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Fast ensemble representations for abstract visual
impressions
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Much of the richness of perception is conveyed by implicit, rather than image or feature-level,

information. The perception of animacy or lifelikeness of objects, for example, cannot be

predicted from image level properties alone. Instead, perceiving lifelikeness seems to be an

inferential process and one might expect it to be cognitively demanding and serial rather than

fast and automatic. If perceptual mechanisms exist to represent lifelikeness, then observers

should be able to perceive this information quickly and reliably, and should be able to perceive

the lifelikeness of crowds of objects. Here, we report that observers are highly sensitive to the

lifelikeness of random objects and even groups of objects. Observers’ percepts of crowd

lifelikeness are well predicted by independent observers’ lifelikeness judgements of the

individual objects comprising that crowd. We demonstrate that visual impressions of abstract

dimensions can be achieved with summary statistical representations, which underlie our rich

perceptual experience.
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E
ven at first glance, observers report that their visual
perception seems rich and complete1. At least some of
this richness may be supported by ensemble or summary

statistical representations. Prior work has shown that ensembles
support gist level interpretations of scenes2; however, until now,
ensemble perception has only been demonstrated for explicit
visual dimensions such as size, orientation, motion and faces3–5.
What mechanism underlies the visual experiences that go beyond
simple visual features, textures and explicit dimensions in scenes?
Observers can—at least cognitively—interpret abstract content
from scenes, including emotional and social information6,7. For
example, observers can report the inferred emotional pain from a
photograph of a serious car accident, or the implied sense of
urgency in a photograph of a panicking crowd8. One striking
abstract impression that observers report is animacy, or liveliness,
of an object or scene9–11. These sorts of high-level perceptual
impressions are based on visual information but are not directly
available from the image content itself (at least not in a
well-defined or straightforward way)12. Researchers often
assume that these high-level impressions must be cognitive:
requiring attention to contextual information, deliberation about
meaning, observer specific learning, or other potentially slow or
serial processes13–15. An alternative possibility is that these
high-level visual impressions, such as lifelikeness, might be
specified quickly and automatically16. In fact, some researchers
have reported rapid processing of single abstract items17.
However, to date, no visual mechanism has been proposed to
support the rapid extraction of abstract information from groups
of objects in a visual scene. Here we explore whether ensemble
coding supports rapid abstract impression formation.

Until now, ensemble perception has only been demonstrated to
operate on basic visual dimensions3,4,18–20. However, even
fleeting glimpses of visual environments engender a rich

perceptual impression that cannot be easily explained by the
summary statistics of basic visual features. For example, our
impression of the liveliness and energy depicted in a photo of
mounted animals at a natural history museum compared to a
photo of those animals at the zoo is not well explained by
ensemble perception of colour (similar), texture (similar) or even
biological motion information (irrelevant in the case of static
pictures). The context alone also does not give away the answer,
as it depends on an interaction between the objects and context,
among other factors. Museums, for example, can be more or less
animate than zoos, depending on things like whether a busload of
children is arriving. In this study, we tested whether summary
statistical perception can precisely represent the vibrancy or
lifelikeness of random sets of stimuli. We find that observers
perceive the average lifelikeness of crowds of objects,
demonstrating that ensemble or summary statistical perception
may underlie our perception of abstract visual experiences. This
process could provide a link between summary statistical
representations for basic features, objects and the kind of gist
perception that observers report in their first glance impressions
of visual scenes.

Results
Individual object lifelikeness ratings. In the first experiment, 20
participants on Mechanical Turk rated the lifelikeness of 150
different static stimuli on a ten-point Likert scale (see Methods).
The participants freely viewed each stimulus one time;
no stimulus was repeated. In the instructions, lifelikeness (or
animacy) was explicitly defined as ‘how relatively alive the item in
the photograph appeared’. In each trial, a randomly selected
stimulus (various objects, people, animals, insects, food, and
so on) was displayed for 1 s. After the stimulus disappeared,
a slider bar appeared with the words ‘Please rate the previously
shown picture on a scale of 1–10’, with one representing the
lowest possible lifelikeness rating and ten representing the highest
possible lifelikeness rating. Figure 1b depicts the trial sequence.
Participants were not given a time limit to rate items, and they
were not allowed to skip any items. After the response, the
experiment advanced to the next trial. Participants completed
150 trials in total, and each participant viewed the stimuli in a
randomly generated sequence.

We evaluated participants’ consistency in rating lifelikeness
by using an intra-class correlation coefficient test, or ICC21.
Specifically, we used a mixed, two-way ICC model to measure
consistency across the average ratings. The test yielded an ICC
within the excellent range, ICC¼ 0.976 (ref. 22). This ensures that
observers agreed on the lifelikeness of objects, and suggests that
lifelikeness was rated similarly across observers. After confirming
inter-rater reliability, each stimulus was assigned the average
value of the 20 participants’ ratings for that particular item. The
lifelikeness ratings ranged from 1.55 to 8.95.

Ensemble coding lifelikeness in object groups. In the second
experiment, we created groups of stimuli by randomly drawing
six objects without replacement from the 150-item stimulus set
that had been rated in the first experiment. This process yielded
25 groups containing 6 stimuli each (Fig. 2a; see Methods). Each
of the 25 groups was assigned a single, independently determined
predicted lifelikeness rating, calculated by averaging the ratings of
the six objects comprising the group (from Experiment 1 data).
From now on, the result of this calculation will be referred to as
the ‘predicted’ lifelikeness value of the group. The predicted
lifelikeness ratings of the 25 groups were normally distributed
around a mean of 5, with a range from 2.88 to 8.125.

