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Abstract
AIM
To identify common copy number alterations on gastric 
cancer cell lines.

METHODS
Four gastric cancer cell lines (ACP02, ACP03, AGP01 
and PG100) underwent chromosomal comparative 
genome hybridization and array comparative genome 
hybridization. We also confirmed the results by 
fluorescence in situ  hybridization analysis using the 
bacterial artificial chromosome clone and quantitative 
real time PCR analysis.

RESULTS
The amplification of 9p13.3 was detected in all cell 
lines by both methodologies. An increase in the copy 
number of 9p13.3 was also confirmed by fluorescence 
in situ  hybridization analysis. Moreover, the interleukin 
11 receptor alpha (IL11RA) and maternal embryonic 
leucine zipper kinase (MELK) genes, which are present 
in the 9p13.3 amplicon, revealed gains of the MELK 
gene in all the cell lines studied. Additionally, a gain in 
the copy number of IL11RA and MELK was observed in 
19.1% (13/68) and 55.9% (38/68) of primary gastric 
adenocarcinoma samples, respectively. 

CONCLUSION
The characterization of a small gain region at 9p13.3 
in gastric cancer cell lines and primary gastric 
adenocarcinoma samples has revealed MELK  as a 
candidate target gene that is possibly related to the 
development of gastric cancer. 

Key words: IL11RA; Gastric cancer; Genomic profiling; 
MELK; 9p13.3 
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Core tip: While the presence of alterations in the DNA copy 
number is one of the key hallmarks of carcinogenesis, in 
gastric cancer, the chromosomal regions with frequent 
gain and loss are still poorly defined. Array comparative 
genome hybridization is a high resolution tool that allows 
the simultaneous detection of sub-microscopic copy 
number changes across the genome. The characterization 
of a small gain or loss region in gastric cancer cell lines 
and primary gastric adenocarcinoma samples could reveal 
a candidate target gene that may possibly be linked to the 
development of gastric cancer. 
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INTRODUCTION
Gastric cancer (GC) remains a major public health issues, 
as it is the fifth most common malignancy and the third 
leading cause of cancer death in both sexes worldwide[1]. 
The most common type of GC is adenocarcinoma, 
which can be further categorized into two main types, 
intestinal type and diffuse type, which are biologically 
different with distinct clinical and epidemiological 
profiles[2]. The difference in the clinicopathological 
characteristics between the histological types of gastric 
cancer indicate that gastric tumor development occurs 
through the progressive accumulation of distinct genetic 
alterations[2-5]. Thus, the characterization of these 
genomic abnormalities in gastric cancer may help to 
clarify the molecular pathogenesis of the disease and 
may unveil genetic markers of progression and for 
predicting treatment response or survival.

Genomic instability with frequent DNA copy number 
variations (CNVs) is one of the key hallmarks of 
gastric carcinogenesis[6]. Tumor progression seems to 
depend on the successive acquisition of chromosomal 
aberrations, leading to gains or losses of parts of the 
genome. However, there is no clear agreement on the 
genetic changes underlying gastric carcinogenesis. 

In the last decades, chromosomal comparative 
genome hybridization (cCGH) and array CGH (aCGH) 
analyses of gastric tumors and gastric cell lines have 
revealed recurrent DNA CNVs[7-11]. Using cCGH, 
Burbano et al[3] showed that the copy number gain 
of 8q24.1, the locus containing the MYC oncogene, is 
a frequent alteration in GC. Further investigations by 
our group demonstrated that MYC amplification is a 
common finding in preneoplastic gastric lesions and 
tumors[4,5,12-15]. 

Moreover, Takeno et al[10] stated that diffuse-
type GC shows a complex pattern of chromosomal 
alterations, especially chromosome region losses. 
Recently, Liang et al[16] suggested that the detection 
of DNA CNVs from tissue or blood samples may be 
a useful tool for guiding individualized treatment 
strategies and for identifying new drug targets in 
patients with GC. 

In the current study, we analyzed the chromosomal 
abnormalities of four GC cell lines by cCGH and aCGH. 
The occurrence of the amplification of chromosomal 
region 9p13 in GC cell lines was validated by 
fluorescence in situ hybridization (FISH) and confirmed 
in primary gastric adenocarcinoma samples by 
quantitative polymerase chain reaction (qPCR). Among 
the genes within the 9p13 region, we chose two genes 
for validation in primary GC samples, interleukin 11 
receptor alpha (IL11RA) and maternal embryonic 
leucine zipper kinase (MELK).

