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Abstract

For over half a century, the field of developmental biology has leveraged computation to explore 

mechanisms of developmental processes. More recently, computational approaches have been 

critical in the translation of high throughput data into knowledge of both developmental and stem 

cell biology. In the last several years, a new sub-discipline of computational stem cell biology has 

emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput 

molecular data. In this review, we provide an overview of this new field and pay particular 

attention to the impact that single-cell transcriptomics is expected to have on our understanding of 

development and our ability to engineer cell fate.
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Computation in stem and developmental biology

Computational tools have played incisive roles in developmental biology since at least the 

1950s, when Alan Turing wrote a computer program to model how morphogen 

concentrations might affect pattern formation in an in silico embryo [1]. From this time until 

the advent of OMICs (see Glossary), the role of computational tools in developmental and 

stem cell biology was limited largely to exploring theoretical mechanisms of morphogenesis 

by, for example, modeling the emergence of positional information during embryogenesis 

[2], and to modeling the dynamics of adult stem cell self-renewal [3]. Beginning with the 

large genome sequencing projects around fifteen years ago, the predominant use of 

computational tools in developmental and stem cell biology shifted away from modeling to 

the processing of large molecular data sets [4, 5].
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More recently, two trends have emerged that warrant an exposition of the state-of-the-art in 

computational stem cell biology. First, systems biology and network biology approaches 

have begun to successfully synthesize large-scale molecular data with systems-level 

modeling of stem cell behavior and function. Second, new technologies have matured that 

allow single cell genome-wide molecular profiling. In this review, we concentrate on these 

two trends after we have briefly described the impact of OMICs and their affiliated 

computational techniques on stem cell biology.

OMICs in stem cell biology

The application of OMICs to stem cell biology has almost always closely followed (or 

coincided with) the initial description of the new technology. Here, as an introduction to the 

most widely-applied computational algorithms and the data on which they operate, we 

highlight two seminal questions in stem cell biology. We have summarized these and other 

common OMICs techniques and exemplary applications to stem cell biology in Table 1 and 

in Boxes 1 and 2.

BOX 1

Common OMICs analytical tools

Hierarchical Clustering (HCL): Aims to build a hierarchy of clusters. It takes as input a 

matrix representing pairwise distances between entities, it joins the closest pairs of 

entities, then calculates a new distance between this merged entity and all others, and 

repeats until all entities have been merged (Figure IA). K-means Clustering: Aims to 

group data into a pre-defined number (k) of clusters by first randomly assigning entities 

to clusters, calculating a mean profile of each cluster, determining the inter- and intra-

cluster distances, then assigning entities to the nearest cluster and re-computing the mean 

profiles. This process is repeated either a pre-determined number of times, or until the 

entities do not change their cluster membership (Figure IB). Principal Component 

Analysis (PCA): A dimension-reduction technique that finds axes or directions that are 

linear combinations of variables that maximize the total variation in the data set and are 

orthogonal to each other (Figure IC). Differential analysis: Aims to identify genes 

differentially expressed between distinct groups using approaches that account for the 

typically large number of statistical tests being performed (Figure ID). Enrichment 

analysis: Gene Set Analysis (GSA) using programs such as GSEA [88] determines 

whether the expression of predefined sets of genes tend to cluster towards the top or 

bottom of a ranked list of all genes assayed. The ranking is typically based on differential 

expression between two conditions (Figure IE). Mutation calling: The identification of 

genetic differences between a sample (e.g., from an individual’s germline or from a 

tumor) compared with a reference genomic sequence (Figure IF). Peak comparison: To 

identify genomic loci that are enriched with NGS reads that have been obtained by ChIP-

seq or DNase-seq. Some peak calling tools are optimized for specific assays such as 

Hotspot [89] and F-Seq [90] for DNase-seq data, while some serve as generic tool for a 

variety of data types such as Model-based Analysis of ChIP-seq (MACS) [91, 92] and 

DFilter [93] (Figure IG).

Bian and Cahan Page 2

Trends Biotechnol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure I. 
(A) HCL clusters samples based on their similarity. A–F represent different samples. (B) 

K-means divides variables into a user-selected number of groups. (C) PCA reduces the 

number of dimensions in data. (D) Two duplicates of each condition. Gene 1 is 

considered differentially expressed whereas Genes 2 and 3 are not. (E) GSEA showing 

whether a set of genes have statistically significant difference between two conditions. 

(IF) A->G mutation detected by next generation sequencing (NGS). (IG) Peak 

comparison between two conditions.
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BOX 2

Machine learning classifiers

Support vector machines (SVMs): Separate two data classes by maximizing the margin 

and creating the largest distance between the separating hyperplane. (Figure IA). Naïve 

Bayes classifiers (NBC): A direct application of Bayes Theorem to compute the 

probability that a sample comes from a class with a predetermined likelihood distribution 

(Figure IB). Random forest (RF): Random forests are constructed by sampling with 

replacement from all of the cases of the training data, and also sampling a subset of 

possible predictor variables (most often in our context the predictor variables are genes), 

then generating a collection of decision trees that are collectively used to classify new 

data (Figure IC).

