the Mesenchymal-to-Epithelial 

Transition (MET)

We broadly define a MET as any transition that increases the "epithelial-ness" of a 

mesenchymal cell, whereby the transitioning cell acquires a more polarized morphology or 

establishes a more asymmetric distribution of apical junctions. We include in our definitions 

events described as "epithelialization", "reversion to epithelia," and "re-epithelialization" but 

note these terms only span segments of a full multi-step MET (Fig. 1). Based on findings 

from a range of model systems that cover segments of the transitional process we propose 

multiple steps of MET that cover the entire cellular process (Fig. 1) from (1) triggering the 
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specification of epithelial cells via developmental programs or micro-environmental cues, 

(2) establishment of cell polarity, (3) propagation of MET through tissue, and (4) 

stabilization of new tissue architecture. Specific cases of MET and their mechanical 

regulation will be discussed in later sections.

Step 1: Initiation - the Decision to Change

The initial decision to transition from a mesenchymal to an epithelial phenotype can be 

categorized by the input signals, i.e., autonomous vs. non-autonomous. Of the many 

developmental METs found in development it is not clear how many occur autonomously; 

by contrast, numerous chemical or mechanical cues from microenvironment are known to 

drive MET, for instance as secondary metastatic tumors arise, or as iPSCs are generated 

from adult cells, or as wounds close.

A number of cellular processes are known to be responsive to mechanical cues including 

stem cell fate decisions [8, 9] and durotaxis in migratory cells [10]. A number of findings 

suggest mechanical cues contribute to MET; for instance, inner cell mass cells of the early 

mouse blastocyst undergo MET as they localize the polarity protein, aPKC, upon reaching 

the fluid-filled surface of the blastocyst cavity [11]. Such environmental cues may influence 

cancer cells, for instance mechanical properties of the secondary site where circulating 

mesenchymal tumor cells reside is an important factor in activating their metastatic growth 

as epithelial tumor [12–15].

Step 2: Polarization - Establishing a New Axis

After making the decision to adopt a more epithelial phenotype, mesenchymal cells need to 

establish apical-basal polarity. Cycles of actomyosin contractility drive the formation and 

maturation of cell-cell adhesion (e.g., E-cadherin; [16]) between neighbors. Nascent cell-cell 

contacts formed via cadherin complexes may require tension before the contacts are 

reinforced or recruit additional types of complexes. Cells increase their adhesion to the ECM 

substrate by increasing numbers or increasing the strength of focal adhesions (e.g., integrin 

engagement through ECM and basement membrane;[17]). Spatial patterns of junctional 

compliance, e.g. the "deformability" of cell-cell or cell-ECM attachments, localize assembly 

and activity of polarity proteins (e.g. Par3, Par6/aPKC, and crumbs; [17]) that partition 

apical and basolateral membranes.

Throughout this process a thin meshwork of F-actin and myosin II under the cell cortex 

provides both mechanical stability and energy to remodel the cytoarchitecture. For example, 

soon after fertilization, the one cell embryo of C. elegans quickly clears the pulsatile 

actomyosin contraction from one side of embryo, stabilizing factors that establish anterior 

posterior polarity [18, 19]. This mechanically defined polarity translates into precise 

distribution of polarity-regulating factors (e.g., Par2 and Par6;[18]). The adhesion between 

E-cadherin expressing, MET undergoing cells, may nucleate actin polymerization and 

cortical contractility in neighboring cells. Cellular tension transmitted through the adherens 

junction can provide polarization cues to the rest of the cell cortex and enhance the 

mechanical stability of apical membranes. [16, 20]
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Step 3: Propagation - Spreading Polarity

There are many unanswered questions regarding the propagation of MET due to limited 

access to the real-time progression of MET in vivo. Several possible scenarios of MET 

propagation include (Fig. 2): 1) a single cell or a group of cells autonomously becomes 

epithelial until sufficient numbers form a functional epithelium, 2) a single cell or group of 

polarized epithelial cells recruit neighboring epithelial cells, through transmission of 

intercellular forces or signals, thus spreading a nascent epithelial sheet over the tissue, 3) 

apical insertion of cells from a basal layer of tissue to transition to epithelial. Cellular 

processes during propagation may be homologous to the processes that induce cell-cell 

junction formation in cultured epithelial cells after calcium depletion or wounding.