MATERIALS AND METHODS
Gastric cancer cell lines 
The ACP02, ACP03 and AGP01 gastric adenocarcinoma 
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cell lines, which were previously established and 
characterized by our research group, were used in 
the present study[17,18]. Additionally, we used the GC 
cell line, PG100, obtained from the Rio de Janeiro Cell 
Bank (Rio de Janeiro, RJ, Brazil), which was previously 
characterized cytogenetically by our group[19]. All cell 
lines were cultured according to Lima et al[20].

Primary gastric cancer samples
Quantitative gene copy number measurements were 
performed on 68 primary gastric adenocarcinoma 
samples that were obtained from patients who 
underwent surgery resection in João de Barros Barreto 
University Hospital (HUJBB), Belém, Pará, Brazil. In 
Pará, Brazil, the human population is composed of 
interethnic crosses between three main origin groups, 
European (mainly represented by Portuguese), Africans, 
and Amerindians[21].

All the patients had negative histories of exposure 
to either chemotherapy or radiotherapy before surgery, 
and there were no other diagnosed cancers. Signed 
informed consent, with the approval of the ethics 
committee of HUJBB, was obtained from all patients 
prior to the collection of samples.

DNA isolation
DNA from the GC cells lines and gastric tumors were 
isolated using the QiAmp DNA isolation kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s 
recommended protocol. DNA concentration and purity 
were evaluated by Nanodrop (NanoDrop Techno
logies, Houston, TX, United States) and agarose 
gel electrophoresis. All DNA samples used had an 
A260/280 ratio of 1.8-2.0 and an A260/A230 ratio of 
> 1.5 and were visualized as a high molecular weight 
band on an agarose gel.  

cCGH
DNA samples from GC cell lines were labeled using 
the CGH Nick Translation Kit (Abbott Laboratories, IL, 
United States) with Control DNA (Promega, Madison, 
United States) according to the manufacturer’s 
instructions. Hybridization was performed with CGH 
Metaphase Target Slides (Abbott Laboratories, Illinois, 
United States), following the manufacturer’s protocols. 
The slides were analyzed by Corel Photo-Paint - 
Version 5.00 - Isis Zeiss® software, using an Axioskop 
Zeiss microscope (Carl Zeiss Inc. Canada, Don Mills, 
ON, Canada) equipped with an epi-illuminator and 
fluorochrome-specific optical filters. 

The three-color images with red, green, and blue 
were acquired from 15 metaphases. Chromosome 
imbalances were detected on the basis of the deviation 
of the fluorescence ratio profile from the balanced 
value (FITC:rhodamine = 1). For each chromosome, 
the final ratio values were prepared from the mean 
values of at least ten chromosome homologues from 
separate metaphase spreads. The CGH results were 

plotted as a series of green to red ratio profiles.

aCGH
To evaluate the complete genome of all the four cell 
lines studied, high density microarray analysis was 
performed using the AffymetrixR CytoScan™ HD 
Array platform (Affymetrix, Santa Clara, CA, United 
States). First, genomic DNA was digested by the NspI 
restriction enzyme, and the digested samples were 
ligated using the NspI adaptor. The fragments were 
amplified by PCR and run on a 2% agarose gel to verify 
that the PCR product size distribution was between 
150 bp and 2000 bp. After PCR product purification 
and dilution, we performed the quantification of each 
sample using a NanodropR 1000 Spectophotometer 
(NanoDrop Technologies, Houston, TX, United States). 
The average purification yield for each sample was ≥ 
3.0 μg/μL.

The purified samples were then fragmented using 
DNAse I enzyme, and the products were run on a 4% 
agarose gel to verify that the majority of fragments 
had a size distribution between 25 and 125 bp.

Labeling was performed using terminal de
oxynucleotidyl transferase enzyme, which adds 
biotinylated nucleotides at the 3’ end of fragmented 
samples.

During the hybridization step, each sample was 
hybridized onto a CytoScan® HD Array (Affymetrix, 
Santa Clara, CA, United States) and placed in a 
GeneChip® Hybridization Oven 640 (Affymetrix, Santa 
Clara, CA, United States) at 50 ℃ and 60 rpm for 16 
to 18 h. The processes prior to scanning of arrays, 
washing and staining, were carried out at a Fluidics 
Station 450 (Affymetrix, Santa Clara, CA, United 
States). The arrays were scanned using GeneChip® 
Scanner 3000 7G (Affymetrix, Santa Clara, CA, United 
States).

The copy number was deduced from the weighted 
log2 ratio and the aberration type was identified and 
confirmed using allelic plots.

