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Summary

Treatments are frequently evaluated in terms of their effect on patient survival. In settings where 

randomization of treatment is not feasible, observational data are employed, necessitating 

correction for covariate imbalances. Treatments are usually compared using a hazard ratio. Most 

existing methods which quantify the treatment effect through the survival function are applicable 

to treatments assigned at time 0. In the data structure of our interest, subjects typically begin 

follow-up untreated; time-until-treatment and the pre-treatment death hazard are both heavily 

influenced by longitudinal covariates; and subjects may experience periods of treatment 

ineligibility. We propose semiparametric methods for estimating the average difference in 

restricted mean survival time attributable to a time-dependent treatment, the average effect of 

treatment among the treated, under current treatment assignment patterns. The pre- and post-

treatment models are partly conditional, in that they use the covariate history up to the time of 

treatment. The pre-treatment model is estimated through recently developed landmark analysis 

methods. For each treated patient, fitted pre- and post-treatment survival curves are projected out, 

then averaged in a manner which accounts for the censoring of treatment times. Asymptotic 

properties are derived and evaluated through simulation. The proposed methods are applied to liver 

transplant data in order to estimate the effect of liver transplantation on survival among transplant 

recipients under current practice patterns.
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1. Introduction

It is often of interest in biomedical settings to evaluate the benefit of a treatment on survival. 

In many clinical settings, treatment is not administered right at the time of diagnosis, such 

that a period of waiting time occurs for some (or perhaps all) patients. In cases where 
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treatment is not randomized, it is often useful to assess the benefit of treatment under current 

treatment assignment patterns. Through the average effect-of-treatment-on-the-treated (ETT; 

Pearl, 2009), one can evaluate the benefit of treatment as currently practiced.

Survival probabilities are easily understood by health care professionals, as is the area under 

the survival curve (restricted mean lifetime). Various authors have proposed using Cox 

regression with the primary goal not being to estimate hazard ratios, but to compare 

differences in survival and/or restricted mean lifetime. For example, Zucker (1998) and 

Chen and Tsiatis (2001) proposed methods that involved averaging over fitted values from 

Cox models. Zhang and Schaubel (2011) extended the methods of Chen and Tsiatis (2001) 

to accommodate dependent censoring, then subsequently developed double-robust methods 

(Zhang and Schaubel, 2012). Each of the afore-described methods applies to treatments 

assigned at baseline, as opposed to time-varying treatments.

In the data structure of interest in this report, all patients begin follow-up untreated, with 

some eventually receiving treatment and others dying beforehand. Pre-treatment mortality 

and treatment assignment rates are dependent on longitudinal covariates (including periods 

during which a subject is declared treatment-ineligible), such that a patient’s pre-treatment 

death is dependently censored by the receipt of treatment. Post-treatment survival is 

dependent on a subject’s condition at the time of treatment, and the duration of pre-treatment 

follow-up time. Our objective is to contrast two scenarios: (a) treatment is never assigned (b) 

treatment is assigned according to current practice patterns.

The proposed methods are motivated by the end-stage liver disease (ESLD) setting. The 

number of available deceased-donor livers is always less than the number of patients in need 

of liver transplantation. As a result, medically suitable patients are placed on a liver 

transplant waiting list. Patients typically begin follow-up on the wait list (‘untreated’; i.e., 

not transplanted), such that transplantation can be viewed as a time-dependent treatment. In 

the U.S., chronic end-stage liver disease patients are sequenced in decreasing order of Model 

for End-Stage Liver Disease (MELD) score, a very strong predictor of pre-transplant 

mortality. Transplantation results in the dependent censoring of pre-transplant death, since 

MELD scores predict both wait list mortality and transplant rates. Note that patients may be 

removed from the wait list (or made inactive) and, in such cases, are permanently (or 

temporarily) ineligible to receive a transplant. In the setting of our interest, the effect of 

treatment on the treated is of greater interest than the average causal effect, due to the 

implausibility of all patients receiving treatment.

Our analysis in Section 5 is different from that in Gong and Schaubel (2013) since (i) the 

former only looked at pre-transplant survival; (ii) did not compare post- versus pre-

transplant survival; (iii) reported contrasts only in terms of the hazard ratio; and (iv) did not 

exclude Status 1 (acute liver failure) patients and, in fact, focused on contrasting them with 

chronic ESLD patients.

We develop semiparametric methods to estimate the average effect-of-treatment-on-the-

treated through partly conditional modeling. The proposed method involves averaging over 

the observed instances of treatment initiation, with the averaging accounting for the various 
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complexities in data structure; e.g., treatment initiation times are subject to right censoring; 

patients may die before treatment is received; and patients cannot initiate treatment while 

ineligible. For each treated patient, we use the accrued history (up to the time of treatment 

initiation) to project out a survival curve for post-treatment residual lifetime. Based on the 

same accrued pre-treatment history, we also project out the survival curve that would apply 

in the absence of treatment. This set-up lends itself well to partly conditional modeling 

(Zheng and Heagerty, 2005; Gong and Schaubel, 2013); see also the closely related concept 

of landmark analysis (Feuer et al., 1992; van Houwelingen, 2007; van Houwelingen and 

Putter, 2012; Parast, Tian and Cai, 2014). Gong and Schaubel (2013) developed methods for 

fitting partly conditional hazard regression models which apply to the absence-of-treatment 

setting in our set-up. We extend the ideas in Gong and Schaubel (2013) to estimate the 

average ETT through residual survival and restricted mean survival time. Although we focus 

on partly conditional modeling in this report, it should be noted that other pertinent methods 

exist, as described in Section 6.