An intriguing possibility is that only a few cells undergoing MET may polarize their 

contractility and activate mechanoreceptors on neighboring cells that would lead to 

sequential MET induction along the axis of the tension. Alternatively, development of 

homogeneous tension over the surface of a compact group of mesenchymal cells or along 

the surface of a fluid-filled cavity might coordinate the onset MET at that surface.

Step 4: Stabilization - Building New Architecture

Dense circumapical and apico-medial F-actin provide cells in the epithelium mechanical 

integrity and but also allow cell rearrangement and renewal throughout for the life of the 

organism. Tension within the epithelium, strength and cohesion of junctional complexes, and 

composition of the basal ECM may provide cues that guide the insertion of specialized cells 

recruited from adjacent mesenchymal populations via single-cell MET [21, 22]. Cycles of 

EMT and MET are common during regeneration of epithelial organs, e.g. after acute kidney 

injury, yet the role of mechanics in these events remains to be determined.

3. In vitro Insights to METs

In vitro culture models have provided a valuable context to access and analyze the fine 

points of cellular mechanisms. Models of junction formation in stable epithelial cell lines 

and of junction re-establishment in cultured epithelial cells have been essential to identifying 

mechanisms that control junction formation and maturation, which offers partial insight into 

the steps of MET. In brief, currently available details of epithelialization (e.g., formation and 

establishment of adherens and tight junctions) are mostly explored using calcium switch 

protocols on cultured epithelial cells. Modulating simple factors including cell confluency 

and the period of calcium depletion have provided insight into various elements and 

magnitudes of re-epithelialization, including the temporal dynamics of localizing adherens 

junctions (E-cadherin) and tight junctions (ZO-1)[23, 24], identifying the physical role of 

actin polymerization in sealing adherens ‘zippers’ [25] and Rho-mediated contractile actin to 

strengthen epithelial junctions [16]. In addition to switching states of epithelial cells, 

mesenchymal cells (e.g., mouse fibroblast) expressing E-cadherin have been used to 

understand how cell polarity is established during MET and showed the role of cadherins in 

inducing epithelial-like polarization by restricting NaK-ATPase to the basolateral domains of 

the cell [26].
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4. METs and Early Development

Definitive stages of early development are synonymous with MET. Blastomeres localize 

their membrane traffic [27] and exhibit polarized membrane domains as early as the two-cell 

stage in the aquatic frog Xenopus 28]. Early mammalian morphogenesis begins with a MET 

when the 8-cell embryo undergoes compaction; undifferentiated cells become adherent and 

establish apical-basally polarized membrane domains (Fig. 3A) after activation of the apical-

basal polarity pathways. The resulting polarity allows cells to apply contractile forces on 

neighbors via their adhesion sites [29–33]. It is also thought that membranes surrounding 

early embryos, such as the vitelline membrane in C. elegans or the zona pellucida in 

mammals, exert a passive mechanical force on blastomeres that also contributes to 

compaction and constrain blastomere movements [31, 34]. Upon division into the 16- and 

32-cell stages, only surface cells retain apical membrane polarity and the blastocyst cavity 

begins to form. In mammals, the surface cells and inner cells give rise to two different cell 

lineages, the trophoectoderm and the inner cell mass, respectively. Further development of 

the trophoectoderm requires tight junctions, actomyosin contractility, and cadherin-based 

adhesions [35], suggesting a continuing role for intercellular tension. Once inner cell mass 

forms apical tight junctions polarized distribution of NaK-ATPase pumps ions into the 

blastocoel which inflates from osmotic pressure [27]. In zebrafish, cells forming the embryo 

are fully derived from an inner cell mass of mesenchymal cells and must undergo MET to 

establish all embryonic epithelia. The sorting and agglomeration of these cells appear 

regulated by differential contraction as cell-cortex tension regulates germ-layer specific 

epithelial aggregation [36]. Gastrulation proceeds with polarized cell orientations, 

intercalation and migration driving tissue collective migration and convergent extension [37–

40] requiring an interplay between cellular mechanics, canonical Wnt signaling and other 

planar cell polarity signaling pathways.

