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As molecular dynamics simulations access increasingly longer time scales, complementary advances
in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful
framework for this analysis by describing a system’s states and the transitions between them. A recently
established variational theorem for Markov state models now enables modelers to systematically
determine the best way to describe a system’s dynamics. In the context of the variational theorem, we
analyze ultra-long folding simulations for a canonical set of twelve proteins [K. Lindorff-Larsen et al.,
Science 334, 517 (2011)] by creating and evaluating many types of Markov state models. We present
a set of guidelines for constructing Markov state models of protein folding; namely, we recommend
the use of cross-validation and a kinetically motivated dimensionality reduction step for improved
descriptions of folding dynamics. We also warn that precise kinetics predictions rely on the features
chosen to describe the system and pose the description of kinetic uncertainty across ensembles of
models as an open issue. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967809]

I. INTRODUCTION

Understanding how proteins fold into their native three-
dimensional structures is a long-standing problem that has
inspired the development of several experimental, theoretical,
and computational methods.1,2 Molecular dynamics (MD) is
one such technique in which a protein’s motions are simulated
in atomic detail.3,4 Due to a multitude of computational and
algorithmic advances,5–8 millisecond time scale MD simula-
tions are now feasible, enabling the investigation of protein
folding in silico.9–24 The analysis of the enormous quantities
of data generated by these simulations is currently a major
challenge.

Markov state models (MSMs) are one class of
methods that, parametrized from MD simulations, can
provide interpretable and predictive models of protein
folding.12–14,16,19–21,24–38 Building a MSM involves decom-
posing the phase space sampled by one or more MD trajecto-
ries into a set of discrete states and estimating the (conditional)
transition probabilities between each pair of states. However,
there are many ways to perform the state decomposition, and
the choice of MSM building protocol can introduce subjec-
tivity into the analysis.31,39,40 Recently, a variational theorem
for evaluating MSMs has been introduced, which enables the
modeler to select the best MSM for a system based on its
distance from a theoretical upper limit.41,42

In this work, we reanalyze twelve ultra-long protein fold-
ing MD datasets.5,18,34,43 For each system, we create MSMs
with many protocol choices and utilize the variational theo-
rem introduced by Noé and Nüske41 as a metric for cross-
validation44 to determine how different modeling choices
affect the quality of the MSM as defined by its ability to
detect and represent the systems’ long-time scale dynamical
processes. Instead of focusing on a single specific system, we
have directed our analysis toward elucidating general trends

in MSM construction for protein folding datasets. Due to the
diversity of proteins analyzed,18 we expect that our results will
be extensible to other protein folding simulation data.

To this end, we first present a general overview of MSM
construction that will inform experimental researchers about
the MSM building pipeline as well as update method develop-
ers on our current recommendations for “best practices.” Next,
we provide an abbreviated theoretical discussion that estab-
lishes the mathematical tools necessary to state the variational
bound, evaluate it under cross-validation, and understand how
it relates to the kinetic time scales predicted by a MSM. We
then discuss four key recommendations that emerge from our
variational analysis of protein folding MSMs: first, that cross-
validation is necessary to avoid overfit models, second, that
the incorporation of a kinetically motivated, optional step in
MSM construction consistently produces better models, third,
that the assignment of conformations in the MD dataset to sys-
tem states is affected by the dimensionality of the system when
states are assigned, and fourth, that the kinetics predicted by
MSMs are highly sensitive to which features are chosen to
represent the system.

II. MODELING CHOICES

Constructing a MSM (i.e., generating state populations
and pairwise transition probabilities) necessitates a state
decomposition where each trajectory frame is assigned to a
microstate. The state populations and pairwise transition prob-
abilities provide the modeler with thermodynamic and kinetic
information, respectively. When building a MSM from MD
simulation data, it is sufficient to build the model directly
from the raw MD output (atomic coordinates) but is also
common to transform the data from atomic coordinates to
an internal coordinate system (this transformation is often
called “featurization” or “feature extraction”). Optionally, the
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dimensionality of these internal coordinates may be further
reduced through a variance- or kinetically motivated transfor-
mation that precedes the requisite state decomposition (Fig. 1).
Here, we discuss each step of the MSM building process in
order to enumerate some of the options available to modelers.

