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Abstract

In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain 

systems initiate divergent physiological and behavioral processes that mobilize energy and 

promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and 

reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in 

neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-

adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related 

behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent 

brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), 

including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus 

of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains 

multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the 

NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes 

with physiological status to regulate stress responding. Collectively, these brainstem circuits 

represent an important avenue for delineating interactions between stress and health.
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1. Introduction

In response to real or perceived threats to homeostasis or well-being, an organism generates 

multiple integrated stress responses that provide resources for physiological and behavioral 

adaptation (de Kloet et al., 2005; Myers et al., 2014b). Physiological stress responses 

promote energy mobilization and redistribution through two primary systems, the autonomic 
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nervous system and the hypothalamic-pituitary-adrenocortical (HPA) axis (for review see 

Ulrich-Lai and Herman, 2009). Autonomic responses to stress increase heart rate, blood 

pressure, and glucose availability, providing energetic substrates for stress adaptation 

(Ulrich-Lai and Herman, 2009). The neuroendocrine HPA axis causes the secretion of 

glucocorticoids (principally corticosterone in rodents and cortisol in humans) from the 

adrenal cortex (Keller-Wood and Dallman, 1984). Activity of the HPA axis is initiated by 

parvocellular corticotropin-releasing hormone (CRH) neurons of the paraventricular nucleus 

of the hypothalamus (PVN). At the level of the anterior pituitary, CRH leads to the systemic 

release of adrenocorticotropic hormone (ACTH), the primary stimulus for glucocorticoid 

secretion (Ulrich-Lai and Herman, 2009). Glucocorticoids then signal throughout the body 

to regulate many systemic and neural functions, including hepatic glycogenolysis and 

neuronal metabolism (Herman, 2013; Herman et al., 2003). Behavioral stress responses 

depend on a large network of brain systems involved in appraisal, emotion, and memory 

(Joëls and Baram, 2009; Sousa and Almeida, 2012). Behavioral-regulatory circuits include 

forebrain sites such as the amygdala, prefrontal cortex, and hippocampus; importantly, these 

networks also interact with the hypothalamus and brainstem to integrate behavioral 

responses with HPA axis and autonomic activity (Joëls and Baram, 2009; McKlveen et al., 

2015; Ulrich-Lai and Herman, 2009).

Aberrant activation of the HPA axis plays a role in many psychiatric illnesses including 

depression, anxiety, and post-traumatic stress disorder (for review see Jacobson, 2014; 

Ströhle and Holsboer, 2003). Glucocorticoids also exert profound effects on somatic health, 

particularly cardio-metabolic processes (Vogelzangs et al., 2010). In fact, cardiomyocyte 

glucocorticoid signaling is essential for maintaining cardiac function and survival (Oakley et 

al., 2013). Glucocorticoids also act in the hindbrain to increase arterial pressure and 

modulate baroreflex control (Bechtold and Scheuer, 2006; Scheuer et al., 2007). Therefore, 

the ascending brainstem circuits that regulate HPA axis activity and stress-related behaviors 

represent an important avenue for delineating the complex relationships between stress, 

behavior, and health.

The current review considers the key brainstem nuclei providing direct input to the PVN, 

circuits that have predominantly been mapped in rodents. We discuss their connectivity, 

chemistry, and role in HPA axis and behavioral stress responses, principally anxiety-, fear-, 

and depression-related behaviors. Although the autonomic nervous system mediates many 

important aspects of stress responsiveness, the role of the brainstem in autonomic regulation 

has been described elsewhere (see Ally, 1998; Bandler et al., 2000; Scislo and O’Leary, 

2005 for review). Therefore, the current review will focus on the ascending pathways to the 

endocrine hypothalamus and their effects on behavior. The brainstem also gives rise to 

neuromodulatory projections that collateralize throughout the brain. These primarily 

aminergic systems regulate neural and behavioral function throughout the limbic system and 

cortex. Cataloging the diversity of these functions is beyond the scope of a single review; 

thus, we will provide references, where applicable, to reviews that focus on specific 

messenger systems and their effects on behavior mediated through interactions with the 

forebrain. Brainstem projections to the forebrain also have indirect effects on HPA axis 

stress responses via neuromodulation within limbic structures (Radley et al., 2008). These 

multisynaptic network-level mechanisms have yet to be unraveled; consequently, we will 
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focus on the monosynaptic brainstem inputs to the PVN. Our review outlines brainstem 

nuclei that directly regulate the HPA axis, from rostral to caudal these are the periaqueductal 

gray (PAG), raphe nuclei, parabrachial nuclei (PBN), and locus coeruleus (LC). 

Additionally, we will explore the nucleus of the solitary tract (NTS) in detail and its rich 

collection of messengers that interact with glucocorticoids, including norepinephrine, 

glucagon-like peptide-1 (GLP-1), and glutamate. Finally, we will discuss how recent 

advances have expanded our understanding of the role of ascending brainstem projections, 

suggesting that these circuits form a critical hub for integrating interoceptive input with 

descending limbic information to coordinate endocrine and behavioral stress responses.