Twenty new Mechanical Turk subjects participated in the
second experiment. Their task was to judge the average
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Figure 1 | Stimuli and trial sequence in Experiment 1. (a) Example images

illustrating the diversity of stimuli used in the experiment (out of 150 total).

The images exhibit a wide variety of physical features, and some stimuli

may be associated with both living and non-living attributes. Some images

used in the actual experiments are replaced in these figures due to

copyright. (b) Experiment 1 trial sequence. Participants viewed a random

stimulus for 1 s and then rated it on a Likert scale of lifelikeness using a

slider bar.
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lifelikeness of each group of six objects. The methods were
identical to the first experiment, except participants freely viewed
a group of 6 stimuli for 1 s, and were asked to ‘Please rate the
average animacy of the previously shown group’. Participants
were not given a time limit to rate the group, and were not
allowed to skip any groups of stimuli. Importantly, stimuli were
displayed in two ways. In the whole set condition, participants
viewed the entire set of six stimuli. In the subset conditions,
participants viewed subsets of the whole set. Specifically, in the
subset conditions, either 1, 2 or 4 stimuli from the entire set
were displayed to the participant. The subsets were randomly
chosen from the whole set (see Methods). The whole set and
subset conditions were randomly interleaved throughout the
experiment, and every participant viewed the crowds in a
randomly generated order. Each participant responded to 25
possible groups of objects at each of the four set size conditions
(1, 2, 4 and 6), for a total of 100 trials.

If participants were able to extract the average lifelikeness from
a group of visually distinct stimuli, we would expect the
participants’ ratings in the whole set condition to correlate with
the predicted lifelikeness of the group (based on ratings of
individual objects made by independent observers in the first
experiment). For the set of 25 unique groups, we conducted a
Pearson correlation test between participants’ mean lifelikeness
ratings of the groups in the second experiment and the predicted
lifelikeness of the groups from the first experiment. Figure 2b

shows four representative subjects’ data in the whole set
condition. This analysis was performed individually for all 20
participants. The averaged Fisher z value across participants,
(z¼ 1.08; rz

0, Po0.001, n¼ 20), suggests that participants were
able to extract ensemble lifelikeness.

While the results indicate that participants perceived ensemble
lifelikeness, it is critical to determine whether the observers
actually integrated lifelikeness information from multiple items in
the group or merely randomly sampled a single item from the
group. The subset conditions allow us to simulate what
participants’ responses in the whole set condition would look
like if they randomly selected a single stimulus from the group of
pictures or randomly sampled small subsets from the group
of pictures20,23,24. The subset conditions make an important
prediction: If participants engaged in ensemble coding, their
ratings of lifelikeness in the whole set condition would be more
highly correlated with the predicted lifelikeness value of the entire
group compared to the subset conditions. The correlations should
increase monotonically as set size increases. We will refer to this
outcome as the ‘subset effect’. The logic is as follows: When
lifelikeness information about the whole set of stimuli is present,
observers will use it. By the same logic, if participants integrate
the presented objects into an ensemble, correlations will decrease
with smaller subset sizes. This is because the randomly selected
subsets will not always be representative of the overall lifelikeness
of the group. Importantly, we will only observe this outcome
if the participants actually integrate lifelikeness information
from multiple objects. Conversely, if participants based their
lifelikeness judgement on a single randomly sampled object, their
performance (that is, correlation between observers’ crowd
ratings of lifelikeness and the predicted ratings) across the
subset conditions would not show an improvement as more
information became available (Fig. 3a, left). Instead, their
performance would asymptote at a small subset size, indicating
that they were using a subsampling strategy to accomplish the
task. Figure 3a illustrates the two expected patterns of
performance for random subsampling and for integrating 100
percent of the items, an extreme form of ensemble coding.

Subset condition control results. For each subject and subset
condition, we calculated a Fisher z (correlation) between
participants’ ratings of set lifelikeness and the predicted
lifelikeness of the whole set (from Experiment 1). The average
Fisher z scores across subset conditions were well fit by a
linear regression, r2¼ 0.998, Po0.001, n¼ 4, illustrating that
participants exhibited increasing correlations as set sizes became
larger (Fig. 3b).

These results confirm that subjects were not engaging in a
strategy of sampling one object or relying on the most extreme
object to accomplish the lifelikeness rating task. Instead, these
results indicate that participants used most of the available
information—a hallmark of ensemble coding. Additionally, we
conducted a permutation test on the Fisher-transformed data to
compare participants’ correlation values between the four-object
subset and the whole set. Participants exhibited a higher
correlation in the whole set than the four-object subset,
Po0.001, n¼ 20. This indicates that participants integrated
information from more than four objects in the set.