A. Featurization

The raw output of a MD trajectory consists of a time-
series of frames, each of which contains the three Cartesian
coordinates of every atom in the system. Optionally, a tra-
jectory may be transformed (featurized) from its Cartesian
coordinates into a system of internal coordinates. Many recent
studies have constructed MSMs by initially featurizing Carte-
sian coordinates into a backbone-based21,35,38,45,46 or contact-
based45,47–49 internal coordinate system such as φ and ψ
dihedral angles or inter-residue contact distances, respectively.
Internal coordinate systems may also include combinations of
different types of features.

1. A note on utilization of the root-mean-square
deviation (RMSD) distance metric

Another common strategy is to proceed from Cartesian
coordinates directly to state decomposition, which is achieved
via clustering (see Sec. II C). In this case, the similarity of struc-
tures is judged by their root-mean-square deviation (RMSD)
of atomic distances.14,19,20,30,33,34,36,50–53 While this process
does not explicitly extract “features,” it can be interpreted as
a replacement for explicit featurization.

B. Dimensionality reduction

Once the trajectories have been featurized into an inter-
nal coordinate system they can be immediately clustered into
microstates for state decomposition (see Sec. II C) or pre-
processed by further reducing the dimensionality of the dataset
via another transformation. One type of dimensionality reduc-
tion commonly used in statistics is principal component anal-
ysis (PCA), which creates linear combinations from a dataset
that account for variance in the data. A similar method, time-
structure based independent component analysis (tICA), has
also been recently incorporated into MSM analyses.35,54,55

In contrast to PCA, tICA describes the slowest degrees of
freedom in a dataset by finding linear combinations of fea-
tures that maximize autocorrelation time. Both PCA39,47,56–62

and tICA21,35,38,39,46,49,55,63,64 have been used in the analysis
of protein folding and conformational change. PCA or tICA

FIG. 1. The flow chart shows various options for the MSM construction start-
ing from raw trajectory data. The state decomposition occurs in the clustering
step, which is a requisite step in every MSM building protocol. The options
presented in each box are intended to be a representative but not exhaustive set.

reduces the dimensionality of each frame from its number of
features to a user-specified number of components (either PCs
or tICs), where each component is a linear combination of
the features and the weight of each feature corresponds to its
relevance to that component.

C. Clustering

The clustering step is where the requisite state decom-
position occurs. In this step, every frame in the time-series
is assigned to a microstate. Clustering into microstates can
be performed directly from Cartesian coordinates using the
RMSD distance metric or from explicitly featurized trajec-
tories or the low-dimensional output of PCA or tICA using
the Euclidean distance. The clustering step reduces the repre-
sentation of each frame in the time-series to a single integer
(the cluster assignment) and it is from this representation that
the MSM is constructed. Commonly used clustering algo-
rithms include k-centers,16,21,30,35,36,38,39,65 k-medoids,53 and
k-means.44,66,67 More sophisticated methods, such as Ward’s
method,34,68,69 have also been used.

D. MSM construction

The MSM itself is generated from the state decomposition
produced by clustering; i.e., the state populations and pairwise
transition probabilities are determined. It is standard to find
the maximum likelihood estimation (MLE) of the transition
matrix under the constraint that the dynamics are reversible.32

The modeler must also select a model lag time. The Markovian
assumption asserts that the system is memoryless at the chosen
lag time, which means that the pathway by which the system
enters any state does not affect the transition probabilities.

III. THEORY BACKGROUND

It is clear from Sec. II that there are many modeling
choices involved in the MSM creation. Formally, the MSM
building process offers a variety of ways to create a state
decomposition (see Fig. 1). Traditionally, MSM building pro-
tocols have been determined heuristically and without an
objective method to compare different models of the same sys-
tem. In this section, we briefly overview the theory necessary
to state the variational principle that enables the comparison
of MSMs.41,42,44 This variational principle provides the mod-
eler with a systematic way to choose which of many modeling
protocols most closely approximates the time scales on which
the underlying dynamical processes of the system occur.