Figure I. 
(A) SVMs aims to separate two groups (green and red). (B) Given expression 

distributions of gene x in each of RBCs and HSCs, it is possible to compute the posterior 

probability that a sample is either a RBC or HSC using Bayes’ theorem. For convenience, 

the prior probability is usually assumed to be equal across all cell types. (C) A RF 
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classifier treats the classification of each decision tree as a vote and returns the 

classification with the greatest number of votes.

The pluripotency gene regulatory network

Since the isolation of embryonic stem cells (ESCs) in 1981 a question of intense focus has 

been, ‘What are the molecular mechanisms by which pluripotent stem cells (PSCs) maintain 

multi-lineage potential indefinitely?’ OMICs techniques have played a central role in 

answering this question and have revealed previously unanticipated complexity in the 

regulation of pluripotency. As a first step towards understanding the molecular basis of 

pluripotency, the transcriptional profile of ESCs, and its relationship to that of adult stem 

cells was defined. Subsequently, the predecessor to Chip-Seq, Chip-Chip, was used to 

reconstruct to transcriptional regulatory network of core pluripotency transcription factors in 

human ESCs, uncovering an auto-regulatory loop that helps to maintain the pluripotent state 

by buffering against transient down regulation of any single pluripotency transcription factor 

[6]. This network motif was found by Chip-Chip to be conserved in mouse ESCs [7]. To 

further define the pluripotency regulatory network at the level of genomic regulatory 

elements, Stamatoyannopoulos’s group paired distal DNase hypersensitivities (DHSs) with 

target promoters of pluripotency-specific transcription factors (TFs) such as KLF4, SOX2 

and OCT4 [8].

A host of novel OMICs techniques, mainly based on next-generation sequencing, facilitated 

the investigation of post-transcriptional regulation such as Ribo-Seq [9], RIP-Seq [10], and 

CLIP-seq [11] in pluripotency. For example, the pluripotency network of mouse and human 

ESCs at the m6A methylome level was described using MeRIP-Seq [12], and using this 

method, the chromatin-associated zinc finger protein 217 (ZFP217) was shown to interact 

with epigenetic networks to regulate pluripotency in hESCs [13].

Taken together, these and many other genome-wide molecular profiling studies have 

collectively contributed to our understanding of the multilayered regulation of pluripotency, 

and furthermore have served as a model to understand the regulation of cell type identity for 

other, less-investigated lineages.

Epigenetic memory in induced pluripotent stem cells

In 2006, Yamanaka et al showed that it is possible to convert somatic cells to an ESC-like 

state, opening up the use of induced pluripotent stem cells (iPSCs) for disease modeling, 

and, in the future, for personalized regenerative medicine [14, 15]. In order for iPSC to be 

used in these contexts it is critical to understand in what ways iPSC and ESC are distinct, 

and how reprogramming itself might affect in vitro lineage bias. One hypothesis that 

emerged is that iPSC retain residual epigenetic marks that are transcriptionally silent in the 

pluripotent state but are apparent upon directed differentiation and would result in lineage 

bias. To explore this hypothesis, “comprehensive high-throughput arrays for relative 

methylation” (CHARM) [16] was used to identify differentially methylated genomic 
regions (DMRs) in iPSC derived from distinct starting cell types, and these DMRs were 

found to be enriched in promoters of TFs that specify lineages distinct from the starting cell 
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type in mice and human iPSCs [17, 18], an effect that is moderated by extended passage 

[19]. A distinct technique based on targeted bisulfite sequencing revealed that residual 

repressive DNA-methylation at promoters of pluripotency TFs might contribute to stable, 

partially reprogrammed lines [20].

These are just a few of the hundreds of studies that have leveraged genome-wide profiling 

combined with advanced and often custom algorithms to investigate the molecular basis of 

pluripotency and the processes associated with reprogramming to pluripotency. Many of the 

algorithms used to analyze and extract biological knowledge from OMICS technologies 

were first developed and deployed for stem cell biology, and they have subsequently been 

adapted for use in many other biological contexts. However, there are pressing issues 

especially relevant to stem cell biology, which are beginning to be addressed with new 

analytical tools and single cell approaches as described below.