2. Brainstem inputs to the paraventricular hypothalamus (PVN)

The PVN is composed of a relatively small number of neuropeptide-containing cells that 

regulate many aspects of endocrine and homeostatic function (for reviews see Herman et al., 

2002a; Herman et al., 2002b). Although some PVN neurons project within the central 

nervous system and act in a pre-autonomic fashion, other PVN cell groups are 

neuroendocrine (Biag et al., 2012; Hallbeck and Blomqvist, 1999). Thus, multiple 

subregions of the PVN are defined based on neurochemistry and connectivity (for reviews 

see Herman et al., 2008; Swanson and Sawchenko, 1983). Generally, the PVN is divided 

into magnocellular and parvocellular regions. For instance, the anterior, medial, and 

posterior magnocellular portions of the PVN contain neurons that synthesize oxytocin and 

vasopressin for release from neurosecretory terminals in the posterior pituitary (van 

Leeuwen et al., 1979). Within parvocellular regions, the lateral, dorsal, and ventromedial 

areas give rise to central projections that target the basal forebrain, brainstem, and spinal 

cord (Swanson and Sawchenko, 1983). These central circuits regulate numerous autonomic 

and behavioral processes through the release of oxytocin, vasopressin, and other transmitters 

(Knobloch and Grinevich, 2014). Importantly, the dorsomedial and anterior divisions of 

parvocellular neurosecretory cells project to the median eminence where they secrete CRH, 

the primary ACTH secretagogue, as well as vasopressin, which acts synergistically with 

CRH to promote HPA axis activity (Sawchenko et al., 1984; Vale et al., 1981). Thus, the 

HPA axis response to stress originates in a circumscribed collection of neurosecretory cells 

in the PVN (Ulrich-Lai and Herman, 2009). These cells express a multitude of 

neurotransmitter and peptide receptors that integrate signals from PVN-projecting circuits. 

Importantly, the PVN only receives direct synaptic input from a restricted number of brain 

regions (for review see Herman et al., 2003). These PVN-projecting afferents arise from 

other hypothalamic nuclei, the bed nucleus of the stria terminalis (BST), and importantly, 

the brainstem (Fig. 1). The intra-hypothalamic interactions have been described in detail 

(Cullinan et al., 1996; Myers et al., 2014a; Ulrich-Lai et al., 2011), as have projections from 

the BST (Choi et al., 2007; Cullinan et al., 1996; Dong and Swanson, 2006; Dong et al., 

2001; Radley and Sawchenko, 2011). Briefly, these circuits have been proposed to form a 

hierarchy for mediating limbic stress integration and regulating HPA axis responses to 

psychogenic stressors (Herman et al., 2005; Myers et al., 2012). In contrast, brainstem 

projections have been postulated to mediate reflexive responses to systemic stressors. 

However, the multiple brainstem nuclei innervating the PVN represent a substantial 

proportion of stress-regulatory input to CRH neurons (Larsen and Mikkelsen, 1995; Ziegler 
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et al., 2012). Accordingly, these structures are well-positioned to regulate endocrine 

responses to both systemic and psychogenic stress, as well as behavior (for review see 

Morgane and Mokler, 2006; Morgane et al., 2005).

3. Periaqueductal gray (PAG)

The PAG is a midbrain region surrounding the cerebral aqueduct that regulates many vital 

functions, including analgesia, autonomic responses, and behaviors related to defense, fear, 

and anxiety (see Bandler and Shipley, 1994; Behbehani, 1995; Carvalho-Netto et al., 2007). 

The columnar organization within the PAG gives rise to diverse projections with 

individualized functions (Bandler and Shipley, 1994). Multiple tract-tracing studies have 

identified specific PAG projections to the PVN arising from the pre-commissural and 

commissural subdivisions, dorsolateral column, and ventrolateral column (Cameron et al., 

1995; Canteras and Goto, 1999; Floyd et al., 1996; Ziegler et al., 2012). Importantly, fibers 

from the ventrolateral PAG robustly target the medial, dorsal, and anterior parvocellular 

PVN (Floyd et al., 1996), providing an anatomical substrate for HPA axis regulation. 