The remainder of this article is organized as follows. In Section 2, we describe the proposed 

methods. Asymptotic properties are provided in Section 3 (for proofs, see Supplementary 

Materials), with finite-sample properties evaluated through simulation in Section 4. We 

apply the proposed methods to the motivating data set in Section 5. Concluding remarks are 

made in Section 6.

2. Proposed Methods

2.1 Set-up and Notation

We now formalize the ideas introduced in Section 1, in the absence of censoring. We remove 

subscripting, such that defined variates pertain to any hypothetical subject. We let T 
represent treatment time, with T > 0 since subjects begin follow-up untreated. Death time in 

the absence of treatment is denoted by D0. Note that, consistent with the intent-to-treat 

principle, patients that initiate treatment are considered to be ‘treated’ thereafter. Let ℰ(s) = 

1 if the patient is treatment-eligible (i.e., eligible to initiate treatment) at time s, and 0 

otherwise. A patient may oscillate between the eligible and ineligible states before time D0 ∧ 
T, where a ∧ b = min(a, b). In particular, ℰ(s) = 0 for s > D0 ∧ T, since a patient cannot 

initiate treatment more than once, and cannot initiate treatment after death. Note that a 

patient may only initiate treatment while eligible; i.e., dI(T ≤ s) = ℰ(s)dI(T ≤ s).

Under the above-listed Scenario (a), T = ∞. Under Scenario (b), treatment only occurs when 

T < D0, in which case D0 is considered latent; D0 serves as a competing risk for T. For a 

patient with treatment time T = s, D1 is the death time, such that (D1 − s)+ is the residual 

post-treatment survival, with a+ = a · I(a > 0) and I(·) being the familiar 0/1 indicator 

function. The quantity (D0 − s)+ then represents the residual survival beyond s that would 

have been observed in the absence of treatment. Note that if D0 < T, then D1 is undefined.

The covariate vector, which contains some time-varying elements, is denoted by Z*(s). The 

patient’s covariate and eligibility history up to time s is given by ℋ(s) = {Z*(u), ℰ(u); 0 ≤ u 
< s}. The above described set-up is illustrated in Figure 1. For a patient with treatment-

initiation time T = s, we are interested in the average difference between (D1 − s)+ and (D0 − 

Gong and Schaubel Page 3

Biometrics. Author manuscript; available in PMC 2017 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



s)+ given [ℋ(s), T = s], with the average being taken with respect to the subdistribution 

function for T.

2.2 Treatment Effect: Conditional and Average

For a patient initiating treatment at time T = s, there are two death times of interest; the post-

treatment residual death time, (D1 − s)+, and the residual death time that would have 

occurred in the absence of treatment, (D0 − s)+. At the time of treatment (e.g., T = s), we 

observe ℋ(s), and ℰ(s) = 1. Conditional on [ℋ(s), T = s], we contrast

(1)

(2)

the survival functions pertaining to the counterfactual variates (D1 − s)+ and (D0 − s)+, 

respectively. Note that, in both S1(t; s|·) and S0(t; s|·), the time index s represents 

conditioning time, while t refers to residual survival t time units beyond the conditioning 

time, s. That is, Sj(t; s|·) pertains to a gap of t units beyond time s, which equals total time (s 
+ t). We assume strong ignorability (Rubin, 1978), permitting inference on the 

counterfactuals (D1 − s)+ and (D0 − s)+, through observed data. The strong ignorability 

assumption is detailed in the Supplementary Materials. An implication this assumption is 

that S0(t; s|ℋ(s), T = s) = S0(t; s|ℋ(s), ℰ(s) = 1), consistent with the counterfactuals (D1 − 

s)+ and (D0 − s)+ being independent of the receipt of treatment at time s.

For fixed L > 0, restricted mean residual survival times are given by

(3)

(4)

Conditioning on [ℋ(s), T = s], a pertinent contrast in survival functions is then

(5)

while a contrast in restricted mean residual lifetime is defined as

(6)
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Average survival functions are then defined as

(7)

where, in each case, the expectation is taken with respect to the joint distribution of [ℋ(T), 

T)] over the identifiable range of T which would in practice be capped by the maximum 

follow-up time. Correspondingly, average restricted mean residual lifetimes are:

(8)

The ETT can then be defined in terms of mean difference in survival probability as

(9)

and in terms of average difference in residual mean survival time, by

(10)

Having specified the treatment effect of interest, the remaining subsections in Section 2 

describe the proposed methods for estimating δ(t) and Δ(L).

2.3 Observed data: Notation and set-up

We let Di denote the death time for subject i (i = 1, …, n). The time of treatment is given by 

Ti, with Ti = ∞ when Di < Ti. Treatment and death times are subject to independent right 

censoring, Ci, intended to represent the combination of administrative censoring and random 

loss to follow-up. Observation time is then given by Xi = Di∧Ci. We define counting 

processes for death, treatment and censoring, as Ni(t) = I(Di ≤ t ∧ Ci), 

 and , respectively. Recall that ℰi(u) 

equals 1 if patient i is eligible for treatment at time u, and 0 otherwise. Note that 

, since treatment can only be initiated for an eligible subject. The 

covariate vector, observed longitudinally, is denoted by . The covariate and treatment-

eligibility history for subject i as of time t is denoted by . 
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Covariate information is assumed to not be available after treatment is assigned, such that 

the total observed history for subject i is given by ℋi(Xi ∧ Ti); such data are not required by 

the proposed methods.