5. METs Are Fundamental to Vertebrate Organogenesis

Mesenchymal cells contribute to the formation of many epithelia in the developing embryo 

through both multicellular and single-cell METs. In the following section we will discuss 

several examples that highlight specific mechanisms and different stages of MET during 

multicellular and single cell MET contributions to vertebrate organogenesis.

Kidney Development

MET in kidney development is one of the best-studied METs in organogenesis and has 

provided detailed insights on the cellular basis and the molecular signaling pathways 

involved in kidney development, which have been well reviewed [41]. Kidney progenitor 

cells (KPCs) derive from bilateral fields of mesoderm cells that lie in between the somitic 

and lateral plate mesoderm. The caudally extending pronephric duct forms as mesenchymal 

leader and follower KPCs exhibit collective migration [42, 43]. Follower cells undergo MET 

to form a single-cell thick epithelial tube that extends caudally (Fig. 3B). Studies of 

collective cell migration models suggest polarized traction generation from the epithelial 

follower cells drive this process [44], using intercellular tensile forces transmitted through 
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cadherins to establish migration polarity [45]. Such intercellular tensions may be promoting 

MET in the follower cells [46] yet remain inhibited by FGF signaling in leader cells.

As the pronephric duct extends, adjacent mesenchymal cells form arrays of epithelial tubules 

that branch from the pronephric duct to lengthen medioventrally toward the aorta. The 

caudal end of the pronephric duct begins to swell to form the ureteric bud, which invades the 

metanephric mesenchyme and begins branching morphogenesis. At the tips of these 

branches, the metanephric mesenchyme cells undergo MET to contribute to branch 

elongation. Branching morphogenesis appears to be highly dependent on extracellular 

matrix [47], PCP signaling and convergent extension [48] and on Rho/ROCK and 

MAPK/ERK signaling, as inhibition of ROCK with Y27632 increases branching of 

epithelial buds and migration of metanephric mesenchyme [49]. Polarization of tubule 

epithelia appears crucial for kidney development, as perturbations give rise to defects, 

including polycystic kidney disease [50]. Fully-differentiated kidney epithelia include a 

diverse population of cell types; patterning of these intercalated cells depend on Notch 

signaling [51] but how exactly they become incorporated into these epithelia, whether they 

present in the epithelium de novo or they arrive through single cell MET and intercalation, is 

not clear.

Early Heart Development

Vertebrate heart organogenesis is an inherently mechanical process whereby planar, 

bisymmetric fields of heart precursor cells (HPCs) move ventrally to merge on the midline, 

fold to form a lumen and tube, which loops and septates to form the adults heart. In avian 

and mammalian development, presumptive HPCs undergo an EMT during gastrulation and 

establish identities within the definitive mesoderm [4, 52–54] (Fig. 3C). Prior to reaching the 

midline, HPCs form epithelia that are characterized by basolateral membrane expression of 

β-catenin and apical aPKC [55, 56] and a belt of N-cadherin expression [57]. Fibronectin is 

also deposited on the basal surface of HPC epithelia and plays a crucial role in establishing 

polarity and adherens junctions [55]. MET is required for proper heart function [57] and 

shortly after epithelialization is when the first cardiac electrical activity is recorded [58, 59]. 