Projections from the lateral PAG to the PVN co-localize with the glutamatergic marker 

vesicular glutamate transporter 2 (vGluT2) (Ziegler et al., 2012), suggesting the PAG may 

have an excitatory influence on the HPA axis. Multiple modalities of stress, including 

predator exposure, loud noise, forced swim, and restraint, increase neuronal activation in the 

dorsolateral PAG (Campeau and Watson, 1997; Canteras and Goto, 1999; Cullinan et al., 

1995). Furthermore, electrical stimulation of the PAG in the open field increases 

corticosterone, accompanied by flight behaviors (Lim et al., 2011). Interestingly, intra-PAG 

administration of a cannabinoid receptor agonist also increases plasma corticosterone, yet 

decreases stress-induced hyper-locomotion and increases freezing (Finn et al., 2004). Thus, 

there appears to be functional topography of the PAG for regulating fight-or-flight behaviors, 

with different PAG columns implicated in divergent behavioral strategies. For instance, the 

ventrolateral PAG may be involved in passive defense strategies (e.g. freezing), while the 

dorsal PAG may mediate active defense behaviors (e.g. flight) (Monassi et al., 1997).

4. Raphe nuclei

The raphe nuclei are a collection of functionally and anatomically diverse cell groups that 

span the brainstem and contain the majority of the serotonin-producing neurons in the 

central nervous system. The organization and physiology of the raphe nuclei are 

comprehensively reviewed elsewhere (see Jacobs and Azmitia, 1992; Lowry, 2002). In 

general, the raphe nuclei can be divided into primarily ascending and primarily descending 

groups. The descending nuclei, including the raphe magnus and raphe pallidus, are spinal-

projecting and regulate autonomic functions, among others (Jacobs and Azmitia, 1992). The 

ascending raphe nuclei, primarily the dorsal raphe (DR) and the median raphe (MnR), send 

projections throughout the brain and regulate a variety of behaviors related to mood, anxiety, 

and stress (Jacobs and Azmitia, 1992). The effects of serotonin signaling are dependent not 

only on the topography of the raphe, but also on a vast array of receptor subtypes. 

Consequently, serotonin can have divergent and opposing effects on many processes. For 

detailed reviews of serotonin interactions with the limbic system in behavioral control see 

Deakin and Graeff, 1991; Hale et al., 2012; Paul et al., Briefly, the MnR is proposed to 
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inhibit stress responses, while the DR appears to facilitate arousal and anxiety-like behaviors 

(Lowry, 2002). However, both the MnR and DR send serotonergic fibers to the PVN, 

although, the majority of serotonergic fibers terminate in the region immediately 

surrounding the PVN (Sawchenko et al., 1983). Models of altered serotonin signaling, 

including serotonin transporter knockout mice and serotonin receptor overexpression in the 

medial hypothalamus, suggest that raphe projections, whether to PVN proper or surrounding 

areas, likely stimulate stress responses (Hanley and Van de Kar, 2003; Li et al., 2004). 

Importantly, injections of a serotonin-specific neurotoxin directly into the PVN inhibit 

stress-induced ACTH release (Jorgensen et al., 1998), indicating that serotonin input to the 

PVN predominantly excites the HPA axis. Whether PVN-projecting raphe neurons directly 

regulate behavioral responses to stress is somewhat unclear. The largest numbers of 

serotonin neurons arise from the DR and ascend through two major fiber tracts, the forebrain 

bundle tract and the peri-ventricular tract (Hale and Lowry, 2011; Hale et al., 2012). The 

former targets major limbic nuclei, while the later innervates the hypothalamus; thus, it is 

possible that behavioral and endocrine regulation may be partially segregated within the 

raphe nuclei. In support of this, decreased serotonin signaling in the medial hypothalamus 

attenuates ACTH secretion but not anxiety-like behaviors (Li et al., 2004).

5. Parabrachial nuclei (PBN)

The PBN are located in the reticular formation at the midbrain-pontine junction and are 

primarily composed of lateral and medial nuclei (Gauriau and Bernard, 2002). The PBN are 

involved in many homeostatic functions including chemoreception, nociception, and 

autonomic control (Chamberlin, 2004; Gauriau and Bernard, 2002; Spector, 1995). Although 

the role of the PBN in stress responding has been understudied, the nuclei project to the 

hypothalamus and may play a role in neuroendocrine-autonomic integration. Specifically, 

the lateral nuclei, including central lateral, superior lateral, and the external lateral, densely 

innervate the PVN (Bester et al., 1997). Neurochemically, the lateral PBN projections to the 

PVN are glutamatergic and predominantly innervate parvocellular neurons (Krukoff et al., 

1992; Ziegler et al., 2012), suggesting a possible excitatory influence on HPA axis reactivity. 

Neurons of the PBN are activated by both systemic (e.g. visceral illness) and psychogenic 

(e.g. restraint) stressors, including cells that express peptides such as calcitonin gene-related 

peptide, neurotensin, and CRH (Kainu et al., 1993). While few rodent studies have examined 

neuroendocrine regulation by the PBN, CRH injections into the PBN increase circulating 

ACTH in anesthetized cats (Carlson et al., 1994). Behaviorally, the PBN are largely 

implicated in aversive behaviors related to interoceptive information, such as conditioned 

taste aversion (Bester et al., 1997; Reilly and Trifunovic, 2001).