2.4 Assumed Models and Estimation Methods

We now describe the assumed models for , Ti and Ci. As implied by 

(7) and (8), our target ETT implies averaging over the observed [Ti, ℋi(Ti)] distribution. Per 

(1) and (2), we achieve this by working with  and 

 directly, after which we will then average explicitly. We model the 

partly conditional hazard function for , which uses in the covariate 

vector all pertinent information in the history prior to the time of treatment, ℋi(Ti). The 

model is partly conditional since the covariate is not updated after the time treatment is 

initiated. The covariate is not updated after time Ti since we want to project residual survival 

from Ti onward, and a survival projections based on traditional time-dependent model would 

require a model for ℋi(s + t). In many cases, a model for ℋi(s + t) is complicated to fit 

accurately, and is of little inherent interest to the investigators.

2.4.1 Post-Treatment Survival—We let λ1(t; s|ℋ(s), T = s) denote the hazard function 

corresponding to S1(t; s|ℋ(s), T = s) from (1). We assume the following proportional 

hazards model,

(11)

where the covariate Zi1(s) is chosen to summarize the pre-treatment history, {ℋi(s), Ti = s}, 

pertinent to predicting post-treatment survival. Typically, time until treatment, Ti, would be 

represented parametrically in the covariate vector, Zi1(s). Note that the Zi1(s) covariate is 

fixed at treatment time Ti = s, reflecting the partly conditional (Zheng and Heagerty, 2005; 

Gong and Schaubel, 2013) nature of (11), which uses time-dependent data ‘frozen’ at time 

of treatment. This could also be considered a ‘landmark’ analysis (e.g., van Houwelingen, 

2007), with landmark times being customized to each subject and set to Ti.

We assume that treatment times are independently censored by Ci. Assuming that (Di − Ti)+ 

is independently censored by (Ci − Ti)+ given [Zi1(Ti), Ti], parameter estimation for model 

(11) proceeds through unweighted partial likelihood. We denote the resulting estimators for 

model (11) by β̂1 and Λ̂01(t), with the latter being the Breslow-Aalen (1972) estimator. We 

estimate S1(t; s|ℋi(s), Ti = s) by Ŝ1(t; s|Zi1(s)) = exp{−Λ̂
1(t; s|Zi1(s))}, where 

, and μ1(L; s|ℋi(s), Ti = s) by 

.

2.4.2 Survival in the Absence of Treatment—We begin by describing the assumed 

hazard model for survival in the absence of treatment. We then outline the proposed data 
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augmentation, which involves selecting calendar date cross-sections. Next, we detail fitting 

the model through an inverse weighted and stratified log rank estimating function.

We let λ0(t; s|ℋ(s), T = s) denote the hazard function corresponding to (2). Under strong 

ignorability, note that λ0(t; s|ℋi(s), Ti = s) = λ0(t; s|ℋi(s), ℰi(s) = 1), which we use in listing 

the assumed model,

(12)

where Zi0(s) is chosen such that λ0(t; s|ℋi(s), ℰi(s) = 1) = λ0(t; s|Zi0(s)), implying that 

Zi0(s) contains all elements of the history pertinent to predicting , including all 

appropriate functions of time-already-survived, s. Model (12) is partly conditional (Zheng 

and Heagerty, 2005; Gong and Schaubel, 2013) since, although the hazard at time s + t is of 

interest, the model conditions on information which is ‘frozen’ at time s. In contrast, a 

typical (fully) conditional or ‘time-dependent’ model would condition on ℋi(s + t).

Partly Conditional Model: The motivation for using a partly conditional model is 

described at the start of Section 2.4. Generally, fitting a partly conditional model requires 

some form of data augmentation in which the records corresponding to each subject’s 

observed data are restructured in order to facilitate fitting the assumed model. After such 

augmentation, each input record has a prior time survived (e.g., si) and corresponding prior 

history ℋi(si), with residual survival in the absence of treatment, (Di − si)+ then being 

analyzed. In fitting the post-treatment residual survival model (11), there is an obvious 

choice for each treated subject’s conditioning time, namely si ≔ Ti. In accordance with (2), 

we actually need to project residual survival (in the absence of treatment) beyond this same 

conditioning time. Although the appropriate conditioning time for projecting (1) is clear, the 

nature of the data augmentation for fitting model (12) requires consideration.

Calendar Time Cross-sections: In landmark analysis, typically survival from a specific 

follow-up time point (or set of specific time points) is desired, with survival probability 

projected out after the chosen landmark time(s). In our case, since treatment can occur at any 

time point (e.g., T = s), we need to be able to project conditional survival forward from any 

conditioning time s. This suggests a partly conditional model which includes terms 

representing previous time survived, s. Variation in previous time survived is then required, 

which means that sampling component of the data augmentation should be based on 

something other then s itself. We choose to sample based on calendar time, since each 

calendar time cross-section will contain wide variation in previous time survived. As we 

later describe, we stratify the model by cross-section for computational savings, which is 

important in large data sets like that we analyze in Section 5. For instance, Gong and 

Schaubel (2013) developed a partly conditional model which chooses the conditioning times 

to be the si values observed on a randomly selected calendar date. For example, consider a 

particular calendar date (e.g., 07/01/2004); input records for fitting the model would consist 

of si (subject i’s prior follow-up time as of 07/01/2004), the corresponding ℋi(si), and (Xi − 
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si)+ among subjects who (as of 07/01/2004) were alive, uncensored, yet-untreated, but 

eligible to initiate treatment; i.e., {i : Xi > si, ℰi(si) = 1}.