Computational stem cell biology

Cell fate engineering, for example the directed differentiation of PSCs or the direct 

conversion among somatic cell types (e.g., the conversion of fibroblasts to cardiomyocytes 

through the ectopic expression of Gata4, Mef2c, and Tbx5 [21]) is practiced in thousands of 

labs worldwide to model diseases, to explore inaccessible time points in development, to 

screen drugs, and to develop regenerative medicine therapies. However, there are three 

daunting classes of barriers that impede cell fate engineering from fulfilling its promise to 

broadly transform the biomedical enterprise. The first class of barriers concerns the absence 

of rational, proven, and hypothesis-driven systems to select conditions to guide directed 

differentiation or to select factors to use for direct conversion (Figure 1, Key Figure). 

Directed differentiation methods, inspired by our understanding of signaling cues and forces 

in mouse development, are limited by our inability to study highly transient, embryonic 

states. On the other hand, methods to select ‘master regulators’ for use in direct conversion 

are based on the assumption of a ‘kernel’ GRN comprised of a small number of transcription 

factors that auto-regulate their own expression, positively regulate the transcription of cell 

type associated genes, and repress alternative lineages [22]. While this strategy to identify 

and use the transcription factors of a kernel gene regulatory network (GRN) was successful 

in reprogramming back to pluripotency, the extent to which it applies to other cell types is 

unknown. We refer to this set of questions as the ‘Improvement problem’.

The second class of barriers concerns our limited ability to assess comprehensively the 

fidelity with which engineered cells resemble their in vivo counterparts (Figure 1B). We 

refer to this set of questions the ‘Assessment problem’. The third class of barriers concerns 

the long-observed variability between PSC lines in the efficiency and fidelity with which 

they can be guided to select lineages, which we refer to as the ‘Lineage bias problem’ [23] 

(Figure 1C). The molecular contributors to this variation are an area of intense scrutiny [24], 

and both genetic and epigenetic factors have been implicated. In this section we 

comprehensively review all computational tools designed to address these three major 

barriers (summarized in Figure 1 and Table 2).
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The central aim of ScoreCard is to predict the differentiation propensity of PSC lines. Bock 

et al. trained Scorecard initially on expression and DNA methylation data in ESC lines, 

reasoning that either inappropriate expression or DNA methylation of lineage-specific 

regulators could impede in vitro differentiation to certain lineages. They then documented 

the divergence of several iPS lines relative to ESCs in gene expression and DNA methylation 

at genes relevant to lineage differentiation to provide a reference table from which iPS lines 

can be selected for specific applications. To facilitate the prospective scoring of new ESC 

and iPS, Bock et al. also selected a set of 500 genes that mark each of the three germ layers 

as well as neural and hematopoietic lineages. They demonstrated that by monitoring the 

expression of these genes during undirected embryoid body (EB) differentiation it is 

possible to quantitatively evaluate the differentiation propensity of PSCs. For example, they 

confirmed that the HUES8 line was predisposed towards endoderm lineages while H1 and 

H9 lines exhibited the high propensity for neural lineage differentiation [25]. This platform 

has been subsequently improved by extending it to a more widely accessible expression 

technique: qPCR [26]. Importantly, no other current method attempts to predict the in vitro 
lineage bias of PSC lines.

Pluritest was introduced to assess the pluripotency of cells based on their gene expression 

profiles. In this study, the authors created a pluripotency-related gene expression database by 

curating publicly available gene expression data of hundreds of hESC and hiPSC lines, as 

well as samples representing non-pluripotent states. Then the authors used this data to create 

two classifiers: (1) a pluripotency probability score that distinguishes pluripotent from non-

pluripotent classes based on logistic regression, and (2) a novelty score based on non-

negative matrix factorization (NMF) that measures the extent of deviation from the 

pluripotent state. As a demonstration of these classifiers, Pluritest was applied to a neural 

differentiation time-course experiment and the pluripotency score remained high until three 

days of differentiation, after which it dropped substantially, whereas the novelty score 

concomitantly increased. Overall, Pluritest predicts pluripotency with both high degrees of 

sensitivity and specificity [27], and has proven informative in evaluating PSCs derived from 

diverse sources including chemically induced iPSCs and those derived from human amniotic 

fluid stem cells [28].

Teratoscore was designed for quantitatively assessing the differentiation potential of hPSCs 

in terms of gene expression pattern in teratomas. This algorithm was built on the theoretical 

basis that teratoma formation is one of the gold standards for evaluating hPSCs potency (the 

ability to differentiate to derivatives of all three germ layers), and Teratoscore also classifies 

whether a tumor originates from a specific tissue or from pluripotent cells [29]. The intended 

purpose of Teratoscore is to provide a quantitative metric in addition to the typical 

qualitative pathological assessment of germ layer contributions to teratomas, but it assumes 

and relies upon on unbiased sampling of the tumor. Future improvements to this type of tool 

could include adaptation to single cell molecular profiling data.