6. Locus coeruleus (LC)

The LC, a discrete pontine nucleus contiguous with the fourth ventricle, houses the majority 

of the norepinephrine-expressing neurons in the brain and innervates the entire neuraxis 

(Dahlström and Fuxe, 1964; Schwarz and Luo, 2015; Swanson, 1976). The LC modulates 

behaviors related to arousal, attention, cognitive flexibility, and stress responses (Cassens et 

al., 1981; Francis et al., 1999; Valentino and Van Bockstaele, 2008). The LC is also the 

primary source of norepinephrine for the cortex and hippocampus, representing a major 
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component of the central arousal network (Valentino and Van Bockstaele, 2008). Thus, LC-

corticolimbic interactions are key for behavioral state regulation (see Aston-Jones and 

Cohen, 2005; Berridge and Waterhouse, 2003 for review). The LC provides sparse direct 

input to the PVN that is limited to the medial parvocellular division and predominantly, but 

not exclusively, noradrenergic (Cunningham and Sawchenko, 1988; Sawchenko and 

Swanson, 1982). The LC is activated by numerous modalities of stress, including 

psychosocial, physiological, and nociceptive stimuli (Cassens et al., 1981; Francis et al., 

1999; McCall et al., 2015; Reyes et al., 2008). Accordingly, the role of the LC in modulating 

the HPA axis differs depending on the duration and intensity of stressors (Armario et al., 

2012). Generally, LC function appears more important for neuroendocrine responses to 

acute stressors than for repeated challenges following chronic stress. For instance, 

norepinephrine depletion of the LC by neurotoxic lesions blunts HPA axis responses to acute 

restraint, but do not prevent the induction of HPA axis hyperactivity following chronic 

variable stress (Ziegler et al., 1999). Although, repeated or prolonged activation of the LC 

has been implicated in the development of stress-related behaviors (George et al., 2013; 

Reyes et al., 2015; Valentino et al., 2012). Specifically, recent studies employing 

chemogenetic and optogenetic modulation of LC norepinephrine neurons determined the 

necessity and sufficiency of these cells for stress-induced anxiety-like behavior (McCall et 

al., 2015). Interestingly, the effects of stress on behavior may be mediated, in part, by CRH 

signaling in the LC. Although CRH input to the LC has been shown to arise from amygdalar 

and brainstem afferents (McCall et al., 2015; McFadden et al., 2012), the sensitivity of LC 

neurons to CRH is not static and is influenced by factors such as prior stress exposure 

(Curtis et al., 1999, 1995).

7. Nucleus of the solitary tract (NTS)

The NTS is an expansive and neurochemically diverse cell group in the dorsal medulla. The 

NTS is a critical hub for integrating interoceptive and viscero-sensory input with descending 

affective and cognitive information from the limbic forebrain (for excellent reviews see 

(Rinaman, 2011, 2007). The best-described functions of the NTS relate to autonomic 

control, yet emerging evidence points to NTS involvement in many behavioral and 

neuroendocrine processes (Rinaman, 2011). This diversity of functions is mediated by an 

array of neurotransmitters and peptides with partially overlapping expression. For instance, 

the intermediate NTS contains the A2 group of norepinephrine-producing neurons 

(Dahlström and Fuxe, 1964). This cell group provides a substantially greater proportion of 

noradrenergic projections to the PVN than the aforementioned locus coeruleus (i.e. A6), and 

the overwhelming majority of norepinephrine input to medial parvocellular neurons relative 

to other noradrenergic populations (e.g. A1) (Sawchenko and Swanson, 1982). In addition to 

norepinephrine, these neurons also co-release glutamate (Stornetta et al., 2002). 

Furthermore, NTS noradrenergic neurons contain peptides such as prolactin-releasing 

peptide and neuropeptide Y, which may act synergistically with norepinephrine on PVN 

CRH neurons (Chen et al., 1999; Sawchenko et al., 1985; Uchida et al., 2010). A separate 

cell group located in the caudal NTS that expresses glucagon-like peptide-1 (GLP-1), as well 

as glutamate (Zheng et al., 2015), also gives rise to PVN projections; importantly, these cells 

do not produce norepinephrine (Ghosal et al., 2013; Larsen et al., 1997). Neurons 
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throughout the NTS are activated by a variety of acute and chronic stressors (Flak et al., 

2012; Pezzone et al., 1993; Rinaman, 1999). Moreover, a portion of NTS chronic stress-

activated neurons are immunoreactive for the norepinephrine-synthesizing enzyme 

dopamine-β-hydroxylase (DBH) (Flak et al., 2012). Direct stimulation of the NTS, as well 

as pharmacological activation of NTS-derived norepinephrine and GLP-1 signaling in the 

PVN, indicate that the nucleus promotes HPA axis activation (Day et al., 1985; Kinzig et al., 

2003). In addition to sending projections that target subcortical limbic regions critical for 

regulating behavioral responses to stress, the NTS also receives direct input from the 

amygdala, BST, and prefrontal cortex (van der Kooy et al., 1984). Consequently, the NTS 

has been implicated in behaviors related to anxiety, depression, and fear memory (Ghosal et 

al., 2014; Miyashita and Williams, 2002).