Method of Gong and Schaubel (2013): The estimation of β0 from model (12) was 

developed by Gong and Schaubel (2013). The essential ideas are presented here for 

continuity, and because the authors only derived the properties of β̂0, but not those of Ŝ0(t; s|

Zi0(s)), μ̂0(L; s|Zi0(s)), Ŝ0(t) or μ̂0(L).

To begin, we choose a set of K calendar dates, {CS1, …, CSK}. Each cross-section date CSk 

is intended to represent a calendar date at which a set of treatment-eligible patients (could 

have been but) was not treated; we model residual survival in the absence of treatment from 

this date forward. For calendar date CSk, we select the cross-section of treatment-eligible 

patients who were not treated (on or before that day). For patient i, follow-up time (previous 

time survived) as of calendar date CSk is denoted by sik. Hence, a patient selected into cross-

section CSk must, as follow-up time sik be: alive (Di > sik), uncensored (Ci > sik), untreated 

(Ti > sik) and treatment-eligible ℰi(sik) = 1. Three remarks are important at this juncture. 

First, treatment-eligibility is a cross-section inclusion criterion, but not a censoring criterion; 

e.g., having been included in cross-section k and, hence, with ℰi(sik) = 1, patient i is not 

censored upon subsequently being deemed treatment-ineligible. Second, the covariate will 

be frozen at sik, such that the survival projection for the residual time  is based 

on ℋi(sik). Third, a patient included in cross-section k is censored if treated; this induces 

dependent censoring. Each of these remarks is formalized shortly.

We now establish additional notation pertinent to model (12). Since survival time from 

cross-section is modeled, we define the following times-since-cross-section: Dik = (Di − 

sik)+, Tik = (Ti − sik)+ and Cik = (Ci − sik)+ as the death, treatment and censoring time 

respectively corresponding to the ith patient and measured from the kth cross section date. 

Figure 2 provides an illustration of how the treatment-free observation time is transformed 

into time-since-cross-section times. A modified counting and at-risk processes are also 

defined as Ni0k(t) = Ni(sik + t)I(Ti > sik + t) and Yi0k(t) = I(Dik ∧ Cik ≥ t), respectively.

Following Gong and Schaubel (2013), we estimate β0 through the stratified model,

(13)

where β0 is the same parameter in the unstratified model of interest, (12). Model (13) is 

quite flexible. Non-proportionality can be accommodated by replacing β0 with β0(t), a 

parametric function on t. The parameter vector could also be allowed to be a parametric 

function of previous time survived; e.g., β0k, or β0(sik). Moreover, interactions between si 

and elements of ℋi(si) are also possible. Alternatively, van Houwelingen and Putter (2015) 

suggested a stopped Cox model to avoid non-proportionality, with artificial censoring at t = 

L. By breaking the stratification on k, one could also model the effect of calendar time.

Inverse weighting: Model (13) conditions on ℋi(sik). However, we anticipate that ℋi(sik + t) 
would be predictive of both the treatment hazard and the pre-treatment death hazard at time 
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(sik + t). The mutual association, even conditional on ℋi(sik), between pre-treatment death 

after sik, the probability of treatment after sik and ℋi(sik + t) sets up dependent censoring of 

(Di − sik)+ by (Ti − sik)+. The potential bias due to such dependent censoring can be 

corrected through a variant of Inverse Probability of Censoring Weighting (IPCW; e.g., 

Robins and Rotnitzky, 1992) which requires a model for the treatment-initiation hazard. We 

fit the following two treatment hazard models:

(14)

(15)

with model (14) assumed to be the correct model; model (15) is expected to be misspecified, 

but is only used to provide a weight stabilizer. We assume no-unmeasured-confounders for 

treatment, , and that . Note that 

 in (14) uses (total) follow-up time t (measured from time 0) as the time 

axis, conditions on information on [0, t), while  in (15) uses 

(residual) time since sik and conditions on the history over [0, sik] given [ℰi(sik) = 1]. 

Parameters in (14) and (15) are estimated through standard partial likelihood (Cox, 1975).

As derived in Gong and Schaubel (2013), an appropriate weight function is given by

(16)

where . The quantity  can be thought of as the 

inverse of the conditional probability of remaining untreated at time (sik + t), given that the 

subject was untreated and treatment-eligible at time sik. Gong and Schaubel (2013) suggest 

the following stabilized inverse weight,

(17)

Note that artificially censoring subjects at t = L would be an alternative to the stabilizer.

Parameter Estimation for Model (12): An estimator for β0, denoted by β̂0, is obtained 

through solving the following inverse-weighted score function,

(18)
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with  and 

 with d = 0, 1, 2 and where 

τ0k satisfies P{Yi0k(τ0k) = 1} > 0, and can in practice be set to the largest Xik among 

subjects with ℰi(sik) = 1. A Breslow-Aalen estimator pooled across strata is obtained as

(19)

for t ∈ (0, L], where .

2.4.3 Conditional Treatment Effect—Consider patient i, treated at follow-up time Ti = s 
with covariate history ℋi(s). Post-treatment survival probability for this patient is predicted 

by Ŝ1(t; s|ℋi(s), Ti = s), while predicted L−year restricted mean post-treatment lifetime is 

given by μ̂1(L; s|ℋi(s), Ti = s). Correspondingly, in the absence of treatment, predicted 

survival and L-year restricted mean lifetime for subject i (from Ti onward) would be given 

by Ŝ0(t; s|ℋi(s), Ti = s) and , respectively. 