Fast ensemble lifelikeness perception. The data from the
second experiment indicated that participants perceive ensemble
lifelikeness in sets of objects viewed for 1 s. An open question, in
Experiment 3, is how quickly ensemble lifelikeness perception can
operate. To test this, and to confirm that the results of the second
experiment extend to a laboratory setting, we replicated the
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Figure 2 | Experiment 2 stimuli and results. (a) In the whole set condition,

a display of six stimuli was presented for 1 s. Participants then rated the

average lifelikeness of the group of stimuli using a slider bar. (b) Experiment

2 results for four representative subjects. The observers’ ratings (black

circles) of crowd lifelikeness (y axis) were well predicted by the average of

individual item ratings derived from an independent group of observers in

Experiment 1 (x axis), using a Pearson correlation, n¼ 25.
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second experiment at five different exposure durations with
experienced psychophysical observers (see Methods). Subsets
of stimuli (as in the second experiment) were presented for
durations of 50 ms, 250 ms, 500 ms, 1 s or 3 s. In each trial,
participants foveated on a fixation cross, and viewed up to six
stimuli, which were displayed isoeccentrically around the fixation
cross (see Fig. 4a, also see Methods). The different exposure
durations and subset conditions (1, 2, 4, 6 stimuli per set) were
randomly interleaved (52 trials each), totalling 1040 trials per
participant.

We observed highly robust correlations between participants’
estimates of ensemble lifelikeness and the predicted lifelikeness
values of the crowds for all exposure durations (Fig. 4b). The
participant’s Fisher z scores in each exposure duration condition
were well fit by a linear regression (lowest r2 was 0.37, in the
50 ms set duration condition, P¼ 0.013, n¼ 16) illustrating the
increasing correlations for larger set sizes. To confirm that
ensemble lifelikeness perception does not rely on visual or
monitor persistence, we conducted two control experiments that
replicated the results of this third experiment with backward
masking of the briefest displays (Experiments 8 and 9,
Supplementary Fig. 1, Supplementary Table 2). These results

reinforce the results of Experiment 2 (data from Mechanical
Turk) within a controlled laboratory setting, indicating that it is
possible to formulate an ensemble percept of visually distinct
items. These results also provide a hint that participants
integrated multiple stimuli into their estimates of ensemble
lifelikeness, even for briefly presented sets. Although this is
intriguing evidence that ensemble lifelikeness perception may be a
fast process, there remain unanswered questions. First, how many
stimuli are integrated in a brief glance? And, second, do subjects
rely on explicit memory of the stimuli? To address these
questions, we conducted a follow-up experiment.

Limited explicit memory for set members. The third experiment
indicated that observers perceive ensemble lifelikeness even for
briefly presented sets. Although this could indicate a fast
perceptual process, an alternative is that observers recall the items
in the set and use this memory to make their judgement of
lifelikeness. It is therefore necessary, in Experiment 4, to deter-
mine whether group lifelikeness perception occurs without
explicit memory for individual items in the group. To address
this, we needed a more precise estimate of how many stimuli
observers integrated into their ensemble lifelikeness percept, and
we needed to measure memory capacity for the objects in the sets.
To this end, we presented sets of objects in two conditions,
measured in separate runs.

In the first condition, we replicated the third experiment,
presenting sets of 1, 2, 4 or 6 objects for 250 ms. Like in
Experiment 3, we measured correlations between participants’
estimates of ensemble lifelikeness and the predicted lifelikeness
values of the crowds from independent observers. In the second
condition, the sets of stimuli were similar but the observers
performed a membership identity task. In each trial, subjects
viewed six stimuli displayed isoeccentrically from a central
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Figure 3 | Hypothetical and empirical results for Experiment 2.

(a) Hypothetical outcomes for the subset conditions, comparing

participants’ performance during random subsampling of one object or

during ensemble coding (an extreme version of ensemble coding in which

100% of the objects in the set are integrated). Left: If the participant

randomly samples lifelikeness information from just one item in the set,

the magnitude of the correlation should remain relatively constant, even

when more information becomes available because the participant does not

use the new information. Right: In contrast, if the participant integrates

lifelikeness information from every item as it becomes available to them,

the correlation between participants’ lifelikeness ratings and the predicted

lifelikeness ratings of the crowd should increase as more information

(more items) becomes available. (b) Experiment 2 Results. The Fisher z

scores increase as the number of items displayed increases. This pattern

indicates that participants integrated the available information and did not

use a random subsampling technique to accomplish the task. Error bars

represent s.e.m.
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Figure 4 | Ensemble coding lifelikeness at different display durations.

(a) Example display in Experiment 3. Participants viewed groups of up to six

stimuli presented for 50 ms to 3 s, then rated the average lifelikeness of the

group. (b) Participants consistently integrated multiple items across display

durations.
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fixation cross for 250 ms. After the set disappeared, two items
appeared on the screen. One item was a member of the previous
set, and one item was a lure (drawn from the full set of 150
images). In a two-alternative forced choice task, participants
chose which stimulus was a member of the previous set by
pressing one of two keys on a keyboard. Memory capacity was
estimated from the proportion correct in this task (see Methods).
Observers participated in 100 trials in each condition.