A. Propagator

We first present the essentials of continuous-time Markov
processes.70 We assert that our process, X t , is homogeneous in
time, ergodic, and reversible with respect to an equilibrium dis-
tribution, µ(x), which takes the continuous phase spaceΩ toR.

We are interested in the probability of transitioning from
x ∈ Ω to y ∈ Ω after a duration of time τ, on the condition that
the system is already at x. This is given by

p(x, y)dy = P(Xt+τ ∈ Bε (y)|Xt = x), (1)

where Bε (y) is the open ε-ball centered at y with infinitesimal
measure dy. Moreover, we are interested in the time-evolution
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of the entire system from time t to time t + τ, which can be
obtained by integrating over pt(x) for all x ∈ Ω,

pt+τ(y) =
∫
Ω

dx pt(x)p(x, y) = P(τ) ◦ pt(y). (2)

The propagator, P(τ), admits a decomposition into a complete
set of eigenfunctions and eigenvalues

P(τ) ◦ φi = λiφi, (3)

where the eigenvalues λi are real and indexed in decreasing
order. The first eigenfunction φ1(x) corresponds to the equi-
librium distribution µ(x) and has a unique largest eigenvalue
λ1 = 1. All subsequent eigenvalues lie within the unit interval
|λi>1 | < 1 and their corresponding eigenfunctions represent
the processes within the time-series.

The time scale of the ith process is given by ti ≡ −τ/ln λi.
The propagator is often further approximated by retaining the
m slowest time scales of the system (or the m largest eigenval-
ues). It can be shown that this is the closest possible rank-m
approximation to the propagator.44

B. Variational principle

The eigenfunctions that satisfy Eq. (3) can be interpreted
as the m slowest dynamical processes from a collection of
time-series (e.g., MD) data. However, we do not know the true
eigenfunctions and must approximate them using a trial set
of ansatz eigenfunctions. The variational theorem established
by Noé and Nüske41 states that the sum of the eigenvalues
corresponding to the ansatz eigenfunctions is bounded from
above by the sum of the true eigenvalues, i.e.,

GMRQ ≡
m∑

i=1

λ̂i ≤

m∑
i=1

λi, (4)

where the GMRQ stands for generalized matrix Rayleigh quo-
tient, which is the form of the approximator when the deriva-
tion is performed in the style of Ref. 44. The eigenvalues λ̂i

are generated from the ansatz eigenfunctions in the same way
as Eq. (3).

For our purposes, we highlight that there exists a theoreti-
cal upper bound on the GMRQ, which means that a dynamical
process cannot be measured to occur on a slower time scale
than its true time scale. This enables us to select the best set
of trial ansatz eigenfunctions by choosing the set that yields
the maximum GMRQ. The use of a variational approach to
choose MSM construction protocol is not new71 and is similar
to the variational selection of the ground-state wavefunction
that yields the minimum energy in quantum mechanics.

Each set of ansatz eigenfunctions is a guess at how to
represent the important degrees of freedom in the system. In
practice, it corresponds to the set of features (Sec. II A) or
PCs/tICs (Sec. II B) from which the state decomposition (i.e.,
clustering, Sec. II C) is performed. Thus, in the context of the
variational bound, we denote the best MSM as the one that is
constructed from the optimal set of ansatz eigenfunctions.

C. Cross-validation

To create a MSM that describes the kinetics of a sys-
tem from raw MD data, the requisite state decomposition is

achieved by one or more dimensionality-reducing steps (recall
Sec. II), each of which may involve tunable parameters. We
will refer to the transformation from raw MD data to states as
our modeling “protocol.”72 A set of trial ansatz eigenfunctions
is a function of both the input data and the protocol. We are
interested in a procedure that compares how closely different
trial sets of ansatz eigenfunctions approximate the true eigen-
functions for the same data. We have already shown that the
GMRQ is a suitable metric for this purpose: to compare across
different protocols, we construct MSMs using each protocol
and choose the protocol that yields the largest sum of eigenval-
ues (Eq. (4)). The GMRQ, or sum of eigenvalues, thus serves
as a model’s “score.”