7.1. Norepinephrine

Housed within the NTS, A2 noradrenergic neurons form a bidirectional interface linking 

physiological processes with emotional and cognitive events, particularly in response to 

stressors (Rinaman, 2011; Sawchenko and Swanson, 1982, 1981). These neurons integrate 

feedback from physiological systems with affective state and relay this information to the 

PVN, forming a major HPA axis excitatory pathway (Morilak et al., 2005; Plotsky et al., 

1989; Rinaman, 2011; Sawchenko and Swanson, 1981; Sawchenko et al., 1996). 

Specifically, catecholaminergic lesions of NTS neurons attenuate HPA axis responses 

(Bundzikova-Osacka et al., 2015); further, electrical stimulation of ascending 

catecholaminergic afferents to the PVN and intracerebroventricular injection of 

norepinephrine induce CRH secretion in a α1-adrenergic receptor-dependent manner 

(Plotsky, 1987; Plotsky et al., 1989). Collectively, these data indicate that norepinephrine is 

both necessary and sufficient for HPA axis activation. Noradrenergic projections to the PVN 

are particularly important for challenges to physiological homeostasis. In fact, 

neurochemically specific interventions have illuminated a role for these circuits in 

facilitating HPA responses to hypotension (Plotsky, 1987), glucoprivation (Ritter et al., 

2003), osmotic challenge (Khan et al., 2011), and inflammation (Bienkowski and Rinaman, 

2008). However, noradrenergic neurons also activate HPA axis responses to psychogenic 

stressors, effects that appear to be weighted towards acute reactivity, as opposed to chronic 

stress (Bundzikova-Osacka et al., 2015). In fact, PVN injections of saporin toxin conjugated 

to a DBH antibody (a method to remove epinephrine/norepinephrine inputs to PVN) blunt 

ACTH and corticosterone responses to acute restraint. However, these inputs do not appear 

to be necessary for glucocorticoid hyper-responsiveness after chronic variable stress (Flak et 

al., 2014). In contrast, repeated cold stress increases HPA axis responses to a novel stressor 

through enhanced α1-adrenergic receptor responsiveness in the PVN (Ma and Morilak, 

2005), suggesting that the modality of chronic stress (i.e. heterotypic vs. homotypic) may be 

an important determinant for the involvement of PVN norepinephrine signaling.

7.2. Glucagon-like peptide-1 (GLP-1)

GLP-1 is an incretin hormone most prominently expressed in epithelial L-cells of the 

intestine (Holst, 2007). The primary systemic role of GLP-1 is post-prandial stimulation of 

pancreatic insulin production (Holst, 2007). In addition, there are a restricted collection of 

hindbrain neurons that produce and transmit GLP-1 to homeostatic regulatory areas, 
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including the PVN. The neuronal form of GLP-1 is derived from differential post-

transcriptional processing of preproglucagon (PPG), whereas glucagon is the major product 

of PPG in the pancreas (Larsen et al., 1997). In the central nervous system, GLP-1 signaling 

regulates a variety of homeostatic processes, including body weight, blood glucose, heart 

rate, and blood pressure (reviewed in Ghosal et al., 2013). The vast majority of GLP-1 

immunoreactive cells in the hindbrain reside in the visceral NTS, with sparse expression in 

the ventral and medial reticular nuclei (Han et al., 1986; Jin et al., 1988). This location in the 

caudal NTS allows GLP-1 neurons to monitor visceral signals and respond to physiological 

stressors (Larsen et al., 1997; Rinaman, 1999). In addition to activation by systemic/visceral 

stressors, GLP-1 neurons are also activated by psychogenic stress and have been implicated 

in anxiety-like behavior (Kinzig et al., 2003). GLP-1 neurons project from the NTS to the 

hypothalamus where they appose CRH neurons in the medial parvocellular PVN (Sarkar et 

al., 2003; Tauchi et al., 2008). Furthermore, GLP-1 and vGluT2 co-localize in synaptic 

terminals targeting the PVN (Zheng et al., 2015). Thus, projections from GLP-1-producing 

neurons facilitate the HPA axis response to stress. Intracerebroventricular injections of 

GLP-1 activate the medial parvocellular PVN, an effect prevented by pre-administration of a 

GLP-1 receptor antagonist (Larsen et al., 1997; Turton et al., 1996). Additionally, GLP-1 

injected into the PVN increases plasma ACTH and corticosterone (Kinzig et al., 2003). The 

HPA axis excitatory effects of GLP-1 in the PVN appear to be divergent from GLP-1 effects 

on anxiety-like behavior, the later depending on GLP-1 signaling in the amygdala (Kinzig et 

al., 2003). Interestingly, pharmacological administration of GLP-1 interacts with chronic 

variable stress to increase sensitization of glucocorticoid responses to a novel stressor 

(Tauchi et al., 2008), suggesting that GLP-1 may be particularly important for tuning 

reactivity to chronic stress.