KeyGenes is a platform to evaluate tissue differentiation efficiency based on gene signatures 

of 21 different human fetal tissues generated by RNA-Seq or microarray at several 

developmental stages. KeyGenes was applied to publicly available data and new data 

including hPSCs differentiated to three germ lineages, tissue organoids, and human fetal and 
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adult organs. KeyGenes was able to predict the tissue of origin of the samples and was able 

to identify stem cell derivatives with high accuracy. KeyGenes can also be used to assign 

developmental stages to differentiated hPSC derivatives [30].

CellNet was developed to assess and improve stem cell engineering paradigms using as its 

basis cell and tissue-specific GRNs [31]. CellNet takes as input gene expression profiles of 

directed differentiation or direct conversion (including reprogramming to pluripotency) and 

returns three outputs. First, it returns the probability that a sample is indistinguishable from 

each of the 20 cell and tissue types in the training data set in terms of its expression profile. 

Secondly, it returns an assessment of the extent to which a cell type specific GRN has been 

established in the query sample. Third, CellNet returns a scored list of transcription factors 

that are scored according to how important they are to the target cell type GRN, and how 

dysregulated they and their target genes are relative to the target cell type. This third output 

was validated by using it to identify TFs responsible for the incomplete erasure of the B-cell 

program in the direct conversion of pre-B cells to induced macrophages. Knocking down the 

expression of the two most highly scored factors, Pou2af1 and Ebf1, improved the in vitro 
functionality of the resulting induced macrophages [32]. CellNet is currently limited to 

microarray data, and its predictive ability is hampered as it is based on GRNs reconstructed 

largely from bulk tissue rather than homogenous populations of cells.

Heinaniemi et al. developed a novel method to identify transcriptional regulators that control 

lineage choice, which could be used to improve cell fate engineering efforts [33]. Their 

approach is based on the observation that mutually antagonist TFs frequently are also master 

regulators of sister lineages (e.g. the myeloid factor SPI1 inhibits the erythroid factor 

GATA1) [34], and this information can be used to score individual factors as contributors to 

specific cell types. Heinaniemi et al implemented an approach using a ‘reversal gene 

expression’ pattern to score 2,602 transcriptional regulators across 166 human cell types 

successfully recovering both known cell fate reprogramming factors and a host of new 

predictions.

To identify the TFs that serve as determinants of cell types, D’Alessio et al. searched for TFs 

characterized by a cell-type-specificity and a high expression level across a compendium of 

233 human tissue and cell types [35]. The top scoring core TFs were presented as an atlas of 

factors that can be used as starting point to direct cell fate engineering. Importantly, the 

authors experimentally tested their predicted retinal progenitor cocktail of OTX2, SIX3, 

LHX2, PAX6, FOXD1, MITF, ZNF92, GLIS3, and SOX9 retinal pigment epithelial-like 

cells from fibroblasts was validated by their experimental evidence via ectopic expression of 

core TFs.

Rackham et al. specifically designed the Mogrify system to predict combinations of TFs that 

facilitate direction conversions between 173 human cell and tissues types [36]. Mogrify uses 

previously described regulatory and interaction networks to estimate the global expression 

changes that each TF might have when ectopically expressed in a specific starting cell type. 

By searching all TFs, it is possible to determine a set of TFs that most parsimoniously will 

up-regulate the target cell type expression program. Using this platform, the authors 

Bian and Cahan Page 8

Trends Biotechnol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



successfully predicted two novel TF transdifferentiation cocktails: dermal fibroblasts to 

keratinocytes and keratinocytes to microvascular endothelial cells.

Lang et al. modeled the epigenetic landscape of 63 cell and tissues types using expression 

data of 1,337 TFs based on a technique that has been applied previously to model neural 

networks [37]. By defining cell types as attractor states, the authors were able to use this 

model to predict key reprogramming TFs in both existing and novel reprogramming 

protocols.

Similar to Heinaniemi’s concept of pairs of TF with opposite function, Crespo et al. 

leveraged the concept of TF cross-repression in cell fate decision-making to define TFs that 

may play a key role in the induction of cell identity transitions. The approach of Crespo 

relies on predetermined GRNs, from which a regulatory hierarchy is derived that is used to 

find TFs with the highest putative impact on a desired fate transition, taking into 

consideration feedback loops that stabilize or lock in a cell fate [38]. The authors assessed 

this novel method in silico by three comparing their predictions to three transdifferentiation 

examples: from Th2 to Th1 T-helper lymphocytes, from myeloid to erythroid cells, and from 

fibroblasts to hepatocytes. The method was successful in finding experimentally 

demonstrated fate-altering TFs.

Davis et al. compared both the expression level and H3K27me3 mark of transcriptional 

repression of TFs that participate in cellular transdifferentiation, based on analysis of 65 

published datasets (38 human, 27 mouse), to TFs that have not been proven to enable fate 

changes. They found transdifferentiation factors were more likely to be highly expressed in 

target cell types and marked by H3K27me3 in the source or starting cell types, providing 

another pattern by which candidate cell fate engineering transcription factors can be 

prioritized for experimental validation [39].