The treatment effect corresponding to treatment initiation by subject i at follow-up time Ti 

can then be estimated by

(20)

in terms of survival probability, and

(21)

in terms of restricted residual mean survival time.

2.4.4 Average Treatment Effect—Having established how to estimate the treatment 

effect for a subject treated at Ti = s with covariate history ℋi(s), we now describe how to 

estimate the quantities of chief interest, namely δ(t) = E[δ(t|ℋi(s), Ti = s)] and 

 from (9). In the absence of censoring, we could average with respect to the 

empirical distribution of {Ti, ℋi(Ti)} values. Right censoring of Ti values rules out using the 

sample mean, since this averaging would then generally depend on the Ci distribution. This 

implies inverse weighting the observed treatment assignments, such that the inverse 

weighted distribution reflects that which would have been obtained in the absence of 

censoring. We use the result,

(22)
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where  is analogous to the cumulative incidence 

function for Ti (with Di serving as a competing risk) and with Gi(u) = P(Ci > u|Zi(0)). We 

assume the following proportional hazards model for Ci,

(23)

Observed data used to fit model (23) include {Xi, I(Ci < Di), Zi(0)}, with α0 and 

 estimated through unweighted Cox regression. Note that Ci is viewed in 

this report as administrative censoring, in which case (23) may not even depend on Zi(0). If 

in fact  depended on the ℋi(t), model (23) could easily be enriched to accommodate 

such dependence, with little subsequent modification to the procedures next described.

Finally, estimators of δ(t) and Δ(L) are given by

(24)

(25)

respectively, where , and with τ satisfying P(Xi ≥ τ) > 0 and typically 

chosen to be the maximum observed follow-up time.

3. Asymptotic Properties

We assume that the random vectors {Xi, Ni(Xi), , ℋi(Xi ∧Ti)} are independent and 

identically distributed for i = 1 … n, with all elements of ℋi(t) bounded for t ∈ (0, τ]. A 

complete list of regularity conditions is provided in the Supplementary Materials document.

Theorem 1

Under certain regularity conditions, n1/2{δ̂(t) − δ(t)} and n1/2{Δ ̂(L) − Δ(L)} each converge 
asymptotically to zero-mean Gaussian processes with covariance functions E[ξj(t)2] and 

, respectively, where {ξ1(t), …, ξn(t)} and {η1(L), …, ηn(L)} are i.i.d. with mean 0 

asymptotically. Expressions for ξi(t) and , which are quite lengthly, are 
provided in the Supplementary Materials.

Variance estimators for δ̂(t) and Δ̂(L) are given by  and , 

respectively; where η̂
i(L) and ξ̂i(t) are computed by replacing all limiting values by their 

empirical counterparts. A proof of Theorem 1 is given in the Appendix. The essence of the 
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proof is demonstrating that, asymptotically, 

through a sequence of Taylor series expansions and applications of empirical process results.

The proof is provided for the weight, . In practice, the stabilized weight, 

would often be preferred. As implied by Theorem 1, the computation of the variance is quite 

involved, and such computation becomes more complicated when a stabilizer is 

incorporated. Such concerns motivate a computationally simpler form for the variance 

estimator, resulting from taking Ĝi(t)−1 and , or  as the case may be, as fixed. 

Variance estimators for δ̂(t) and Δ̂(L) then simplify considerably. We evaluate the 

performance of these simplified variance estimators through simulation in Section 4.

4. Simulations

We generated treatment-free survival to follow the assumed partly conditional model using 

methods from Gong and Schaubel (2013). First, subject i enters the study on calendar date, 

Bi, which is generated from a Uniform(0, b) distribution. We then generate a single binary 

(0,1) group indicator Zia, taking the value 1 with probability 0.5. A longitudinal covariate, 

Zi(sik), is then created and assumed to be measured at a common set of cross-section dates: 

CS1, CS2, …, CSK. To generate data {Di, Zia, Zib} where Zib = vec{Zi(sik)}, we first let 

, where bi ~ N(μ, σ2) and Vik ~ P(ρ), independent positive stable 

random variables with index ρ. A pre-treatment death time, , is then generated with 

hazard , where Vi0 ~ P(ρ) and is independent of Vik, 

with Λ0(t) = (t/a)1/ρ2
 and a is a constant. Setting Zi(sik) = Zib0 − log(Vik)/γ2, the pre-

treatment death hazard can then be written as 

. Treatment time, Ti, is generated from 

the proportional hazards model, , where 

and  and the time of treatment-ineligibility, Ri, is generated with hazard 

, where . Thus, Ri and Di are positively correlated, which 

is consistent with the data which motivated the proposed methods. Independent censoring 

time, Ci, is generated from hazard , where . Note that 

treatment time and pre-treatment death time, Ti, and Di are dependent since both depend on 

treatment-ineligibility time, Ri. However, the independent censoring time Ci is independent 

of Di conditional on Zia.