7.3. Glucocorticoid interactions

The glucocorticoid receptor (GR) is expressed in NTS GLP-1 neurons (Härfstrand et al., 

1986; Rinaman, 2011) and binds to glucocorticoid response elements upstream of the PPG 

promoter to regulate PPG transcription (Zhang et al., 2009). Acute psychogenic (e.g. 

restraint) or systemic (e.g. hypoxia or visceral illness) stressors deplete PPG mRNA. 

Notably, PPG hnRNA is increased in the NTS, suggesting that stress increases PPG 

transcription (Zhang et al., 2009). Thus, the decrease in PPG mRNA is likely due to RNA 

degradation mediated by glucocorticoids acting in the NTS. Evidence for this hypothesis 

comes from studies finding that the effects of stress on PPG mRNA are attenuated in 

adrenalectomized rats and reproduced by exogenous corticosterone administration (Zhang et 

al., 2009). While acute stress briefly decreases PPG mRNA, both chronic variable stress and 

repeated restraint produce sustained down regulation (Ghosal et al., 2013; Zhang et al., 

2010), an effect dependent on chronic stress-induced corticosterone secretion (Zhang et al., 

2010). Collectively, these data suggest that glucocorticoids are crucial for limiting excess 

excitatory drive to the PVN through long-term down regulation of PPG mRNA. Additional 

evidence for glucocorticoid inhibition of HPA axis drive via the NTS come from 

pharmacological studies demonstrating the necessity and sufficiency of NTS GR signaling 

for decreasing HPA axis activity (Bechtold et al., 2009; Ghosal et al., 2014). In addition to 

these neuroendocrine effects, NTS GR is also required to diminish the impact of stress on 

anxiety- and depression-like behaviors (Ghosal et al., 2014). In aggregate, these studies 
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indicate that glucocorticoid-mediated mechanisms in the NTS are critical for moderating 

endocrine and behavioral stress responses and provide a basis for promoting organismal 

adaptation to chronic stress.

7.4. Glutamate

As previously mentioned, the excitatory neurotransmitter glutamate is expressed throughout 

the NTS, including noradrenergic and GLP-1 neurons (Niciu et al., 2012; Storm-Mathisen et 

al., 1983; Stornetta et al., 2002; Zheng et al., 2015). Thus, glutamate may serve as a major 

NTS synaptic input to PVN, with norepinephrine and GLP-1 acting as potent modulators 

(Fig. 2). Although NTS glutamatergic circuits are not well-characterized, within the PVN, 

glutamatergic synapses interact with diverse neuromodulatory systems to regulate HPA axis 

output (Bains et al., 2015). In fact, glutamatergic synapses often combine fast ionotropic 

signaling with slower-acting metabotropic signaling mediated by co-transmitters, including 

norepinephrine (Atasoy et al., 2012; Bains et al., 2015; Betley et al., 2013; Daftary et al., 

2000). Importantly, HPA axis activity induced by electrical or pharmacological stimulation 

of the noradrenergic system is blocked by intra-PVN microinjection of glutamate receptor 

antagonists (Feldman and Weidenfeld, 2004). Furthermore, catecholaminergic inputs from 

the hindbrain promote glutamatergic excitation of parvocellular PVN neurons in response to 

glycemic challenge (Johnson and Watts, 2014). Postsynaptic glutamatergic currents in the 

PVN are also reduced by an adrenergic antagonist, suggesting that norepinephrine tonically 

enhances glutamate co-release in the PVN (Inoue et al., 2014). Taken together, these data 

indicate that glutamatergic innervation constitutes an important excitatory input to the PVN 

and substantially interacts with neuromodulatory systems such as norepinephrine and, 

perhaps, GLP-1 to regulate HPA axis dynamics.

8. Paraventricular hypothalamic integration of inputs

8.1. Synaptic plasticity

Brainstem input to the PVN is dynamically regulated by local circuit mechanisms within 

neuroendocrine cells. For example, CRH neurons exhibit stress-induced synaptic plasticity 

and also provide feedback to afferent synapses via retrograde signaling (for reviews see 

Bains et al., 2015; Herman et al., 2008; Hill and Tasker, 2012; Wamsteeker Cusulin and 

Bains, 2015). Briefly, chronic stress increases the expression of CRH (Herman et al., 1995) 

and ionotropic glutamate receptors (Herman et al., 2008), while reducing expression of GR 

(Herman et al., 1995) and GABA receptor subunits (Cullinan, 2000). Chronic stress also 

increases glutamatergic and noradrenergic appositions onto the somato-dendritic 

compartment of PVN CRH neurons (Flak et al., 2009). Interestingly, the chronic stress-

induced increases in pre-synaptic input are abolished by PVN noradrenergic lesions (Flak et 

al., 2014), raising the possibility that plastic glutamate and norepinephrine afferents arise 

from the same cell population or that noradrenergic-glutamatergic interactions within the 

PVN are necessary for chronic stress-induced synaptic plasticity. In support of the later, 

norepinephrine promotes glutamate receptor-dependent synaptic potentiation following 

stress, allowing the PVN to undergo experience-dependent plasticity (Inoue et al., 2013). 