Results for the first condition replicated and extended the third
experiment. The average Fisher z score was 0.972, rz

0, Po0.001,
n¼ 4. We also fit a linear model to participant’s Fisher z scores
(collapsing across the 52 trials in Experiment 3 and 100 trials in
Experiment 4) during the 250 ms exposure condition and found a
significant positive linear trend (linear model r2¼ 0.75, Po0.001,
n¼ 16). On average, participants integrated up to six stimuli
in their estimates of ensemble lifelikeness (see Fig. 5a). A
permutation test comparing participants’ Fisher z values between
the four-object subset and the whole (six object) set revealed a
significant difference, P¼ 0.02, n¼ 4, indicating that observers
integrated up to six objects in their estimates of ensemble
lifelikeness. A regression analysis25 complemented these findings,
and indicated that participants integrated all display items into
their ensemble percept (Supplementary Tables 1 and 2).

The second condition measured memory capacity for objects in
the briefly presented sets. On average, participants exhibited an
effective memory capacity of 1.89 items, when sets of six stimuli
were presented (vertical dashed lines in Fig. 5a,b; see Methods).
Taken together, the results demonstrate that perception of group
lifelikeness cannot be based on explicit memory alone, or on a
cognitive calculation that relies on the explicit memory of each
item. Ensemble lifelikeness can be perceived even when the
individual set members are lost or forgotten.

Perceiving group lifelikeness over time. The first four experi-
ments required participants to extract an ensemble percept from
items arranged in a spatial array, demonstrating that ensemble
lifelikeness perception involves some degree of spatial integration.

Because of eye and object motion, however, we often encounter
objects and crowds in dynamic situations. In Experiment 5, we
tested whether observers can perceive ensemble lifelikeness in a
temporal sequence26,27.

In this fifth experiment, six participants in the laboratory
viewed the same sets of stimuli viewed by Mechanical Turk
subjects in the second experiment. However, as shown in Fig. 6a,
these items were displayed sequentially over time, rather than
simultaneously over space. After the items disappeared, a blank
screen appeared, during which participants rated average the
lifelikeness of the set. Participants used buttons labelled 1–10 on
the computer keyboard, where 1 represented the lowest life-
likeness rating and 10 represented the highest lifelikeness rating.
There were four conditions, corresponding to four different set
sizes (1, 2, 4 or 6 objects per set). The whole set condition
contained six items displayed foveally with a spatial jitter (see
Methods) for 50 ms each. In the subset conditions, participants
viewed each item for a longer duration to equalize the total visible
stimulus duration (see Methods). Note that, in many ways,
increasing the exposure duration for the items in the smaller
subsets actually works against the subset effect (Fig. 3a right
panel), as the longer exposure could facilitate recognition or
memory. Therefore, performance might be expected to increase
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perceive ensemble lifelikeness in sequentially presented groups of items.

Moreover, Fisher z scores increase as the number of items displayed
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random subsampling to accomplish the task. Error bars represent s.e.m.
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(or stay constant) in the small subset conditions. Despite this,
if participants truly integrate lifelikeness information from most
of the items displayed, we will still observe the predicted subset
effect (Fig. 3a right panel) because the subset is not truly
representative of the average of the whole crowd. Each participant
completed 100 trials in total (25 possible groups of objects� 4
set sizes).

If observers are able to extract the average lifelikeness from a
group of sequential stimuli, we would expect lifelikeness ratings
in the whole set condition in this experiment to correlate with the
predicted lifelikeness of the crowd based on the ratings
of individual objects made by independent observers (from
Experiment 1). Once again, we conducted a bivariate correlation
test between participants’ lifelikeness ratings of the temporal
crowds presented in Experiment 5 and the predicted lifelikeness
values. Figure 6b left panel shows the results from one
representative participant, Pearson r¼ 0.791, Po0.001. We
transformed the Pearson correlation coefficients to Fisher z
scores and averaged across participants (Fisher z¼ 0.913,
rz0 ¼ 0.722, Po0.001, n¼ 6). A linear regression of average group
performance versus set size demonstrated that participants’
performance became more correlated as set size increased,
r2¼ 0.905, P¼ 0.048, n¼ 4 (Fig. 6b, right panel). A permutation
test revealed a significant difference between the four-item subset
and the whole set, Po0.001, n¼ 6, with participants exhibiting a
higher correlation in the whole set versus the four-item subset.
This indicates that participants integrated five or more items into
their ensemble percept. It also confirms that participants were
not using a random subsampling strategy, and reveals that
participants can ensemble code lifelikeness temporally as well as
spatially.

Visual short-term memory control. A common question in
ensemble coding literature is whether attention or awareness of
single objects is necessary to formulate an ensemble percept.
Many previous experiments indicate that participants are able to
formulate a remarkably precise ensemble percept of low-level
stimuli (simple shapes, orientation or motion) or high-level
stimuli (face, biological motion), even when performance at
membership identity tasks is relatively poor3,28–30. Ensemble
animacy perception appears to follow a similar pattern:
Experiment 4 found that observers had memory capacity of less
than two effective objects, and yet they integrated more than five
into their ensemble percept. However, that experiment employed
spatial arrays. An open question is whether the observers lack
information about the individual objects in the temporal array
(Experiment 5). In the sixth experiment, we therefore investigated
whether participants were able to formulate an ensemble percept
of a temporal sequence of objects without specific memory of
every item in the group.

In the sixth experiment, we also increased the set size to 12
items. This allowed us to ensure that the results remained robust
with large set sizes. In this experiment, we pseudo-randomly
generated crowds (see Methods) for each different participant.