After obtaining the pertinent survival function, transforming the time scale to represent time 

since cross-section (setting tk = t − sik), then averaging, we obtain

Setting Λ0(t) = (t/a)1/ρ2
 and λ0(tk + sik)ρ2{Λ0(tk + sik)}(ρ2−1) = 1/a yields
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If we define λi0k(t; sik) = λi(tk|Zia, Zi(sik), Di > sik), λ00k(t) = [a cos(πρ/2)(ρ+1)]−1 and β0 = 

(β01, β02) = (ρ2γ1, ρ2γ2), then the proportional hazards model for pre-treatment death time 

is given by λi0k(t; sik) = λ00k(t) exp{β01Zia + β02Zi(sik)}.

For patients who received treatment prior to dying (Di > Ti), a post-treatment death time 

, is then generated via the hazard, λi1(t; Ti) = λ01(t) exp{β11Zia+β12Zi(Ti)}, 

where t represents time from treatment and . We set λ01(t) = a1.

The complexity in the data generator is necessary to induce the partly conditional structure 

of the pre-treatment survival model. The positive stable frailty has become a common choice 

in the simulation of multivariate survival set-ups due to its preservation of the proportional 

hazards assumption both conditionally and marginally. Analogous set-ups were used by 

Zheng and Heagerty (2005) and Gong and Schaubel (2013).

We used K = 10 cross section dates, with CSk = 100 × k. For the simulation results 

presented, parameter specifications were as follows: b = 500, (θ01, θ02) = (−1, −1), μ = 18, σ 
= 1, (γ1, γ2) = (−1, −0.5), d1 = d2 = d3 = d4 = 0.001, and ρ = 0.8, which implies (β01, β02) = 

(β11, β12) = (−0.64, −0.32); We varied a from a = 2000, to a = 5000 and a = 7000, which led 

to treatment initiation rates of 10%, 15% and 20%, respectively; with similar independent 

censoring rates in each case. Each data configuration was replicated 1000 times, with n = 

500 subjects per replicate.

We present settings where treatment has no effect (δ(t) = Δ(L) = 0), for which a1 = [a 
cos(πρ/2)(ρ+1)]−1. We also list results for a setting with a positive treatment effect (δ(t) > 0, 

Δ(L) > 0) induced by specifying a1 = 0.5 × 10−4. In developing appropriate parameter 

settings, we conceptualized the time scale as representing days. For reporting purposes, time 

is recorded in years, with results presented for δ̂(1), δ̂(2), δ̂(3) and Δ ̂(3). The weight 

was used throughout, with the simplified variance estimators applied.

Table 1 presents simulation results for settings with Δ(L) = 0 and Δ(L) > 0. The quantity 

Δ(L), with L = 3, can be interpreted as the difference of 3-year restricted mean survival time 

due to treatment, among the treated. The proposed estimators appear to be approximately 

unbiased, with coverage probabilities close to the nominal 95% level. Some degree of under-

coverage is observed, which is due to the approximation of the results from Section 3 by 

treated the (random) weights as fixed. The under-coverage is not in unacceptable amounts, 

particularly relative to the great reduction in complexity and hence computational burden 

associated with the approximation.

We examined the performance of the proposed methods under various degrees of model 

misspecification (see Supplementary Materials). The methods generally perform adequately, 

although some bias is introduced, and increases with increasing model misfit. The method 

appears to be most sensitive to misspecification of the treatment initiation hazard.
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5. Application to Liver Transplant Data

We applied the proposed methods to estimate the average effect of liver transplantation 

among the transplanted, by Model for End-stage Liver Disease (MELD) score. This study 

used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data 

system includes data on all donor, wait-listed candidates, and transplant recipients in the 

U.S., submitted by the members of the Organ Procurement and Transplantation Network 

(OPTN), and has been described elsewhere. The Health Resources and Services 

Administration (HRSA), U.S. Department of Health and Human Services provides oversight 

to the activities of the OPTN and SRTR contractors.

The study population included patients age ≥ 18 wait listed between 03/01/2002 and 

12/31/2009. We excluded patients who were Status 1 (acute liver failure) or previously 

transplanted. Cross-section dates were chosen every 7 days, 30 days or 90 days from 

03/01/2002 to 12/31/2009, which led to K=409, 96, or 32 cross sections respectively. The 

transplant hazard model, , was stratified by United 

Network for Organ Sharing (UNOS) Region (r = 1, …, 11). The covariate, Zi(t), included 

MELD score, albumin, age, gender, race, diagnosis of Hepatitis C, body mass index, 

diabetes, hospitalization, blood type, dialysis within prior week, encephalopathy, ascites and 

serum creatinine.

The pre-transplant death model, , was also stratified, 

where k = 1, …, K stands for cross section and r again denotes UNOS Region. The 

covariate, Zi(sik), included MELD score, albumin, age, gender, race, diagnosis, body mass 

index, diabetes, hospitalization status at listing, previous dialysis, malignancy, time on wait-

list (i.e., sik itself), slope of MELD score over [0, sik], slope of albumin, percentage of time 

spent in inactive status, and percent of time receiving dialysis. In the post-transplant death 

model, , Zi1(Ti) included terms for Ti, MELD score, 

albumin, age, gender, race, diagnosis, body mass index, diabetes, hospitalization status at 

listing, previous dialysis and malignancy and Donor Risk Index (DRI; Feng et al., 2006).

The pre-transplant study sample consisted of n = 66, 884 patients, of which 34,539 were 

observed to receive a deceased-donor liver transplant. For the MELD 30–40 subgroup, 

weekly cross section dates were chosen. For MELD 18–29 cross sections were drawn 

monthly. For MELD 6–17, cross sections were drawn every 3 months. Note that, we also 

tried weekly cross section dates for MELD 6–29 patients, which yielded almost identical 

results. The analysis was based on the weight, .