Collectively, the structural and functional consequences of chronic stress include up-

regulation of neuronal processes promoting excitability, concomitant with decreased 
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capacity for negative feedback. Overall, this plasticity could account for facilitation of PVN 

output and enhanced HPA axis activity after chronic stress. However, CRH neurons have the 

capacity to release retrograde inhibitory signals that tune activity of afferent synapses (Di et 

al., 2003).

8.2. Retrograde signaling

Excitatory glutamatergic drive of CRH neurons is dampened by retrograde signaling, most 

prominently endocannabinoids and opioids (Evanson et al., 2010; Patel et al., 2004; Tasker 

et al., 2006; Wamsteeker Cusulin and Bains, 2015). Release of inhibitory messengers in the 

PVN is an activity-dependent process that activates pre-synaptic receptors and decreases the 

firing of afferents terminals (Di et al., 2009), including those from the brainstem. 

Specifically, CRH neuronal endocannabinoid release at glutamatergic synapses suppresses 

glutamate release and subsequent excitation of post-synaptic cells (Di et al., 2009). This 

process is dependent on cannabinoid receptor 1 (CB1) activation (Di et al., 2003), as well as 

GR (Nahar et al., 2015). Furthermore, CB1 antagonism reverses glucocorticoid feedback 

inhibition of the HPA axis (Evanson et al., 2010), indicating the necessity of CB1-GR 

interactions for terminating HPA axis response to stress. Importantly, repeated stress 

progressively decreases CB1 signaling, as well as GR feedback, resulting in the loss of 

endocannabinoid-mediated inhibition of PVN afferent neurotransmitter release (Wamsteeker 

et al., 2010). Thus, exposure to chronic or repeated stress disinhibits glutamatergic drive to 

parvocellular neurons, providing an additional avenue for sensitization of the HPA axis. 

More recently, an additional mechanism of retrograde signaling from neuroendocrine cells 

was described that relies on somato-dendritic release of endogenous opioids acting on pre-

synaptic μ-opioid receptors (Wamsteeker Cusulin et al., 2013). In this case, prolonged 

activation of parvocellular neurons drives the release of opioids that lead to long-term 

synaptic depression in afferent terminals. Interestingly, this process is enhanced by GR and 

occurs at both glutamatergic and GABAergic synapses (Bains et al., 2015). This would seem 

to indicate that protracted HPA axis activity may result in a generalized μ-opioid-dependent 

inhibition of neurotransmitter release onto CRH neurons, thus reducing responsiveness to 

inputs from the brainstem.

9. Summary and conclusions

Monosynaptic inputs to PVN parvocellular neurosecretory cells arise from key brainstem 

nuclei, including the PAG, raphe nuclei, PBN, LC, and NTS. This closely associated group 

of structures provides diverse neurochemical input to the PVN, including glutamate, 

serotonin, norepinephrine, and a variety of neuropeptides. Neurons in these regions are 

activated by multiple modalities of stress and form a major HPA axis-regulatory network. 

This circuitry also underlies behavioral responses to stress, including, fear-, anxiety-, and 

depression-like behavior. The NTS appears to be particularly prominent for the integration 

of affective processes with physiological status, regulating many aspects of stress 

responding. Neurons of the NTS are also under regulatory control by glucocorticoid-

mediated feedback, acting to constrain endocrine and behavioral responses to prolonged 

stress. At the level of the PVN, brainstem afferents are summated in an experience-

dependent manner and modulated by post-synaptic retrograde messengers, providing a 
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highly-plastic environment. The responsiveness of PVN neurons to brainstem afferents is 

likely increased by chronic stress. In fact, chronic stress enhances glutamatergic signaling 

within the PVN, a process that requires norepinephrine and that may be facilitated by 

reduced endocannabinoid inhibition. In totality, the literature reviewed here suggests that the 

activity of specific brainstem neural circuits could account for many of the long-term 

deleterious effects of stress.

It is important to note that the current review focuses almost exclusively on literature 

generated from rodents. This is due to the vast quantity of data on pathways and 

neurochemical mechanisms that have emerged from rodent studies. Ultimately, advances in 

clinical outcomes will need to be driven by a better understanding of the parallel circuitry in 

humans. Currently, functional imaging modalities are limited in their spatial and temporal 

resolution, hampering the ability to discern the activity and interactions of individual 

brainstem nuclei. Nonetheless, there is evidence from human studies that brainstem nuclei 

are significant contributors to behavioral pathology. For instance, electrical stimulation of 

the PAG in humans produces fear and avoidance (Behbehani, 1995). Additionally, increased 

cerebrospinal fluid norepinephrine levels are observed in patients with melancholic 

depression (Wong et al., 2000), suggesting that brainstem noradrenergic neurons may 

contribute to the pathophysiology of depression.