However, our dataset is finite and thus possesses statisti-
cal noise in addition to information about the true dynamics.
In order to determine the best protocol in the context of only
the system’s dynamics, we must employ cross-validation to
avoid overfitting to the noise in the data. This is achieved by
splitting the dataset into a training set and a test set, con-
structing the MSM for the training set, but then evaluating
its performance (i.e., calculating the GMRQ) on the test set.
This process ensures that the protocol performance is evalu-
ated only on dynamics that are present in both the training
and test sets, which are expected to correspond to the system’s
true dynamics when they have been sufficiently sampled. For
conciseness, we will thus refer to the MSM predicting a sys-
tem’s slowest time scales under cross-validation as the “best,”
or optimal, MSM for that search space.

It is important to note that selecting the best MSM
under cross-validation addresses different modeling chal-
lenges than validating the self-consistency of a single MSM,
e.g., by assessing adherence to the Chapman-Kolmogorov
property.13,32,67 The comparison of models using cross-
validation does not provide information about whether any
single model is statistically consistent with the data (although
we would expect inconsistent models to perform relatively
poorly), whereas self-consistent validation does not evaluate
how well a model has captured the system’s slow dynam-
ics. Since our goal is to understand protein folding dynam-
ics using MSMs, determining the most useful model, i.e.,
the model that best describes important collective degrees of
freedom, requires the comparison of candidate models under
cross-validation. For a representative self-consistent validation
analysis, see the supplementary material, Figs. S3-S6.

IV. METHODS

The twelve MD datasets were generated by Lindorff-
Larsen et al.18 via MD simulation in explicit solvent near the
melting temperature. The proteins range from 10 to 80 amino
acids in length. All datasets used contain a minimum of 100 µs
of sampling and feature at least 10 instances each of folding
and unfolding. For the analysis, we retain trajectory frames
at every 2 ns. Unless otherwise specified, MSMs are cre-
ated by first selecting a featurization scheme, dimensional-
ity reduction option, and clustering algorithm (see Sec. II).
Then, internal parameters relevant to those selections (e.g.,
the number of clusters) are optimized by generating 200 dif-
ferent models where internal parameters are determined by a
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random search (see the supplementary material, Table S2).
The parameters of the highest-scoring model based on the
mean of five cross-validation iterations are used for the anal-
ysis of trends in featurization, dimensionality reduction, and
clustering choices.

V. RESULTS

In this section, we discuss results obtained from analyz-
ing twelve ultra-long protein folding datasets18 in the con-
text of choices in modeling protocol. We have chosen to
highlight four key results for using MSMs to model pro-
tein folding that emerge from optimal parameter selection
under cross-validation. Protocol choices corresponding to the
best models as well as comparisons of different featurization,
dimensionality reduction, and clustering choices for each sys-
tem are reported in the supplementary material (Table S3 and
Fig. S15ff, respectively). We emphasize, however, that there
is no “magic bullet”: we deliberately do not recommend spe-
cific protocol choices but rather assert that the best practice
for constructing MSMs is to determine the modeling protocol
by systematically searching hyperparameter space (i.e., mod-
eling choices) and evaluating the GMRQ of each model. The
following discussion is thus designed to be extensible to MSM
construction for protein folding in general.

A. A variational approach necessitates cross-validation

We established in Sec. III B that the time scale of a dynam-
ical process cannot be estimated to be slower than its true time
scale.41 However, it is a well-known result that a variational
bound on a system’s eigenvalues only holds in the limit of com-
plete data, i.e., in the absence of statistical noise.41,42,73 In their
analysis of octa-alanine dynamics,44 used the GMRQ to show
that with incomplete data, the models predicting the slowest
time scales are likely describing statistical noise instead of the
true dynamics, especially for models with a large number of
states. Here, we extend this result to ultra-long protein folding
trajectories. As an example, we created MSMs for λ-repressor
(Protein Data Bank (PDB) ID: 1lmb), an 80-residue, 5-helix
bundle analyzed by Lindorff-Larsen et al.18 This trajectory has
previously been analyzed with MSMs by Bowman, Voelz, and
Pande,19 who employed the k-centers clustering algorithm65

to construct a model with 30 000 microstates.
To create a new MSM for this system, we used the GMRQ