Figure 3 shows the estimated survival curves for MELD groups 6–8, 15–17, 20–22 and 36–

40. Note that the MELD score categories refer to MELD at transplant. Within a MELD 

category, Ŝ1(t) can be interpreted as the average survival probability, with t representing 

residual time post-transplant. Analogously, Ŝ0(t) can be interpreted as the average survival 

that would have resulted in the absence of liver transplantation, among patients who received 

a liver transplant. For the MELD 6–8 group, survival in the absence-of-transplantation 

exceeds post-transplant survival until approximately t = 2 years post-transplant. However, 
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Ŝ1(t) > Ŝ0(t) for t > 2 years, with the distance between the curves widening as t increases. 

The early survival advantage (absence-of-transplant versus with a transplant) for patients in 

the MELD 6–8 group is the combination of relatively mortality in this subgroup, combined 

with the risk of surgery-related mortality (not faced unless transplantation occurs). The early 

survival advantage without transplant is even observed in MELD 15–17 patients, but is much 

less pronounced and very short-lived. In fact, Ŝ1(t) > Ŝ0(t) for t > 0.25 years in this subgroup. 

For MELD 36–40 group, the absence-of-transplant survival curve drops dramatically during 

the first couple of months, then steadily declines thereafter. Note that Ŝ1(t) curves are quite 

similar across MELD subgroups, with Ŝ0(t) decreasing strongly as MELD increases.

In Table 2, we list estimates of the difference in survival probability, δ̂(t) for t = 1, 3, 5 years, 

as well as Δ̂(5), the difference in 5-year restricted mean residual lifetime. The group that 

benefits the most from liver transplantation is clearly MELD 36–40, with an average gain in 

residual survival time of Δ̂(5) ≈ 2.4 years. The next greatest gain is observed in the MELD 

30–35 group, with Δ̂(5) = 1.4 years. For MELD scores between 15 and 30, there is little 

difference in the gain in 5-year restricted mean residual survival time, with Δ̂(5) fluctuating 

about 1 year across the MELD 26–29, 23–25, 20–22, 18–19 and 15–17 subgroups. Only for 

the MELD 6–8 group is H0 : Δ(5) = 0 not rejected.

In the Supplementary Materials, we provide results based on the Sequential Stratification 

method (Schaubel, Wolfe and Port, 2006; Schaubel et al., 2009), which features inverse 

weighted time-dependent stratification to create customized comparisons groups for each 

subject receiving the time-dependent treatment. Comparing our results in Table 2 to those 

based on Sequential Stratification, the main difference is in the MELD 6–8 group; the 

models from Sharma et al (2015) report a hazard ratio of 2.04 (p < 10−4), indicating that 

liver transplant is associated with a doubling of the mortality hazard in this subgroup. In the 

presence of non-proportionality (which is clear in Figure 3, particularly for this subgroup), 

the hazard ratio and difference in restricted mean do not have to agree.

Additional analysis is presented in the Supplementary Materials. For each MELD category, 

multiplying the number of transplants by the δ̂(5) yields the number of life-years saved via 

liver transplantation (considering only the first 5 post-transplant). The largest number of 

transplants was in the MELD 15–17 category (5,028), but the greatest number of life-years 

saved (7,649) was in the MELD 36–40 group. We estimate that 34,757 years of life were 

spared based on the liver transplants observed in this analysis. The Supplementary Materials 

also present plots of pre-transplant MELD profiles over time, the baseline pre-transplant 

mortality hazard, the liver transplant baseline hazard, and cumulative incidence of 

transplantation.

6. Discussion

In this report, we develop methods for estimating the average effect on the treated of a time-

dependent treatment. The methods can be used to evaluate the benefit, in terms of patient 

survival, of a treatment under current treatment assignment practices. The methods were 

applied to quantify the survival benefit of deceased-donor liver transplantation among the 

transplanted, by Model for End-stage Liver Disease (MELD) score.
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The proposed methods are not intended to guide treatment decisions. For example, the fact 

that we estimate a larger treatment effect for MELD 36–40 than for 30–35 does not imply 

that a patient with MELD=32 should wait until his/her MELD score increases to ≥ 36 before 

they agree to be transplanted. The proposed methods cannot generally be used to compare 

treatment effects, since each treatment effect is averaged differently. For example, the 

difference in the treatment effect between patients transplanted at MELD 15–17 (Δ̂(5) = 

1.00) and MELD 12–14 (Δ̂(5) = 0.59) is partly attributable to the former group being 

transplanted with higher quality donor livers.

There are now many methods available for evaluating a time-dependent treatments. Marginal 

Structural Models (MSM; e.g., Hernán, Brumback and Robins, 2000; Robins, Hernán and 

Brumback, 2000) are not well-suited to our set-up due to the potential for treatment to 

interact with time-varying covariates. Structural Nested Failure Time Models (SNFTMs; 

e.g., Robins, 1988; Joffe et al., 1998; Keiding et al., 1999; Hernan et al., 2005; Taubman et 

al., 2009; Vock et al., 2013) are an alternative. In particular, the method of Vock et al. (2013) 

was motivated by the lung transplant setting. Versions of Sequential Stratification, which 

involves stratified and inverse weighted Cox regression, have been used to evaluate the 

benefit of kidney transplantation (Schaubel, Wolfe and Port, 2006) and liver transplantation 

(Schaubel et al., 2009). An advantage the proposed method over SNFTMs and Sequential 

Stratification is the avoidance of any parametric assumptions regarding the treatment effect. 