During their movement to the ventral midline, HPCs move through a dynamically changing 

mechanical micro-environment, which includes extensive fibronectin remodeling [60, 61] 

increases in tissue stiffness [62] and tension originating from the convergent extension of the 

endoderm [63–65]. While knocking down actomyosin based cell contractility prior to heart 

tube formation and epithelialization consistently causes cardiac defects [63, 66], perturbing 

cell contractility near the onset of looping, post-MET does not, which implicates a crucial 

role for cell mechanics in providing cues to guide the early organization of HPCs.

After the myocardial epithelium is established, endocardial cells undergo an EMT to migrate 

out of the trunk mesoderm and form a loose mesenchymal network located between the 

myocardium and the endoderm, which deposits and remodels fibrillin to enhance 

endocardial migration [67]. These cells aggregate to line the innermost lumen of the heart, 

and polarize their actin cytoskeleton, N-cadherin and integrin expression and NaK-ATPase 

[58, 68]. Additional trunk mesoderm cells contribute to the outflow tract and the right 

ventricle of the growing heart; disruption of this MET may have a role in congenital heart 
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defects associated with DiGeorge Syndrome and basal filopodia activity appears crucial to 

outflow tract development [69]. Both of these processes involve restructuring ECM, directed 

migration, and polarized actomyosin, suggesting that microenvironment mechanics or 

intercellular forces play a role in these METs.

Somitogenesis

After gastrulation the internalized presomitic mesoderm (PSM) is further subdivided and 

organized through a series of transitions that increase order within mesenchymal tissues [70, 

71]. New ECM interfaces provide cues to mesenchymal cells allowing them to polarize in 

shape and organize dynamic behaviors along the anterior-posterior and medial-lateral axes 

of the embryo [72]. Segmentation of the dorsal paraxial mesoderm into somites involves a 

further transition toward an epithelial phenotype. Avian exhibit the most polarized example 

of epithelial somites with clear apical-basal assembly of N-cadherin and ZO-1 

demonstrating the somites in these animals generate an inward directed apical polarity [73, 

74]. The PSM in teleosts and amphibians, which undergo more rapid larval development, 

also develop highly ordered somites but these do not fully epithelialize with apical junctions 

[75, 76]. Interestingly, somitogenesis in these species appear sensitive to same factors that 

destabilize epithelial somites suggesting that their constituent mesenchyme undergo early 

phases of MET but do not complete the process.

We can consider the role of mechanics in somitogenesis MET in several stages. First, 

mechanical cues triggered by the somitogenesis clock may initiate phenotypic changes in 

cell behaviors and gene expression. Next, mechanical processes likely drive sorting as 

polarized mesoderm cells separate and engulf non-polarized cells. Lastly, forces produced at 

new surfaces of the PSM and nascent somite may stabilize junctions by feedback through 

intracellular trafficking pathways, using cues from surrounding ECM to orient assembly of 

apical-basal junctions. Patterns of cell-cell tension may enable cells to adjust their phenotype 

or even gene expression to their position within each new segment. Recent efforts to 

consider the impact of global patterns of tissue strain [77] and the connection between cell 

behaviors and tissue mechanics during somitogeneis [78] suggest mechanics may play an 

important role in the METs driving segmentation.

6. Single-cell MET - Expanding the Function of Existing Epithelia

Once an epithelial tissue or organ has been established, additional cases of single cell MET 

can generate specialized cells (Fig. 2). During single cell MET, individual cells within the 

surrounding mesenchyme are induced to become a specialized cell precursor which 

subsequently migrates from the mesenchyme and insert from the basal surface of the 

epithelium. The exact origins and the environmental cues generating most specialized cells 

remain unclear but we will review efforts to identify mechanisms underlying the 

contribution of single cell MET to the Xenopus embryonic skin and mammalian kidney 

tubules.

Single cell METs contribute distinct epidermal cell types responsible for ciliary transport 

and electrophysiology in the larval epidermis of the aquatic frog Xenopus laevis 79] (Fig. 