under cross-validation (see Sec. III and the supplementary
material, Table S2) to determine the optimal number of clus-
ters for the dataset by creating 300 MSMs for randomly chosen
numbers of microstates between 10 and 1000 using k-centers
clustering with the RMSD distance metric. MSMs with 5000
and 30 000 microstates were also evaluated. Fig. 2 shows the
average test and training GMRQ scores for models contain-
ing 200 to 30 000 microstates. Scores for the training datasets
increase as the number of microstates increases, indicating the
presence of increasingly slow processes. However, scores for
the test datasets, which evaluate the ability of the model to
describe data on which it was not fit, do not increase with the
number of microstates. The best cross-validated model con-
tains 400 microstates, while models containing 1000 or more
microstates do not perform well when evaluated using unseen

FIG. 2. GMRQ scores for two-time scale MSMs generated for λ-repressor
(PDB ID: 1lmb) containing varying numbers of microstates show that the
cross-validation is necessary to describe a system’s underlying dynamics. All
models were constructed using k-centers clustering with the RMSD distance
metric. The error bars signify the score standard deviation generated from five
cross-validation iterations (the error bars on the training scores are negligibly
small). The discrepancy between training and test scores (light blue and dark
blue, respectively) as microstate number increases is likely due to overfitting
during training; thus these models exhibit poorer performance on data that
were hidden from the fitting process.

data. This is likely due to the fact that the slow transitions
discovered while fitting the model on the training dataset are
not present in the test dataset, indicating insufficient sampling
of those processes. In some cases, the modeler may want to
investigate these processes and sample them further. However,
for a larger number of microstates, it becomes more difficult
to sample all processes to equilibrium. Cross-validation there-
fore enables the modeler to choose a number of microstates
that best partitions state space with respect to the slowest well-
sampled processes, i.e., the processes present in both training
and test sets.

B. tICA systematically produces better models

The PCA and tICA algorithms (see Sec. II B) offer an
additional, optional dimensionality reduction before clustering
is performed. PCA finds orthogonal degrees of freedom that
account for variance in the data, while tICA identifies degrees
of freedom that explain slow decorrelation.35,49,54,55 The incor-
poration of tICA into MSM construction was motivated by the
desire to ensure, instead of assume, the retention of impor-
tant kinetic information.35 Here, we show that models made
by clustering from tICs consistently produce the best models
when compared to models clustered from PCs or directly from
features.

As an example, each of the twelve ultra-long protein tra-
jectories was featurized using the dihedrals defined by every set
of four consecutive α-carbons (α-angles74). tICA or PCA was
optionally performed on the α-angle features, further reducing
the dataset dimensionality up to 10 tICs or PCs. The mini-
batch k-means clustering algorithm66 was then used to cluster
from tICs, PCs, or α-angle features into states. For 11 of the
12 proteins, the best tICA model outperformed both the best
PCA model and the best α-angles model. The one exception
was chignolin, a 10-residue peptide that forms a β-hairpin
in water,75 for which the scores differed only in the fourth
decimal place (two orders of magnitude smaller than the score
standard deviations). Fig. 3 shows the scores for the best tICA,
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FIG. 3. GMRQ scores for two-time scale MSMs generated for twelve ultra-
long protein folding datasets18 where additional dimensionality reduction has
been omitted (red), performed with PCA (green) or performed with tICA (blue)
demonstrate that tICA systematically improves models. All MSMs were made
using α-angle featurization and mini-batch k-means clustering. In all cases,
the best tICA model performs better than or equivalently to both the best PCA
model and the best model created directly from α-angle features. The error
bars signify the score standard deviation generated from five cross-validation
iterations. The number of amino acids of each protein is given below its PDB
ID.

PCA, and α-angle models for each protein. Alternate choices
of featurization and clustering may be used to demonstrate the
same result; see the supplementary material, Fig. S15ff.