In this section, we have attempted to briefly describe all of the recently published 

computational approaches that use molecular profiling data to evaluate and improve cell fate 

engineering efforts. Because of the proliferation of methods, we are now in a position to 

draw some general conclusions and suggest areas where further research is needed. First, 

this nascent sub-field would benefit greatly from community-accepted ‘gold standards’ 

because they would allow for unbiased method comparison and they would enable method 

optimization. For example, ideally we would assess methods to predict conditions or factors 

that promote fate change by comparison to a gold standard consisting of experimentally 

verified sets of conditions/factors. Rackahm et al. evaluated Mogrify in this way but limited 

their analysis to positive controls (i.e. those TFs that have worked previously) and did not 

include negative controls [36]. Negative controls in this context would include TFs that had 

been tested but failed to enact a fate change, and would be highly useful in reducing the false 

positive rates of the algorithms.

Second, Scorecard is the only method that explicitly purports to define the lineage 

propensity of PSC lines. Developing new and improved methods to define lineage bias in 

PSC is a pressing problem for the thousands of labs that are using iPS to model diseases and 

it warrants more effort.
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Third, most of the methods described in this section focus explicitly on transcriptomic 

and/or epigenetic information, but as we mentioned in the section entitled ‘The pluripotency 
gene regulatory network,’ the establishment and maintenance of cell identity are regulated at 

multiple layers. Analytical methods need to be extended to include these dimensions of cell 

state, including protein expression, post-translational modifications, and small RNA 

abundances, as they will provide a more accurate reflection of cell type identity. Finally, all 

of the methods above were based on data derived from tissues or bulk samples rather than 

single cells. This is problematic in that a primary goal of cell fate engineering is the 

derivation of homogenous populations of a specific cell type. Therefore, approaches such as 

CellNet or KeyGenes, or Teratoscore, which base their metrics of comparison upon bulk 

data, will be unable to achieve the level cellular resolution desired for cell fate engineering. 

For example, CellNet is able to classify samples as resembling ‘heart’ or ‘liver’ but does not 

have sufficient training data to classify ‘ventricular cardiomyocyte’ or ‘hepatocyte’. 

However, as discussed in the next section, new technologies have enabled single cell 

genome-wide molecular profiling, and thus the issue of cellular resolution should be 

addressable as sufficient data is generated in the near future.

Single cell OMICs

Although there has been a rapidly widening interest in using single cell profiling across a 

range of applications, from cancer heterogeneity [40] to the identification of new cell types 

[41], and a concomitant blossoming of reviews on the molecular techniques [42, 43], the 

computational side of appropriately handling this data has received relatively less attention. 

Here, we explore the types of questions that can be addressed with single cell OMICs, some 

of the analytical approaches that have been brought to bear thus far, and we end with a 

discussion of areas where analytics need to be improved to handle and take advantage of the 

idiosyncrasies of this data type.

Transcriptional heterogeneity in stem cells

Single cell profiling promises to provide a richer picture of the molecular basis of multi-

lineage potential. The functional relevance of fluctuations in critical regulators of 

pluripotency has remained unclear since the documentation of NANOG variability [44]. One 

hypothesis is that stem cells regulate transcriptional heterogeneity in order to facilitate 

access to lineage differentiation upon exposure to appropriate signaling events [45, 46]. To 

explore this further, MacArthur et al. determined the single cell gene expression patterns of 

mESCs during transient Nanog down-regulation. SVM classification (see Box 2) separated 

these genes into pluripotent and lineage-primed classes. Genes in the latter class were up-

regulated in response to Nanog loss, indicating that Nanog represses these lineage specifiers 

and supporting the hypothesis that regulated heterogeneity is a fundamental contributor to 

multi-lineage potential [47]. Similarly, Kumar et al. investigated the contribution of 

transcriptional heterogeneity to pluripotency by RNA-Seq of 283 single PSCs under 

different conditions, finding that the expression of signaling pathways and lineage specifiers 

was coupled to the down-regulation of pluripotency factors [48].
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Population sub-structure in stem cells

Single cell OMICs is especially valuable in stem cell investigations because they can be used 

to further refine the sub-populations that contain stem properties. For instance, van 

Wolfswinkel et al. discovered that a nominally homogenous population of regenerative 

planarian progenitors could be further fractionated to subsets with different regenerative 

capacities based on single-cell transcriptional profiles [49]. Similarly, by analyzing the 

expression profiles of 704 single mESCs by PCA and gene set analysis (see Box 1), 

Kolodziejczyk et al identified three distinct sub-populations: a ground state, a primed state, 

and a state comprised of cells that had initiated differentiation [50].