FISH
FISH was performed on nuclei and metaphase 
spreads of the cell lines, ACP02, ACP03 and AGP01. 
Metaphase spreads of lymphocytes from a healthy 
donor were used as a control. The bacterial artifi
cial chromosome (BAC) clone, RP11-165H19, was 
obtained from BAC/PAC Resources (http://bacpac.
chori.org/). Bacterial cultures and DNA isolation was 
performed using Qiagen Plasmid Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. 
Alu-PCR products of the BAC were used as probes and 
were biotinylated using nick translation, as described 
previously[22].

qPCR
For the validation of 9p13 amplification, we evalua
ted the copy number of two genes within this locus, 
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χ 2 test or two-tailed Fisher’s exact test for categorical 
variables. All statistical analyses were performed with 
the statistical package SPSS for Windows (V.17.0, 
SPSS Inc, Chicago, IL, United States). P values of ≤ 
0.05 were considered significant.

RESULTS
Recurrent regions of alterations 
The ACP02, ACP03, AGP01 and PG100 cell lines 
showed multiple gains and losses by cCGH and aCGH. 
Most chromosomal aberrations detected in these cell 
lines by cCGH were confirmed by aCGH (Table 1), 
although aCGH analysis enabled the identification of 
many additional chromosomal gains and losses. On 
the other hand, the gain of 16p21-p23 in ACP03 and 
the gains of 6p11-p12, 12p11.1 and 18p11.2-p11.3 in 
AGP01 were detected only by cCGH.

Notably, the gain of chromosome region 9p13 was 
common in all cell lines and as such, this locus was 
selected for further investigation.

IL11RA and MELK. For this, we used the same DNA 
samples from GC cell lines that were used for cCGH 
and aCGH and from GC tissues. qPCR was performed 
using the FAM/MGB-labeled TaqMan probes (Life 
Technologies, Foster City, CA, USA) for IL11RA 
(Hs01842695_cn) or MELK (Hs05076287_cn). VIC/
TAMRA-labeled TaqManCopy Number Reference Assay 
RNAse P (#4403326; Life Technologies, Foster City, 
CA, United States) was used as an internal control. 
All the real-time qPCR reactions were performed in 
quadruplicate with gDNA using a 7500 Fast Real-Time 
PCR system (Life Technologies, Foster City, CA, United 
States) as described previously[13]. The copy number 
of each sample was estimated by CNV analysis using 
Copy Caller Software V1.0 (Life Technologies, Foster 
City, CA, United States). Known Human Genomic DNA, 
G1471 and G1521 (Promega, Madison, United States), 
were used for calibration.

Statistical analysis
The data on clinical features were compared by the 

Table 1  Overview of detected chromosomal aberrations by chromosomal comparative genome hybridization and array comparative 
genome hybridization on gastric cancer cell lines

Cell line cCGH aCGH

ACP02 +8p21-pter, +8q24, +9p12-p22, +9q21.1-q21.3, 
+15q11.1-q14, +16p, +16q, +17p11, +17q11.2, 

+17q23, +22q11.1-q12.3

+1p13.2, +1p21.3, +1q21.2, +1q21.3, +2p11.2, +4p12, +4p13, +4q12, +5q12.1, +7q11.22, 
+7q11.23, +8p11.23, +8p21.3, +8q24.11, +8q24.22, -8q24.22, +8q24.23, +8q24.3, +9p13.2, 

+9p13.3, +9p11.3, +9q21.12, +10p11.22, +10p12.1, +10p12.31, +10p13, +10p14, +10q11.21, 
-11p11.12, +11p11.2, , -11q12.1, -11q12.2, -11q12.3, +12q12-q15, +13q12.11, +14q11.2, 

+15q11.2, +15q12, +15q14, +15q15.3, +15q24.1, +15q25.1, +15q26.1, +16p11.2, +16p12.3, 
+16q11.2, +16q13, +16q21, +16q22.1, +17p11.2, +17q11.2, +17q23.1, +18q11.2, +19q13.11, 
+20p11.1, +20p11.23, +20p12.2, +20q11.21, +20q11.23, +22q11.21,+ 22q11.23, +22q12.2, 

+22q12.3
ACP03 +4p15.1-pter, +6p22.3-p24, +6q25.1,q26, +8p22-

pter, -8q11.1-q11.2, +9p12-p22, +10p12-p14, 
-11p11.1, -11q12, +15q11.1-q15, +15q23-q26.1, 

+16p12-p13.1, +16p21-p23, +22q11.1-q12.1

+1p13.2, +1p13.3, +1p21.3, +1q21.1, +1q21.2, 1q21.3, +2p12, +4p12, +4p14-p13, +4p15.1, 
+5q12.1, +6p24.2, +7q11.21, +7q11.22, +7q11.23, +8p11.21, +8p11.23-p11.22, +8p21.2, 