SNFTMs assume that treatment alters the time scale through a constant, while Sequential 

Stratification assumes proportionality of the pre- and post-treatment hazard functions. A 

further advantage of our proposed methods over SNFTMs relates to implementation. 

Although explicit coding would be required for either approach, the ‘core’ models in our 

method merely involve Cox regression and, therefore, can be fitted using standard statistical 

software (SAS, R) after modifying the input data appropriately.

In estimating the ETT, we consider the absence of treatment; i.e., Ti = ∞. In setting where 

this is found to be too ambitious a goal (e.g., lack of sufficiently long follow-up, in a setting 

where treatment is inevitable), one could change [Ti = ∞] to [Ti > L] in describing the 

absence-of-treatment scenario.

An alternative to the measures proposed in (9) and (10) would be to redefine S1(t) to be the 

population average survival (i.e., averaging over the current treated and untreated 

experiences), with S0(t) then representing the average population survival in the absence of 

treatment. Unless strong or unrealistic assumptions were made, the ‘core’ models for this 

approach would be quite similar to those in the proposed approach, except for the pre-

treatment hazard model. The proposed averaging would be preferred in many practical 

settings (including the liver transplant setting which motivated our current work) since the 

absence of a treatment benefit among non-recipients is made explicit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
History on [0, s) and residual survival beyond s under two scenarios. In each case, covariate 

(demographic, biological) and treatment-eligibility history ℋ(s) has accumulated, and the 

subject is treatment-eligible at time s, ℰ(s) = 1. Under Scenario (1), T = s and (D1 − s)+ 

represents residual survival post-treatment. Under Scenario (0), T = ∞ since treatment is 

never available, such that death time is given by D0 and residual survival beyond time s 
equals (D0 − s)+. Under the proposed methods, for each treated subject, partly conditional 

modeling is used to project (D1 − s)+ and (D0 − s)+ given [ℋ(s), T = s]. The proposed effect-

of-treatment-on-the-treated is then obtained after averaging over [ℋ(T), T].
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Figure 2. 
Examples of the relationship between cross-section time and follow-up time. Four subjects (i 
= 1, …, i = 4) and two cross sections (k = 1, 2) are shown. The four subjects begin follow-up 

at different calendar dates. For subject i = 1, failure times D11 and D12 correspond to cross 

sections k = 1 and k = 2, respectively. Note subject i = 1 is not censored at the treatment-

ineligible time after cross section k = 2. Subject i = 2 is treated and, hence, dependently 

censored at time T22 following cross section k = 2. Subject i = 3 is excluded from cross-

section k = 1 and k = 2 due to starting and finishing follow-up between CS1 and CS2. 

Subject i = 4 is included in cross section k = 1, but then becomes (and remains) treatment-

ineligible until some a time after cross section k = 2. With respect to cross section k = 1, 

subject i = 4 is censored at treatment time T41, as opposed to being censored earlier at the 

beginning of the treatment-ineligible period. Subject i = 4 is treatment-ineligible at cross 

section k = 2 and, hence, not included in CS2.

Note: Vertical dashed lines denote cross-section dates, while horizontal dashed lines denote 

treatment-ineligible period.
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Figure 3. 
Analysis of SRTR data: Estimated survival curves after with a liver transplant (solid line) 

and in the absence of liver transplantation (dashed line) among liver transplant recipients. 

The time axis t is years post-transplant.
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Table 2

Analysis of SRTR data: Estimating the effect of liver transplantation on the transplanted (with 95% confidence 

interval in parentheses), by MELD score at transplant.

MELD Score δ̂(1) δ̂(3) δ̂(5) Δ̂(5)

6–8 −0.03
(−0.05, −0.01)

0.03
(−0.01, 0.05)

0.11
(0.07, 0.15)

0.11
(−0.03, 0.25)

9–11 −0.02
(−0.04, 0.00)

0.09
(0.07, 0.11)

0.17
(0.15, 0.19)

0.29
(0.15, 0.43)

12–14 0.02
(0.00, 0.04)

0.16
(0.12, 0.20)

0.23
(0.19, 0.27)

0.59
(0.43, 0.75)

15–17 0.09
(0.07, 0.11)

0.26
(0.22, 0.30)

0.32
(0.28, 0.36)

1.00
(0.80, 1.20)

18–19 0.15
(0.13, 0.17)

0.26
(0.24, 0.28)

0.27
(0.23, 0.31)

1.06
(0.90, 1.22)

20–22 0.19
(0.15, 0.23)

0.29
(0.23, 0.35)

0.30
(0.24, 0.36)

1.23
(0.95, 1.41)

23–25 0.19
(0.15, 0.23)

0.23
(0.19, 0.27)

0.26
(0.18, 0.34)

1.07
(0.79, 1.35)

26–29 0.25
(0.17, 0.33)

0.19
(0.11, 0.27)

0.16
(0.06, 0.26)

0.99
(0.59, 1.39)

30–35 0.33
(0.25, 0.41)

0.27
(0.07, 0.47)

0.25
(0.01, 0.49)

1.45
(0.05, 2.85)

36–40 0.48
(0.40, 0.56)

0.48
(0.36, 0.60)

0.45
(0.33, 0.57)

2.38
(1.70, 3.06)

δ̂(t) and Δ̂(L) are as defined in (24) and (25), respectively. The time scale represents years post-transplant.
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