A practical concern for using single cell RNA-Seq is the total number of cells required to 

robustly detect rare populations. Grun et al. developed an algorithm for rare cell type 

identification (RaceID) based on single cell mRNA sequencing. By combining HCL and k-

means clustering (see Box 1) with t-distributed stochastic neighbor embedding (t-SNE), they 

were able to distinguish biological and technical heterogeneity from the occurrence of rare 

cells, thereby identifying rare cell types within a population of intestinal cells. By applying 

this method to organoid-derived intestinal crypts, the authors were able to discover rare 

Paneth cells within the Lgr5-positive population of intestinal stem cells. This novel method 

will also be useful to discriminate adult stem cell types in different states such as healthy and 

diseased situations [51] (Figure 2A–C). As the number of single cells that can be profiled 

simultaneously increases, our power to detect rare sub-populations will also increase, as will 

our ability to define sub-states and sub-types with finer resolution.

Construction of novel gene regulatory networks

Single cell analysis makes it possible to infer regulatory relationships between genes that 

were obscured in bulk data (Figure 2D and E). For example, Moignard et al. used single-cell 

gene expression analysis of 597 mouse hematopoietic stem and progenitor cells to identify a 

putative regulatory relationship among the transcription factors Gata2, Gfi1 and Gfi1b. The 

predicted repression of Gata2 by GFI1 was validated by a combination of ChIP-Seq, 

luciferase reporter assays, and transgenic reporter analysis, demonstrating that high-

throughput single cell gene expression analysis is sufficiently powerful to identify of novel 

regulatory networks despite the overall low sensitivity of single cell methods [52]. Similarly, 

Klein et al. developed and used the inDrop RNA-Seq technology to profile 935 single 

mESCs, and discovered novel regulatory relationships between Nanog, Sox2 and Cyclin B 

[53]. More generally, the ability to sample thousands of individual cells may address several 

seminal issues in reconstructing gene regulatory networks, including the confounding effects 

of population substructure (Figure 2D–E) and the reliance on non-physiological 

perturbations to elicit correlated changes in gene expression.

Lineage trajectories

Examining cell states through development or in time course experiments are especially 

informative because they can help to reconstruct lineage hierarchies. As a proof of principle, 

Guo et al. determined the gene expression pattern of cell surface markers in single mouse 

hematopoietic cells and used it to reconstruct the differentiation hierarchy of hematopoiesis 

[54]. Similarly, Bendall et al. introduced a new algorithm termed Wanderlust, in which 
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machine learning methods were used to reconstruct the sequence of cell states (or lineage 

trajectory) as hematopoietic stem cells (HSCs) differentiate to B-cells based on mass 

cytometry data [55] (Figure 2F–G, I, K).

Determining the lineage trajectory de novo will be especially useful to identify upstream 

regulators of developmental processes. Trapnell et al. developed the Monocle algorithm that 

places cells profiled with single cell RNA-Seq along a differentiation trajectory [56]. By 

applying this technique to the differentiation of primary human myoblasts, the authors were 

able to identify and validate eight novel regulators of skeletal muscle differentiation. 

Similarly, Shin et al. developed another 15ioinformatics workflow to approximate lineage 

trajectories. By applying it to single cell RNA-Seq of neurogenesis, they identified multiple 

novel regulators of adult neurogenesis such as the homeobox protein Dbx2, which 

previously had only been appreciated in embryonic neurogenesis [57].

The temporal resolution of cell state transitions during development promises to reveal how 

cell type specific gene regulatory networks are established. This information can be used as 

a foundation to reformulate algorithms to address the ‘Improvement problem’ (Figure 1A), 

and is likely to reveal regulatory circuits that appear only transiently during ontogeny and 

thus would be missed by algorithms based on compendiums of adult or even late fetal cell 

types. Ultimately, when sufficient data has accumulated, it will be possible to analyze the 

finding across lineages to devise rules that govern the establishment of cell type specific 

GRNs during development.

Spatially-resolved single cell genomics

The fluorescent in situ RNA sequencing (FISSEQ) described by Lee et al. quantitates 

hundreds to thousands of RNAs in situ in fixed cells, in tissue sections, and in whole-mount 

embryos. Although FISSEQ is less sensitive than single cell RNA-seq, it can still detect 

highly expressed, functionally relevant transcripts. Approaches such as FISSEQ will be 

invaluable to identify cell types in their natural environment as well as to investigate how the 

niche contributes to stem cell state in situ [58, 59]. Another approach to profile single cells 

in situ is based on adding an engineered molecule (the ‘TIVA tag’) into the cell membrane 

that can be photo-activated for mRNA capture. When this new technique was combined with 

RNA-Seq, it enabled the quantitation of mRNA in live single cells in vivo [60]. More 

generally, spatially resolved single cell RNA-Seq data will enable the investigation of how 

niche composition contributes to the maintenance of cell identity, and thus will also enhance 

the development of improved algorithms to address the ‘Improvement problem’.