+8p21.3, -8q11.21, +8q24.11, -8q24.12, +8q24.13, +8q24.21, +8q24.22, -8q24.22, +8q24.23, 
+8q24.3, +9p13.2, +9p13.3, +9q21.13, +9p23, +10p11.21, +10p11.22, +10p12.1, +10p12.2, 
+10p12.31, +10p12.33, +10p13, +10p14, +10q11.21, -11p11.12, +11q11.2, -11q12.1-q12.2, 

-11q12.3, +12q12-q15, +14q11.2, +14q13.2, +15q11.2, +15q12, +15q13.1, +15q14, +15q24.1, 
+15q25.1, +15q25.2, +15q26.1, +16p11.2, +16p12.3, +16q11.2, +16q12.1, +16q12.2, +16q21, 

+16q22.1, +17p11.2, +17q11.2, +17q23.1, +18q11.2, +18q12.1, +19q13.11, +20p11.1, 
+20p11.23, +20p12.2, +20q11.21, +20q11.22, +20q11.23, +22q11.21, +22q11.23, +22q12.2, 

+22q12.3
AGP01 +1p13-21, +1q12-q21.3, +2p11.2-p12, 

+4p11-p12, +4q12-q13.1, +5p11-p12, 
+5q11.2-q12, +6p11-p12, +6q12-q16.1, 

+7q11.1-q11.2, +9p12-p13, +9q13-q21.3, 
+10p11.2-p12.3, +10q11.1-q21.1, +11p11-p11.2, 
+12p11.1, +12q12, +13q11-q12, +14q11.1-q13, 

+15q11-q14, +16p11.2, +16q12, +17p11.2, 
+17q11.2, +18p11.2-p11.3, +18q11-q12, 

+19q12-q13.1, +20p11.2-p12, +20q11.1-q11.2 

+1p13.3, +1p21.3, +1q21.2, +1q21.3, +2p11.2, +2p12, +4p12, +4p14-p13, +5p12, +5q12.1, 
+6p24.2, +6q13, +7q11.21, +7q11.22, +7q11.23, +8p11.21, +8p11.23-p11.22, +8p21.3, 

-8q11.21, +8q24.11, -8q24.12, +8q24.21, +8q24.22, +8q24.23, +8q24.3, +9p13.2, +9p13.3, 
+9p22.3, +9q21.12, +9q21.13, +10p11.22, +10p12.1, +10p12.31, +10p13, +10p14, +10q11.21,     
-11p11.12, +11p11.2, -11q12.1, -11q12.2, -11q12.3, +12q12-q15, +13q12.11, +14q11.2, +15q12, 
+15q14, +15q15.1, +15q15.3, +15q24.1, +15q25.1, +15q25.2, +15q25.3, +15q26.1, +16p11.2, 
+16p12.3, +16q11.2, +16q12.1, +16q13, +16q21, +16q22.1, +17p11.2, +17q11.2, +17q23.1, 
+18q11.2, +19q13.11, +20p11.21, +20p11.1, +20p11.23, +20p12.2, 20q11.21, +20q11.23, 

+22q11.21, +22q11.23, +22q12.2, +22q12.3
PG100 +9p12-p23 +1p13.2, +1p13.3, +1p21.3, +1q21.1, +1q21.2, +1q21.3, +2p11.2, +4p15.1, +6q13, +7q11.21, 

+7q11.22, +7q11.23, +8p11.21, +8p11.23-p11.22, +8p21.2, +8p21.3, -8q11.21, +8q24.11, 
+8q24.13, +8q24.22, -8q24.22, +8q24.23, +8q24.3, +9p13.2, +9p13.3, +9p22.3, +9q21.12, 

+9q21.13, +10p11.22, +10p12.1, +10p12.2, +10p12.31, +10p14, +10q11.21, +11p11.2, 
-11q12.1, -11q12.2, -11q12.3, +12q12-q15, +13q12.11, +14q11.2, +15q11.2, +15q12, +15q14, 

+15q15.1, +15q15.3, +15q24.1, +15q25.2, +15q25.3, +15q26.1, +16p11.2, +16p12.3, +16q11.2, 
+16q12.1, +16q21, +16q22.1, +17p11.2, +17q11.2, +17q23.1, +18q11.2, +19q13.11, +20p11.1, 

+20p11.23, +20p12.2, +20q11.21, +20q11.23, +22q11.21, +22q11.23, +22q12.1-q12.2, 
+22q12.2, +22q12.3

cCGH: Chromosomal comparative genome hybridization; aCGH: Array comparative genome hybridization.
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Validation of the amplified pericentromeric region, 9p13 
The presence of the 9p13 amplification in the GC cell 
lines was confirmed by metaphase FISH using a BAC 
clone (Figure 1). We observed signal gain in all cell 
lines, and only ACP02 showed high amplification of this 
region (Table 2). 