C. Different clustering algorithms perform similarly
well on tICA data

Clustering trajectory frames into microstates produces the
state decomposition that is essential for MSM construction.
Various clustering algorithms have been used for MSMs of
protein folding and conformational change (see Sec. II C),
and the relative performance of different clustering algorithms
has been compared.32,76,77 McGibbon and Pande44 used the
GMRQ under cross-validation to show that for octaalanine,
k-means produced the best models while k-centers performed
poorly for several different featurization choices. The authors
postulated that the poor performance of the k-centers algorithm
is related to its tendency to choose outlier conformations as
cluster centers. Schwantes and Pande35 compared MSM time
scales predicted using k-centers clustering with time scales
from a hybrid k-medoids method,77 and found them relatively
unchanged when tICA was used to reduce the dimensionality
of the trajectories before clustering. They suggested that prob-
lems with the k-centers algorithm were less influential when
clustering is performed on low-dimensional data.

In Fig. 4, we compare mini-batch k-means, mini-batch
k-medoids, and k-centers using the cross-validated GMRQs
of the resulting MSMs. For this example, all twelve folding
trajectories were featurized using contact distances between
α-carbons, but other featurization choices will produce an
equivalent result (see the supplementary material, Fig. S15ff).
For each of the three clustering algorithms, two types of models
were created: first directly from the contact distance features
and second from tICA data generated from the same fea-
tures. In order to integrate across the twelve systems, each
of which has its own system-dependent upper bound on the
GMRQ, we have transformed each model’s score into its ratio

FIG. 4. Aggregated score ratios for two-time scale MSMs generated for
twelve ultra-long protein datasets18 using three different clustering algorithms
with or without tICA show that different clustering algorithms produce sim-
ilarly well-performing models when tICA is used. All models were made
using α-carbon contact distances. When clustering is performed directly from
features, the dimensionality is reduced by 2-3 orders of magnitude; whereas
when clustering is performed from tICs, dimensionality is reduced fromR10 or
lower to R. For large dimensionality reductions, k-means clustering produces
the best models. For small dimensionality reductions via tICA, clustering
algorithms produce similarly well-performing models that are categorically
better than models created without tICA. (The best-performing algorithm at
small dimensionality reductions is k-medoids; see the supplementary material,
Fig. S9.)

with the score of the best model produced for that system.
We show that when protein folding trajectories are clustered
from high-dimensional feature space, k-means clustering pro-
duces the best models and k-centers produce the worst models.
However, when the trajectories are clustered from the lower-
dimensional tICA data (chosen to be R10 or lower), k-means,
k-medoids, and k-centers clustering all produce similar mod-
els. Importantly, the median score of the tICA models con-
sistently exceeds the median score of the models clustered
directly from their features. Thus we find that when cluster-
ing is preceded by tICA, which is typically chosen to reduce
the dimensionality of the trajectories by one or two orders of
magnitude, the clustering algorithms yield models that are not
only similarly well-performing but also categorically superior
to models created without tICA.

D. Appropriate featurization is required to describe
kinetics

We have seen that omitting cross-validation from a MSM
analysis may lead to an overfit model (Sec. V A) and that incor-
porating an intermediate dimensionality reduction step using
tICA systematically improves models (Secs. V B and V C). In
this section, we examine how the kinetic information contained
within MSMs differs across models created for the same sys-
tem. We constructed five MSMs for homeodomain (PDB ID:
2p6j)78 from five different types of features: (a) α-angles,
(b) α-carbon contact distances, (c) pairwise α-carbon RMSD,
(d) tICs from α-angles, and (e) tICs from α-carbon contact
distances. All clustering was performed with the mini-batch
k-medoids algorithm.

The two slowest MSM time scales of each model are pre-
sented in Fig. 5 in order of increasing scores. The time scales
differ by an order of magnitude from the worst model to the
best model, which indicates that not all featurization choices

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-008644
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FIG. 5. Time scale plots for two-time scale MSMs generated for homeodomain (PDB ID: 2p6j) using the best model from each of five different featurization
choices (a)-(e) show that kinetics are highly sensitive to the featurization choice. All models were made using mini-batch k-medoids clustering. Standard
deviations for model scores generated from five cross-validation iterations are given in parentheses, and the thickness of each horizontal lines corresponding to
estimated time scales represents two standard deviations in both directions from the estimate. The kinetics feature slower processes for better models; notably,
the slowest time scale predicted by the best model is an order of magnitude slower than that predicted by the worst model. A free energy landscape for model (e)
was created from its first two tICs. Structures sampled from the dataset (1-3) represent different regions on the free energy surface of model (e). Each sampled
structure is an α-carbon trace superimposed upon the crystal structure. The first tIC (regions 1→ 3) appears to track the formation of secondary structure, while
the second tIC (regions 2→ 3) corresponds to the aligning of α-helices.