Conclusion

The emergence of ‘computational stem cell biology’ resembles the transition from cancer 

biology to cancer genomics, where ‘Big Data’, especially whole genome sequences, 

required the recruitment and training of computationalists specifically focused on cancer 

biology. This trend is having significant consequences: it has transformed of our 

understanding of the initiation and progression of cancer and it has lead to the development 

of novel therapeutics. Stem cell biology now faces a similar inflection point. With the 

emergence of both ‘do-it-yourself’ and commercial single cell platforms, the field is facing a 
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flood of single cell OMICs data [61, 62]. We propose that the sub-discipline of 

computational stem cell biology will yield transformative insights into developmental 

biology and will enhance our ability to engineer cell fate with fidelity and efficiency by 

synthesizing single cell data with predictive modeling approaches. Yet there are many open 

challenges (see Outstanding Questions Box). We anticipate that computational stem cell 

biology will produce a quantitative basis to define cell type identity, and will define the 

molecular logic of lineage commitment and maturation, and thereby will form the 

foundation to understand how genetic and epigenetic abnormalities disrupt healthy 

development and contribute to disease states.

Outstanding box

What data and analysis will be needed to develop a quantitative definition 

of ‘cell type’?

Will gene regulatory networks and accurate molecular profiling enable 

quantitative models that predict population level behavior of stem cells?

Can the field produce methods to predict how a stem cell line will 

differentiate in vitro based on molecular data alone?

What are the limits in terms of noise and volume of data that will be needed 

to incorporate methods from physics to infer causality based on temporal 

information?

What analytical methods will prove most efficient and informative in 

integrating spatial information with single cell expression data?

What standards, experimental designs, and analytical methods will be 

required to enable cross-study comparison of tools designed to assess and 

improve cell fate engineering methods?

What standards, experimental designs, and analytical methods will be 

required to enable cross-study comparison of single cell OMICs?

What are the most appropriate experimental techniques to assess the 

robustness and precision of pseudotime analyses?

Glossary

Chip-Chip
Chromatin immunoprecipitation (ChIP) combined with DNA microarray-based profiling to 

characterize the interactions of protein with genomic DNA.

Chip-Seq
Genome-wide profiling of specific protein interactions with genomic DNA by combining 

ChIP with next-generation sequencing [94].

CLIP-Seq/HITS-CLIP
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Combination of UV cross-linking and immunoprecipitation with high-throughput 

sequencing to identify binding sites of RNA-binding proteins such as LIN28A, Argonaute 

(Ago), Puf5p [11, 92, 95]

Differentially methylated genomic regions (DMRs)
typically identified on a large scale by bisulfite sequencing or CHARM.

DNase hypersensitivity (DHS) mapping
A high-throughput sequencing method designed to infer regulatory elements including 

promoters, enhancers, silencers, insulators, and locus control regions by identifying genomic 

sequences that are accessible to DNA nucleases and thus not occluded by nucleosomes.

ESCs
Embryonic stem cells are PSCs derived from the inner cell mass of the blastocyst.

Hematopoietic stem cells (HSCs)
adult stem cells that are capable of reconstituting the complete hematopoietic system of 

immune system-ablated recipients.

LncRNAs
Poly-adenylated, non-coding transcripts longer than 200 nucleotides initially discovered by 

the epigenetic profile of the corresponding genomic sequence (histone modifications 

reflective of transcriptionally active regions) [73].

MeRIP-Seq
Method to define the N6-methyladenosine (m6A) post-transcriptional modification of mRNA 

by combining methylated RNA immunoprecipitation with high-throughput sequencing [96, 

97].

MicroRNAs
Small non-coding RNAs of 21–25 nucleotides first discovered in Caenorhabditis elegans that 

regulate expression by binding to complementary seed sequences and modulating translation 

and/or promoting mRNA degradation [98, 99].

MS
Mass spectrometry determines the molecular signature of each peptide in a sample by 

ionizing and fragmenting proteins calculating their mass-to-charge ratios.

OMICs
Techniques that generate nearly comprehensive data of a particular molecular type. For 

example, proteomics quantifies the proteome, functional genomics measures gene 

expression, and metabolomics measures concentrations of metabolic reaction products and 

intermediates.

Pluripotent stem cells (PSCs)
Cells that can give rise to all of the cell types of an adult organism. Under appropriate 

conditions, PCSs will self-renew indefinitely and maintain their pluripotency.
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Pseudotime
A theoretical progression or timeline rather than a strictly temporal sequence of events. The 

intuition behind pseudotime is that there will be heterogeneity within a population in terms 

of how far along in a process a particular cell has traversed. Progressions include 

developmental (specification, differentiation, maturation), cyclical (circadian rhythm), and 

pathological (tumorigenesis, metastasis).