The basic neurobiology of brainstem circuit integration also has several outstanding 

questions. There are a number of brainstem structures that have received little attention in 

relation to HPA axis regulation. For instance, the lateral dorsal tegmental nucleus and 

peduculopontine nucleus both give rise to cholinergic afferents that, although sparse, do 

innervate the PVN (Ruggiero et al., 1990; Ziegler and Herman, 2002). Additionally, the 

A1/C1 regions of the ventrolateral medulla provide norepinephrine/epinephrine input, 

respectively, to the PVN (Sawchenko and Swanson, 1982). These neurons mainly target 

magnocellular vasopressin neurons, although most techniques historically used to investigate 

noradrenergic signaling in the PVN have not clearly differentiated between the cell 

populations of origin. Furthermore, the complex physiology and functional consequences of 

co-transmitters and transmitter-peptide co-release have only recently begun to be unraveled. 

This interface is of paramount importance for a comprehensive understanding of circuit 

integration, as well as the mechanisms of stress-induced plasticity. These abundant 

interactions likely represent the endogenous signals guiding synaptic function, as well as 

endocrine and behavioral stress reactivity. Particularly, in-depth investigations of specific 

glutamatergic circuits and their co-transmitters could yield major advances in this realm. For 

instance, the role of PBN glutamate output for stress reactivity is poorly characterized, let 

alone the role of the numerous peptides likely co-released by these nuclei. Additionally, 

raphe serotonergic neurons have a mixed pattern of glutamate co-expression (Hioki et al., 

2010), a phenomenon that has not been functionally investigated. Finally, the interface of 

GLP-1 and glutamate signaling within the PVN is unknown. Whether these mixed circuits 

and messengers interact synergistically or oppositionally is critical for delineating both basic 

neural physiology, as well as the complexity of neuropsychiatric disorders.

In conclusion, the growing consensus emerging from multiple lines of research on brainstem 

circuitry supports the idea that this region is vital for mediating many aspects of the 
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relationship between psychogenic stress and behavioral dysregulation. Furthermore, the 

previous theories that viewed the brainstem simply as a component of the ‘reptilian’ brain, 

only acting to stimulate reflexive responses to systemic disturbance, is no longer adequate 

for a thorough and coherent understanding of stress-regulatory neuronal networks. Moving 

forward, the interconnectedness and microcircuitry of brainstem nuclei, as well as the 

heterogeneity of synaptic chemistry, represent major frontiers for advancing stress 

neurobiology.
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Highlights

• Brainstem nuclei provide monosynaptic input to the paraventricular 

hypothalamus

• These distinct cell groups signal through multiple transmitters and peptides

• Integration of brainstem inputs is critical for appropriate stress responding
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Figure 1. Anatomical diagram of PVN-projecting brainstem nuclei
Sagittal rat brain schematic adapted from Swanson 2004 indicating the relative location of 

major PVN-projecting brainstem regions. The top panel illustrates PVN (light brown), PAG 

(red), raphe nuclei (DR and MnR; light blue), PBN (orange), LC (cerulean blue), and NTS 

(green). Panel A depicts a coronal section through the midbrain as indicated by dashed line 

A. This coronal map adapted from Swanson 2004 indicates the location of the PAG, DR, and 

MnR relative to the aq. Panel B illustrates a coronal section corresponding to dashed line B 

and outlines the PBN and LC in relation to the 4v. Panel C is a schematic coronal section 

through the caudal medulla (dashed line C) depicting the location of the NTS relative to the 

cc. List of abbreviations aq: cerebral aqueduct, cc: central canal, DR: dorsal raphe, LC: locus 

coeruleus, MnR: median raphe, NTS: nucleus of the solitary tract, PAG: periaqueductal gray, 

PBN: parabrachial nuclei, PVN: paraventricular nucleus, 4v: fourth ventricle.
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Figure 2. Summary of NTS as nexus for integrating descending limbic input with ascending 
interoceptive information to generate behavioral, neuroendocrine, and autonomic stress 
responses
Regions of the limbic forebrain including the PFC and amygdala, among others, project to 

the NTS. The NTS also expresses a high density of glucocorticoid receptors and receives 

ascending visceral signals related to physiological status. At the level of the NTS, this 

information is integrated and multiple output circuits including NE/Glu and GLP-1/Glu 

coordinate organismal adaptation to adversity. List of abbreviations GLP-1: glucagon-like 

peptide-1, Glu: glutamate, NE: norepinephrine, NTS: nucleus of the solitary tract, PFC: 

prefrontal cortex,
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