Five participants in the laboratory viewed temporally presented
sets of 12 stimuli. Stimuli were presented foveally with a spatial
jitter (see Methods). The subset conditions consisted of 1, 2, 4 and
8-item subsets. Each stimulus was shown for 50 ms, with a 50 ms
interstimulus interval (ISI) in all set sizes. Whole (12-item) set
and subset conditions were randomly interleaved. Observers
participated in a total of 510 trials, with 102 trials per set size
condition.

A layout of the experimental trial sequence is depicted in Fig. 7.
First, participants viewed the temporal display of stimuli.
Participants then performed two randomly ordered tasks. In
one task, they rated the average lifelikeness of the group. In the

other task, participants performed a 2AFC membership identity
task (identical to Experiment 4). In the 2AFC task, two stimuli
were shown on the screen side by side. One of the stimuli was a
lure; the other stimulus was a randomly selected item from the
previously seen set. Participants chose which object was a
member of the set (see Methods). The order of the tasks was
randomized. That is, in some trials, the participants performed
the membership identity task directly after viewing the crowd,
and then rated the lifelikeness of the crowd. In other trials,
participants rated the lifelikeness of the crowd directly after
viewing the crowd, and then performed the membership identity
task. Participants were not given a time limit to perform either
task (membership identity and lifelikeness ratings). As soon as
the participants entered their response, the other task appeared.

As in the previous experiments, we correlated participants’
lifelikeness ratings of the whole set with the predicted lifelikeness
ratings based on an average of the individual objects within the
set (as determined by independent observers in the first
experiment). In this particular experiment, the whole set was
twice the size of whole sets in previous experiments (that is, 12
versus 6 items). We still observed a robust correlation between
the participants’ lifelikeness ratings and the predicted lifelikeness
of the group (Fig. 8b; Fisher z¼ 1.22, rz0, Po0.001, n¼ 5).
A representative participant’s data are shown in Fig. 8a.

We examined participants’ performance in the different set
sizes by examining participants’ average Fisher z scores in the
subset conditions. The average Fisher z values across the different
set sizes were well fit by a linear model, suggesting that
performance improved as set size increased, r2¼ 0.942,
Po0.001, n¼ 4 (Fig. 8b). Additionally, a permutation test
comparing Fisher z values between the eight-item subset and
the whole (12-item) set indicated a significant difference,
P¼ 0.002, n¼ 5, with participants exhibiting a higher correlation
in the whole set versus the eight-item subset. This indicates that
participants integrated more than eight items into their ensemble
percept of lifelikeness.

We analysed the number of items participants remembered in
each trial by calculating a measure of memory capacity (see
Methods). Participants’ memory improved in the smaller subsets,
but plateaued for the larger set sizes. Participants remembered
approximately 1 item in the 1-item display, 2 items in the 2-item
display, 3 items in the 4-item display, and 5 items in both the
8-item set and the 12-item display (average effective memory
capacity (MC) in the 1-item set¼ 0.98 (SEM¼ 0.004); MC in the
2-item set¼ 1.92 (SEM¼ 0.005); MC in the 4-item set¼ 2.96
(SEM¼ 0.016); MC in the 8-item set¼ 4.64 (SEM¼ 0.009), MC
in the 12-item set¼ 4.8 (SEM¼ 0.008)). Even though participants
remembered approximately 5 items in both the 8-item display
and the 12-item display, their ensemble coding performance
continued to substantially increase between set sizes 8 and 12.
This indicates ensemble coding without explicit memory for
individual items in the temporal display. This pattern of results
closely mirrors the results in Experiment 4, where explicit
memory for individual objects in a spatial array of objects was not
necessary for perception of ensemble lifelikeness.

Binary versus graded representations. Experiments 2, 3 and 5
suggested that participants perceived ensemble lifelikeness over
space and over time. Experiments 4 and 6 replicate these findings,
and suggest that explicit memory of individual objects was
not required to form ensemble representations of lifelikeness.
However, it remains unknown how participants extract the
average lifelikeness of the group. One potential strategy is that
participants perceive lifelikeness as categorical and binary (either
alive or not) and then average the items (we refer to this as the
‘binary’ strategy). Alternatively, observers might perceive graded
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or relatively nuanced differences in the lifelikeness of individual
items to achieve a precise ensemble percept of the group as a
whole. We refer to this strategy as a ‘graded averaging strategy’.
Both perceptual strategies could result in an ensemble
representation, and both strategies may be relied upon under
different circumstances, but they make different predictions.

To investigate this, in Experiment 7, we used a design similar to
the sixth experiment except that participants were instructed to

count either the number of living or non-living items in each
group (counterbalanced across participants). The trial procedure
was as follows: Participants viewed a temporally displayed crowd,
then after each display, participants verbally reported their count
to the experimenter. After their verbal report, participants rated
the ensemble lifelikeness of the group and performed the
membership identity judgement in a randomized order, similar
to Experiment 6 (see Fig. 9 for task layout). The counting task
allowed us to create a binary averaging model: a simulation of
what participants’ performance would look like if they were
simply assigning binary values (for example, 1’s and 10’s, or 4’s
and 6’s, and so on) to the non-living and living items respectively,
and then averaging these numbers. Observers participated in
24 trials total.