3D). Cells on the embryo surface differ from deeper mesenchymal cells by exhibiting strong 
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apical-basal polarity both morphologically and molecularly [28, 80–82]. Mesenchymal cells 

associate strongly with nascent fibronectin extracellular matrix, assembling a delineated 

basement membrane before gastrulation begins [83]. Global movements of epiboly and 

gastrulation spread epidermal precursors within the embryonic ectoderm over the entire 

surface of the embryo where local signals mediated by Notch generate a set of precursor 

cells [84]. Single cell METs in the Xenopus epidermis occur in stages as induced cells 

disperse along the basal surface of the existing epithelium and extend protrusions toward the 

apical surface of the epidermis [22, 85]. The cell mechanics of intercalation are poorly 

understood but appear to be regulated by many of the same pathways that regulate cell 

motility and establishment of junctions between same-type epithelial cells [22, 86, 87].

7. METs During Drosophila Development

METs play key roles in shaping the Drosophila embryo forming secondary epithelia such as 

the midgut and the dorsal vessel, adding diverse cell types to the renal rudiment, and later 

establishing the follicular epithelium of the developing oocyte. In contrast to vertebrates, 

junctions in epithelia descended from the blastoderm epithelia (e.g. primary epithelia) differ 

from junctions in midgut and heart tubes that form by MET from mesoderm cells produced 

by gastrulation (e.g. secondary epithelia; [88, 89]). Drosophila offers many lessons in 

morphogenesis and we summarize the role of MET in three events: formation of the heart 

tube, transformation of the mesoderm into the midgut epithelium, and intercalation of 

mesenchymal cells into the renal epithelium.

Formation of the cardiac heart tube, or dorsal vessel, requires transition of mesenchymal 

cells to a more epithelial phenotype with bilateral populations of cardiac precursors 

polarizing lumenal-domains before reaching the dorsal midline. Processes involved in MET 

and heart tube formation in Drosophila parallel those guiding vertebrate heart formation, 

including the dependence of MET, but not cell identity on extracellular matrix [90–93], and 

the role of tension within the embryo to position precursors and enable fusion at the midline 

[94]. Furthermore, amnioserosa cells, which first appear to engage precursors with E-

cadherin and septate junctions must disengage before cardiac cells can fully establish 

polarized lumenal-domains and fuse [95]. Mechanical cues within the microenvironment 

during dorsal closure and fusion are likely key to the MET and other phenotypic changes in 

cardiac precursors in the fly as they form the dorsal vessel.

Shortly after gastrulation mesodermal cells from the anterior and posterior midgut 

invaginations bridge the length of the embryo to establish the alimentary canal [96]. 

Mesenchyme progressively adopt apical-basal polarity with junctional E-cadherin and apical 

arrays of F-actin as they form a columnar epithelium. Just as in the case of the heart, 

extracellular matrix cues are not required for early patterning but are required for MET [92]. 

Similar to the dependence of MET and cell migration on laminin, in the forming midgut also 

depends on instructive cues from netrin expressed by their substrate through the midgut 

localized receptor frazzled to establish a columnar epithelium.

Once primary and secondary epithelial form in Drosophila they provide a substrate for 

single cell MET through radial intercalation. Intercalation of mesenchymal precursors into 
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established epithelia, like intercalation of ciliary cells and ionocytes into the Xenopus 
epidermis, occurs in the midgut (adult midgut precursors and interstitial cell precursors; 

[97]) and renal epithelia.

8. MET Required for Stem Cell Reprograming

MET is required during reprograming of somatic cells [98, 99]. During the initial phase of 

reprograming, mouse embryonic fibroblasts transition to an epithelial, unstable intermediate 

state through a MET[100]. This transition is marked by downregulation of mesenchymal 

genes (i.e., snail, N-Cadherin, fibronectin) and upregulation of epithelial genes (i.e., E-

cadherin and Epcam). Recent studies highlight the role of mechanics in regulating MET 

during the generation of iPSCs; when cultured on microgrooves, induced fibroblasts align 

and elongate and show increased efficiency of iPSC formation which depends on MET 