optimally represent the system’s slow dynamics. To investi-
gate the folding of homeodomain, we select the best model (e)
for further analysis and create a free energy landscape from
its first two tICs. Structures sampled from regions of the free
energy landscape of model (e) provide a preliminary interpre-
tation of the first two tICs: progress along the first tIC leads
to the formation of a secondary structure while the second tIC
may track the alignment of α-helices. The first tIC is highly
correlated with RMSD to the folded state and can thus serve
as a reaction coordinate for the folding of homeodomain (see
the supplementary material, Figs. S11-S13).

When the system’s dynamics have been sufficiently sam-
pled, we expect thermodyamic predictions, i.e., free ener-
gies, to be much less sensitive to featurization choices, since
these calculations rely only on state populations (see the
supplementary material, Fig. S14). In terms of kinetics, how-
ever, it is important to recognize that models can only describe
processes captured by the collective degrees of freedom cho-
sen as the system’s features.32,71,79–81 The GMRQ serves as
an excellent tool to distinguish between the predictive capa-
bilities of MSMs constructed from different types of features,
which enables modelers to choose the most suitable features.
This example demonstrates that it is crucial to investigate dif-
ferent featurization choices, since the best model created for a
given set of features may be underestimating slow time scales if
those features are not capable of describing the corresponding
processes.

VI. CONCLUSIONS AND OUTLOOK

MSM construction for protein folding datasets involves
many modeling choices. Historically, these decisions have
been heuristically motivated. The utilization of a variational
principle41,42 under cross-validation enables the modeler to
objectively optimize modeling protocol through the GMRQ
score.44 With this tool we have reanalyzed twelve ultra-long

protein folding trajectories,18 in order to determine which
modeling choices systematically produce superior MSMs and
to suggest a set of recommendations for constructing MSMs
of protein folding. We have shown that (1) cross-validation
is necessary to avoid overfitting models, (2) the use of tICA
to reduce trajectory dimensionality before clustering consis-
tently produces higher-scoring models, (3) different clustering
algorithms perform similarly on low-dimensionality data from
tICA, and (4) the featurization choice is paramount for building
kinetic models with predictive capabilities.

In Sec. V D, we reported that MSM time scales differ
widely across models constructed from different features. To
a lesser extent, this is also the case for time scales predicted
by MSMs that have indistinguishable scores; in other words,
time scales across indistinguishably good models differ more
than their intra-model uncertainties82–88 account for. This is
likely due to the fact that each model is built from a different
state decomposition and is thus describing a (perhaps subtly)
different process. In the absence of an additional metric for dis-
tinguishing models, such as experimental results, the modeler
may not be able to select the single best MSM. We therefore
hypothesize that a system is better described by an ensemble
of equivalently good models as opposed to a single best model.
This motivates the need for new mathematical tools to describe
ensembles of MSMs and their associated statistics, especially
with regard to uncertainty in kinetics.

We anticipate that the advent of the GMRQ to evaluate
MSMs will shift modelers from heuristic protocol choices
toward systematic parameter searches informed by the results
and practices presented in this work. The ability to construct
MSMs capable of optimally describing slow processes in MD
trajectories is invaluable to the theorist, whether those models
are built to inform future experimental pursuits or to elucidate
previous findings. It is important to be aware that the slow
processes found by the best model may not correspond to the
process of interest and instead may be artifacts of insufficient

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-008644
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-008644
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sampling or the force field used during simulation. A MSM
that identifies uninformative slow processes may thus be an
indicator of a problem with the raw data. We therefore stress
that connection to experiment will continue to be crucial in
evaluating model utility.

Free, open source software fully implementing all
methods used in this work is available in the MDTraj,89

MSMBuilder,90 and Osprey91 packages available from
http://mdtraj.org and http://msmbuilder.org.

SUPPLEMENTARY MATERIAL

See the supplementary material for specifics regarding
MSM methods and cross-validation, supporting information,
and individual protein results.
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