Both strategies (binary averaging and graded averaging) will,
unsurprisingly, produce a similar pattern of results. However,
if participants extract graded information, we should still observe
a slight decrement in performance in the binary averaging
simulation compared to their actual ensemble coding judgement.
This is exactly what we found. We fit a linear regression through
the origin of participants’ ensemble coding performance and the
performance predicted from the binary averaging model.
Participants’ graded averaging was a better fit (graded averaging
r2¼ 0.941, binary averaging r2¼ 0.777). To ensure that
participants’ ensemble rating judgements were not biased by
the counting task, we also compared the same binary averaging
simulation for each participant to their averaging performance in
a separate task. This separate measure of ensemble coding
performance was identical to Experiment 7 (excluding the
counting task), and the result was similar (graded averaging
r2¼ 0.934, binary averaging r2¼ 0.777). Thus, our results suggest
that participants did not solely rely on a binary ensemble coding
strategy when viewing sets of sequentially presented stimuli.
We also tested whether observers use graded versus binary
averaging when judging animacy in spatial arrays of stimuli.
We found that participants did not rely on a binary ensemble
coding strategy (Experiment 10, Supplementary Fig. 2).
Additional control experiments ensured that participants did
not merely rely on low-level features or image statistics to
determine lifelikeness (Experiments 11 and 12; Supplementary
Figs 3 and 4). Instead, participants relied on configural
information31–33 to assess the liveliness of a group.

Discussion
Our results indicate that observers can perceive the average
lifelikeness of groups of objects in a fraction of a second. This is

Display

Tim
e

Response

O
rd

er
 R

an
do

m
iz

ed

50 ms per item

50 ms ISI

What is the average
animacy? 

Which item was part of
the group?  

Figure 7 | Trial sequence for the whole set condition. First, participants viewed 12 random stimuli displayed sequentially for 50 ms per item, with a

50 ms ISI. Next, participants viewed a two-alternative forced choice membership identity task and participants were asked to rate the average lifelikeness of

the group. Participants were not given a time limit to complete both tasks. The order of the two tasks was randomized throughout the experiment, so that

sometimes participants performed the lifelikeness rating first and sometimes participants performed the membership identity task first.

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 12

C
ro

w
d 

lif
el

ik
en

es
s 

ra
tin

gs

Predicted lifelikeness ratings

A
ve

ra
ge

 F
is

he
r 

z

# of items in display

r = 0.910
*

Memory capacity

Ensemble coding
performance 

n = 5

a b

Figure 8 | Results of Experiment 6. (a) Crowd lifelikeness of large groups

is well predicted by the average of individual item ratings from independent

observers. This graph depicts the ratings (black circles) of one

representative participant judging 102 unique temporal groups. There is a

high Pearson correlation, r¼0.910 between the ratings of average crowd

lifelikeness (y axis) and predicted ratings of the groups generated from

single-item ratings (x axis). (b) Averaged data for five observers. The x axis

represents the number of items displayed in the set. The y axis represents

the magnitude of the Fisher z score. The Fisher z score in the whole set

condition indicates that participants are able to perceive ensemble

lifelikeness even in large groups of items (in this case 12 items). The Fisher

z scores increase as the number of items displayed increases. This pattern

rules out the possibility that participants engaged in random subsampling

techniques to accomplish the task. Error bars represent s.e.m. Finally, the

dashed line represents the memory capacity limit in this experiment.

Participants remembered on average five items in each display. However,

their ensemble coding performance continued to significantly increase

between 8 and 12 items, indicating that ensemble coding performance is

not solely dependent on explicitly remembered items.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13186 ARTICLE

NATURE COMMUNICATIONS | 7:13186 | DOI: 10.1038/ncomms13186 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


the first evidence that ensemble coding may contribute to our first
glance or gist impression of abstract attributes like animacy or
liveliness. Our results show that gist impressions of visual scenes
are rich: they encompass more than a sparse statistical summary
of concrete physical dimensions. Until now, it was unknown
whether individuals could extract an ensemble code from
perceptual impressions that were not immediately specified by
the visual features in the image. Our experiments demonstrate
that individuals can extract ensemble percepts about abstract
visual interpretations, suggesting that lifelikeness is an explicitly
coded perceptual dimension. Moreover, these representations are
remarkably consistent across observers, suggesting that life-
likeness is a shared visual percept. Our results provide a link
between summary statistical representation of basic visual
features, and the vibrant, complex perceptions that observers
report experiencing in their first impressions of a visual scene.

Our findings reveal that ensemble perception of lifelikeness is
achieved extremely rapidly. While previous work has shown that
observers categorize stimuli in a brief time period (for example,
animal or non- animal34,35), our study shows that observers can
perceive relative lifelikeness (that is, whether one stimulus is more
life-like than another) on a similarly rapid timescale for groups as
well. These results parallel the rapid time scale reported in
previous ensemble coding experiments using stimuli with explicit
physical dimensions24,26, highlighting the remarkable efficiency
of ensemble representations that support abstract visual
impressions.

Our findings suggest that lifelikeness is an explicitly coded
perceptual dimension that is continuous as opposed to dichot-
omous. One prior study has investigated whether animacy is a
strictly dichotomous representation, or whether animacy is
represented as a continuum36. While this prior study focused
on single repeated stimuli shown for longer exposure durations,
our findings extend this question to groups of heterogeneous
objects that were briefly presented. Our participants extracted a
graded ensemble percept of group lifelikeness. Because of the
rapid timescale, the judgements of lifelikeness in our experiment
would not allow for cognitive reasoning or social processes.
Consistent with this, explicit memory of the objects in the sets
was not sufficient to account for the number of objects integrated
into the ensemble percept. Our results suggest that graded
representations of object and crowd lifelikeness emerge as a basic,
shared visual percept, available during rudimentary and rapid
visual analysis of scenes.