[101]. Failure to maintain cellular tension generated by the actin myosin network on 

microgrooves, by inhibiting myosin contractility with blebbistatin, completely abolishes cell 

reprograming and inhibits MET [101]. Knock-down of these kinases that disrupt the F-actin 

network, including TESK1 and LIMK2 that phosphorylate the actin-binding protein cofilin 

[102], induce dramatic cellular phenotypic changes, turns fibroblasts into epithelial cells, 

and enhances iPSC efficiency. Similarly, MEFs cultured on a soft hydrogels increased MET 

and iPSC formation [103]. Together these data suggest a key role for cellular mechanics and 

tension maintained by cytoskeleton in regulating MET during iPSC formation.

9. METs in Secondary Tumor Formation

Metastatic cancers begins with dissemination of mesenchymal tumor cells which undergo 

MET and form proliferative macro-metastatic colonies. Comparing expression of epithelial 

junctional proteins including E-cadherin, β-catenin, and connexin, in primary tumor and 

matched distant metastases in lung, liver, and brain of cancer patients show equal or 

increased epithelial cells in metastases, indicating that circulating mesenchymal tumor cells 

undergo MET [42, 104] (Fig. 3F). Furthermore, activation of MET via repression of twist1 

or prrx1 promotes cell proliferation and the establishment of metastatic colonies at distant 

sites [2, 105]. Microenvironmental cues may inhibit or support MET and metastases [8]; for 

example, a stiff microenvironment created by extensively crosslinked collagen fibrils has 

been shown to promote MET and secondary site establishment, tumor cell proliferation and 

metastatic colonization [12, 13]. Dense ECM fibrils at these sites can enhance integrin-

mediated tumor cell engagement, activate focal adhesion kinase (FAK), and actomyosin 

reorganization [14, 15]. Tension generated by the actomyosin network also provides 

feedback in the form of ECM arrangement and bulk tissue stiffness to drive tumor 

progression [15]. The critical role of the mechanical microenvironment in cancer metastasis 

is increasingly appreciated [106] but the role of these cues in driving MET are unclear.

10. Conclusion / Future Directions

The classical definition of MET relies on black and white definitions of what it means to be 

a mesenchymal cell or an epithelial cell relying on downregulation of mesenchymal markers, 

such as vimentin, with upregulation of epithelial markers, such as E-cadherin. This rigid, 
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histology-based identification must be broadened in recognition of the diverse spectrum of 

functional METs observed in development and homeostasis. The number of studies that 

directly contradict over-rigid definitions of epithelial and mesenchymal are increasing, 

including Drosophila mesenchymal cells requiring functional E-cadherin to migrate [107], 

requirement of N-cadherin for the establishment and functional polarity of the outer 

epithelium in Xenopus embryos [108], and functionally mesenchymal breast cancer cells 

that neither downregulate E-cadherin nor express vimentin [109–111]. Instead, METs come 

in various forms and degrees, ranging from a population of autonomous migratory cells that 

aggregate and form a structured epithelium or endothelium, to a single independent cell 

intercalating into an epithelium and adopting the polarity of the surrounding cells, to a cell 

sheet becoming slightly more polarized. In concluding this review we pose a number of key 

questions whose resolution will expand our understanding of MET and suggest avenues for 

improved approaches to regeneration and cancer treatment.

How do METs differ and what processes are conserved?

While we have described a broad spectrum of METs that shape different tissues we propose 

they share common dependence on cell and tissue mechanics. Future studies will need to 

identify MET instructive cues and demonstrate how these regulators might be used to 

convert one type of MET to another. This strategy may prove crucial to elucidating key 

factors that regulate MET in disease progressions, including cancer metastasis, where direct 

observation is often logistically impractical due to the stochastic nature of MET in animal 

cancer models.

Is MET simply the reverse of an EMT?

A number of cancer studies have identified what they call reversible EMTs, in response to 

growth factors [112] and hormones [111]. However, in development, many progenitor cell 

populations undergo a series of EMTs and METs that accompany dynamic changes to their 

microenvironment. These transitions do not appear to be the “reverse” of each other, but 

rather a progression toward terminal differentiation. As studies uncover specific mechanisms 

driving MET, the contrast between MET and the so-called reverse EMT will become clearer.