Ribo-Seq
The translational correlate of RNA-Seq provides a read-out of active translation by 

preferentially sequencing ribosome-bound/protected RNA [84].

RIP-Seq
like CLIP-Seq/HITS-CLIP, a technique meant to identify RNA that is bound by RNA-

binding proteins. However, the RNA-binding sites identified are broader than in CLIP-Seq 

because RIP-Seq is based on RNA immunoprecipitation coupled to reverse transcription 

followed by high-throughput sequencing.

Transcription factors (TFs)
proteins that bind to specific DNA sequences (transcription factor binding sites, TFBSs) to 

promote or inhibit recruitment and activation of the transcriptional machinery.

Transdifferentiation
The conversion of one somatic cell type into another somatic cell type without transiting 

through a pluripotent cell state. Also known as direct conversion.
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Trends box

• High-throughput data molecular profiling, mainly based on nucleic acid 

sequencing (e.g. RNA-Seq), but increasingly other modalities such as 

metabolomics and proteomics, has necessitated the development of 

sophisticated analysis algorithms.

• The combination of OMICs and targeted analytics has enabled seminal 

observations in stem cell biology.

• Computational stem cell biology has emerged as its own sub-discipline 

that is concerned with synthesizing the modeling of systems-level 

aspects of stem cells with large-scale molecular data.

• Single cell genomics is poised to transform stem cell biology by 

identifying new cell types; by clarifying the relationship between 

transcriptional noise, lineage priming, and lineage potential; and by 

enabling a higher resolution dissection of genetic circuits underlying 

commitment and differentiation.
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Figure 1. Computational tools to address the three major barriers to achieving cell fate 
engineering
(A) The ‘Improvement problem’: how can we devise protocols to improve the fidelity of 

engineered cells? (B) The ‘Assessment problem’: to what extent is the engineered 

population equivalent to the desired cell type? (C) The ‘Lineage bias problem’: how can we 

quantify the in vitro lineage bias of a PSC line?
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Figure 2. Single cell molecular profiling to identify rare populations, to reconstruct gene 
regulatory networks, and to define lineage trajectories
(A–C) Distinguishing expression heterogeneity from population sub-structure. (A) An 

example of applying dimension reduction, in this case PCA, to single cell RNA-Seq data 

comprised of two major cell types (a and b). The analytical task is to determine whether two 

(red and light blue) single cells should be considered as distinct, rare cell types or are more 

likely to represent statistical outliers. (B) A background model of transcriptional noise 

(based on the average transcript count variance across all cells) is used to weigh the relative 

likelihood that the outlier cells belong to one of the predetermined clusters or represent a 
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distinct class. (C) Identification of distinct type of cells (a′ and b′). (D–E) GRN 

reconstruction. Reconstructing GRNs from expression profiling (either array or RNA-Seq) is 

based on correlations in expression between genes. Expression profiling from bulk samples 

can stymie this type of analysis by producing both false positives and false negatives. (D) 

False positives can occur when a correlation is a result of population sub-structure rather 

than because of a regulatory relationship. (E) Similarly population sub-structure can mask 

regulatory relationships present in on sub-population. (F–K) Inferring lineage trajectory. 

Steps common to lineage trajectory inference algorithms include: (F) reducing the 

dimensionality of the data (every point represents a single cell expression profile), and (G) 

finding a minimal spanning tree. Methods differ in how they assign a path through the 

minimal spanning tree to lineage progression, with Monocle using the longest path (H) and 

Wanderlust using an average of all possible paths (I). (J, K) The resulting path is referred to 

as pseudotime, and can be used to order cells in a temporal progression.
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Table 1

A nomenclature for big data in biology: cellular measurements and applications

Method Cellular entity/event Exemplary application in stem cell 
biology

Microarray profiling DNA: SNPs [63]

DNA:CNVs [64]

RNA [65]

microRNA [66]

lncRNA [67]

Sequencing DNA: genetic [8] [59] [68] [69]

RNA: mRNA [70] [71] [67]

RNA: microRNA [72]

RNA: lncRNA [73]

ChIP-Seq Protein-DNA interaction [74] [75]

ChIP-chip Protein-DNA interaction, histone modification, DNA 
methylation

[6] [7] [76]

Clip-seq RNA-binding protein [11] [77] [78]

Rip-seq Protein-binding RNA [10] [79]

Chip-seq of histone modification epigenetic [80]

Bisulfite-seq for DNA methylation [20] [81]

Proteomics Protein abundance (Mass spectrometry-based methods) [82] [83]

Post translational modification(Ribo-seq/Ribosome 
profiling)

[9, 84] [85]

Y2H Protein-protein interaction [86]

DNase hypersensitivity mapping Gene regulatory regions [8] [87]
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