Animacy, as a general construct and topic of cognition
research, is extremely complex. Numerous contextual, cognitive
and social mechanisms come into play when determining
whether an object exhibits animate qualities. Specifically, when

making judgements about animacy, theory of mind37–39,
contextual cues40,41 and cognitive strategies42 contribute
significantly to animacy evaluations. These complexities help
explain why there are relatively few agreed-upon operational
definitions of animacy or lifelikeness.

In contrast to the ambiguity of the terms animacy or
lifelikeness, our results show that the ensemble perception of
lifelikeness in groups of static objects was surprisingly consistent
across observers. When stimuli were presented for brief
durations, observers reached a remarkable consensus on the
average lifelikeness—even regarding objects that exhibit
seemingly ambiguous qualities. This consistency suggests that a
similar percept of lifelikeness is commonly available to observers
who glance at a scene. Numerous cognitive and social
mechanisms may come online later, and observers may refine
their percepts of lifelikeness when given longer periods to
evaluate items and context. However, in a first-glance impression
of the environment, observers share a relatively unified, consistent
percept of lifelikeness.

Methods
Participants. In total we tested 68 healthy participants with normal or
corrected-to-normal vision. In Experiment 1, we tested 20 participants on Amazon
Mechanical Turk (mean age¼ 34.89, SD¼ 13.75; 12 males, 8 females). In
Experiment 2, we tested 20 new participants on Amazon Mechanical Turk (mean
age¼ 40.9, SD¼ 14.164; 6 males, 14 females). In Experiments 3 and 4, we tested
four experienced psychophysical observers (mean age¼ 27.75 SD¼ 5.31; 2 males,
2 females). In Experiment 5, we tested six experienced psychophysical observers,
including one author (mean age¼ 26.833, SD¼ 5.193; 3 males, 3 females). In
Experiment 6, we tested five experienced psychophysical observers, including one
author (mean age¼ 24, SD¼ 5.148; 1 male, 4 females). In Experiment 7, we tested
eight observers in the laboratory (mean age¼ 26.625, SD¼ 6.435; 5 females,
3 males). In Experiment 8, we tested three experienced psychophysical observers
(mean age¼ 27, SD¼ 6.245; 2 females, 1 male). In Experiment 9, we tested two
experienced psychophysical observers (mean age¼ 25, SD¼ 7.071; 1 male,
1 female). In Experiment 10, we tested four experienced psychophysical observers
(mean age¼ 27.75 SD¼ 5.31; 2 males, 2 females). In Experiment 11, we tested
three experienced psychophysical observers (mean age¼ 27.75 SD¼ 5.31;
2 females, 1 male). In Experiment 12, we tested 14 participants from Amazon
Mechanical Turk (mean age¼ 35.83 SD¼ 7.49; 3 females, 3 males, for those who
reported demographic information). Amazon Mechanical Turk observers who
failed to complete all of the experimental trials were automatically excluded from
the experiment and any subsequent data analysis. Some observers who were tested
in the laboratory participated in multiple experiments. All participants, with the
exception of the one author, were naı̈ve as to the purpose of the experiment. Each
participant provided informed consent in accordance with the IRB guidelines of the
University of California at Berkeley.

Stimuli. We used the stimuli from the Massive Visual Memory Stimulus
database43. This stimulus set contains coloured photos of diverse objects including
electronics, household items, food, plants, people, animals, insects, vehicles,
furniture and many other items on a white background. As the database may be
heavily biased towards living or non-living objects, we first very roughly balanced
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or flattened the distribution of living and non-living stimuli. To accomplish this,
the database was coarsely divided into living and non-living stimuli by one
observer. This does not reflect an objective measure or a reference baseline of
lifelikeness, but was done to simply increase the likelihood that participants
potentially viewed a broad distribution of items. Participants were unaware of this
step or that the experimental stimuli were approximately balanced in this way. Of
course, individual observers might still perceive the distribution of stimuli as
heavily biased towards or away from living or non-living categories. From these
divided stimuli, we randomly chose 75 nominally living and 75 nominally
non-living items. Figure 1a shows a representative subset of the images used in the
experiment. The stimuli were presented either using Qualtrics (r 2009) for online
participants or Psychophysics Toolbox44–46 in Matlab for laboratory experiments.
Participants on Amazon Mechanical Turk were asked to place their personal
computer monitor in a centred position in front of them, and were asked to
maintain a clear, unobstructed view of the pictures and sit an arm’s length away
from the computer screen.