What is the role of MET in regeneration?

Mesenchymal-to-epithelial transitions appear to play a central role in regeneration of organs 

that formed initially via MET including heart and kidney and during regeneration of limb or 

tail structures where entire germ layers must be reconstructed. In these cases the precise role 

of MET in regeneration has been difficult to elucidate given the mixed lineage of organs and 

tissues comprised from multiple germ layers. For instance, kidney tubule regeneration in 

response to BMP7 has been proposed from renal fibroblasts [113] but tracking the identity 

of the cells undergoing MET is challenging given the close lineage of the tubule 

endothelium and renal fibroblast. Still, efficient regeneration strategies may require 

induction and regulation of MET in order to recreate the diverse populations of cells needed 

for proper organ function.
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Highlights

• Mechanical cues initiate, propagate, and stabilize polarization MET

• Spectrum of METs range from in unison epithelialization to single cell METs

• Early development, organogenesis, cancer progression share basic MET 

framework

• Comparative analysis of MET and their relation to EMTs needs to be 

explored further

Kim et al. Page 17

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The role of mechanics in the step-wise progression of mesenchymal-to-epithelial 
transition (MET)
Scattered or loosely adhered mesenchymal cells (red) undergo multi-step progression to 

epithelial cells (blue): Initiation: External cues such as forces from surroundings, matrix 

remodeling, and modulated stiffness induce MET. Polarization and Propagation: 
Intercellular forces on nascent adherens junctions increase the number and density of 

adherens junctions, induces actomyosin remodeling, and increases tight junction protein 

synthesis. Stabilization: The formation of functional tight junctions and focal adhesions 

increase intercellular tension and extracellular matrix assembly. Epithelial Homeostasis: 
Contractile actomyosin cortex within cells and collective traction by groups of cells maintain 

tissue-wide tension and enable the epithelium to withstand loads along apical and basal 

surfaces.
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Figure 2. Cellular mechanisms of MET propagation
Three strategies of MET that use mesenchymal cell sources (red) to expand and diversify an 

epithelial sheet (blue).
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Figure 3. Six examples of MET during development, regeneration, and cancer
A) MET during compaction of the mouse embryo. Non-polarized egg initiates MET with E-

cadherin mediated compaction of early embryo. Modified with permission from [105]. B) 

MET during lumen formation of Wolffian duct (WD) in developing chicken embryo. Apical 

localization of E-cadherin and ZO-1 indicate formation of epithelia along the newly 

assembled lumen (yellow arrows). Modified with permission from [42]. C) MET during 

heart development in Xenopus embryo (mid-tailbud; stage 28). Ventrally migrating heart 

progenitor cells (HPCs; red, tropomyosin) establish apical-basal polarity and form tight 
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junctions (ZO-1, green on middle panel, pseudo-color in right panel - white arrows indicate 

apical surface; personal communication, T. R. Jackson). D) Single-cell MET during skin 

development of Xenopus embryo. Basal mesenchymal cells (green) intercalate and integrate 

with the pre-existing epithelial sheet (red ZO-1) [85]. E) MET in embryonic aggregates. 

Surface cells on pluripotent mesenchymal aggregate adopt apical-basal polarity and 

transition to epithelia cells (ZO-1). Pseudo-colored ZO-1 expression shows scattered clusters 

of epithelial cells across the surface of the mesenchymal-cell aggregate (personal 

communication, H. Y. Kim), and F) MET in metastatic tumor. Heterogeneously mixed 

population of mesenchymal (vimentin) and epithelial (E-cadherin) cells found in tumor 

emboli within local lymphovascular space. Modified with permission from [114]. Schematic 

diagrams in left panels (A-F) indicate involvement of mesenchymal cells (red) transitioning 

to epithelial cell type (blue).
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