Participants in the laboratory viewed stimuli on a 68.6 cm iMac LCD monitor
with resolution of 2,560� 1,440 and 60 Hz refresh rate. Participants sat with the
screen positioned centrally in front of them at a viewing distance of 60 cm. Each
stimulus was presented in a white box, with boundaries subtending 4.61�� 4.61� of
visual angle. In Experiment 2, each group of images was arranged on a grid with
three stimuli on the top row and three stimuli on the bottom row within a
436� 654 pixel grid. The location of each stimulus was randomly determined
within the grid. The size of each stimulus was 218� 218 pixels, and participants
were allowed to freely view stimuli. In Experiments 3, 4, 8, 9 and 10, participants
were instructed to foveate on a fixation cross. The visual angle between the fixation
cross and stimuli was 6.98�. In Experiments 5–7 and 11, each stimulus was
presented sequentially at the centre of the screen, with a spatial jitter of up to 4.14�
on the vertical axis, 3.30� on the horizontal axis. Across all the above-mentioned
experiments, the maximum and minimum luminance in the pictures was 327.5 and
1.38 cd/m2 respectively. The maximum Michelson contrast was 0.992. The visual
angle and Michelson contrast in the remaining experiments (Experiments 1, 2 and
12) was not measurable, as these experiments were conducted on Mechanical Turk.

The stimuli were randomized in the following manner to create crowds of
stimuli: In Experiments 2 and 5 we randomly drew from the entire stimulus array
(150 items) without replacement to generate 25 displays of 6 stimuli. This random
method yielded a broad range of predicted lifelikeness values for the crowds, from
2.88 to 8.125. Each participant viewed the 25 crowds in a random order. In
Experiments 3, 4, 8 and 9 the crowds of objects were randomly generated for each
participant on each trial. In Experiments 6, 7 and 11, we pseudo-randomly drew
from the original stimulus set (150 items) to generate crowds of 12 stimuli. The one
constraint was that one-third of the randomly drawn groups were below a
predicted mean lifelikeness of 4, one-third of the groups had a predicted lifelikeness
mean of 4–7, and one-third of the groups had a predicted mean lifelikeness above
7. This method ensured a similarly broad range of predicted lifelikeness ratings for
the crowds, despite the fact that we incorporated twice the number of items for
each display. In Experiment 10, we pseudo-randomly drew from the entire
stimulus set, with the constraint that both sides of the display contained the same
number of animate items, either 2 animate items and 1 inanimate item on each side
of the display, or 2 inanimate items and 1 animate item on each side. In
Experiment 12, we randomly generated 5 sets of stimuli, each containing 100
crowds of 6 randomly selected objects and 100 crowds of scrambled objects
(Supplementary Fig. 4). Amazon Mechanical Turk participants were randomly
assigned to one of the five stimulus sets.

Procedure. Experiments 2–12 incorporated the following general trial layout: First,
participants viewed a group of stimuli. Next, participants were asked to rate the
average lifelikeness of the groups of stimuli. The different experiments included
different display durations, number of stimuli and response methods. Specifically,
in Experiment 2, six stimuli were shown for 1 s. In Experiment 3, six stimuli were
shown for 50 ms, 250 ms, 500 ms, 1 s, and 3 s in interleaved trials. In Experiments 4,
8 and 10, six stimuli were shown for 250 ms. In Experiment 5, six stimuli were
shown sequentially for 50 ms each in the whole set condition. To equalize total
duration, the subset condition stimuli were shown for longer (83 ms per item in the
4-item subset condition, 150 ms per item in the 2-item subset condition, 300 ms per
item in the 1-item subset condition). In Experiments 6 and 7, twelve, eight, four,
two and one, stimuli were shown sequentially for 50 ms in interleaved trials. In
Experiment 11, twelve stimuli were shown sequentially for 50 ms in the whole set
condition. To equalize total duration, the subset condition stimuli were shown for
longer (100 ms per item in the 8-item subset condition, 250 ms per item in the 4-
item subset condition, 550 ms per item in the 2-item subset condition, 1,150 ms per
item in the 1-item subset condition). Across all sequentially presented displays
(Experiments 5, 6, 7 and 11), the ISI was 50 ms.

In all the experiments, after the display disappeared, participants were required
to rate the average lifelikeness of the stimuli. In Experiments 1, 2 and 12,
participants used a slider bar to rate the lifelikeness of the stimuli. The slider bar
appeared after the display disappeared, and allowed the participants to rate the
animacy of the display. Each end of the slider bar also had written cues reminding
the participant that 1 represented the lowest and 10 represented the highest
possible animacy or lifelikeness. The scale was integer based (that is, decimal

ratings were not available to the participant). In Experiments 3, 4, 5, 6, 7, 8, 9, and
11, participants used keyboard buttons to rate the lifelikeness of the stimuli, with 1
representing the lowest lifelikeness and 10 representing the highest lifelikeness. In
Experiment 10, participants also used keyboard buttons to indicate whether the
crowd with the highest average lifelikeness was displayed on the left or right side of
the screen. Across all experiments, participants were not given a time limit to make
their response.

In addition to asking participants to rate the average lifelikeness of stimuli, the
memory experiments (Experiments 4 and 6) also included a memory test during
the response phase. Two objects were presented side by side; one was a lure and the
other was a member of the previously seen set. Participants used a keyboard button
to indicate whether the member of the set was displayed the right or the left side of
the screen. The location (right or left) of the correct member was randomized
throughout the experiment. Participants’ memory capacity was estimated using the
following formula: MC¼ I� P, where MC represents working memory capacity,
I represents the number of items in the set, and P represents (proportion correct
� 0.50)� 2.

Data availability. All relevant data are available from the authors.
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