Based on gene location and annotated gene 
function, we selected the MELK and IL11RA genes for 
validation in GC cell lines and in 68 primary gastric 
adenocarcinoma by qPCR. We detected two copies of 
IL11RA and three copies of MELK in all GC cell lines. 
By analyzing the CNV of these two genes in gastric 
tumors, we observed that 19.1% (13/68) and 55.9% 
(38/68) of gastric tumors had ≥ 3 copies of IL11RA 
and MELK, respectively. No association was found 
between the clinicopathological characteristics of 
patients and the number of copies of the studied genes 
(Table 3).

DISCUSSION
aCGH is a high resolution tool that allows the simul
taneous detection of sub-microscopic copy number 
changes across the genome, thus overcoming the 
several limitations of cCHG[23]. In this study, most of 
the copy number changes observed in ACP02, ACP03, 
AGP01 and PG100 by cCGH were confirmed by aCGH. 
ACP02, ACP03 and AGP01 are gastric adenocarcinoma 

cell lines from diffuse and intestinal types and can
cerous ascitic fluid and were previously established 
and characterized by our research group[17,18], while 
PG100 is a commercially available primary gastric 
adenocarcinoma cell line[19]. Furthermore, aCGH 
analysis enabled the identification of many additional 
chromosomal gains and losses. On the other hand, the 
gain of the 16p21-p23 region in ACP03 and the gains 
of the 6p11-p12, 12p11.1 and 18p11.2-p11.3 regions 
in AGP01 were only detected by cCGH. This may be 
due to technical reasons, as cCGH is more sensitive 
than aCGH for detecting large chromosome regions, as 
previously discussed by Kamradt et al[24]. 

When comparing the GC cell lines, only a few 
differences in cytogenetic composition were found 
by cCGH and aCGH. The gain on 9p13.3 was found 
in all cell lines, and the presence of this amplicon in 
these gastric cell lines was confirmed by metaphase 
FISH, using a BAC clone for the amplified region. It is 
noteworthy that high levels of this amplification were 
only found in ACP02. 

Genetic alterations in the short arm of chromo
some 9 are commonly observed in different cancer 
types[25]. In GC, losses of 9p have been frequently 
described[26-29]. Fan et al[29] (2012) observed a 
homozygous deletion at 9p21, which encompasses the 
P16INK4A tumor suppressor gene, in 11% (8/72) of 
the gastric tumors studied. To our knowledge, this is 

Table 2  Number of copies of 9q13 locus by FISH analysis in gastric cancer cell lines  n  (%)

Cell line 0 signal 1 signal 2 signals 3 signals 4 signals ≥ 5 signals 

ACP02  12 (6.0) 26 (13.0) 112 (56.0) 25 (12.5)   22 (11.0) 3 (1.5)
ACP03    22 (11.0) 40 (20.0)   99 (49.5) 22 (11.0)   6 (3.0) 1 (0.5)
AGP01  19 (9.5) 45 (22.5)   99 (49.5) 27 (13.5) 10 (5.0) -
PG100  18 (9.0) 55 (27.5)   87 (43.5) 32 (16.0)   7 (3.5) 1 (0.5)
Control    34 (17.0) 68 (34.0)   97 (48.5) 1 (0.5) - -

Table 3  MELK and IL11RA gene copy number and clinicopathological features of 68 gastric cancer patients

MELK IL11RA

2 copies (n  = 38) ≥ 3 copies (n  = 30) P  value 2 copies (n  = 55) ≥ 3 copies (n  = 13) P  value

Age (yr) (mean ± SD)
   > 50 (64.5 ± 6.9) 23 25 0.0748 39   9 0.7461
   ≤ 50 (42.5 ± 5.2) 15   5 16   4
Gender
   Male 23 21 0.5781 34   9 0.7544
   Female 15   9 21   4
Histopathology
   Intestinal 23 20 0.7886 32 11 0.1110
   Diffuse 15 10 23   2
Depth of tumor invasion
   pT1-pT2 10 11 0.5137 18   3 0.4076
   pT3-pT4 28 19 36 10
Lymph node metastasis
   Absent 10   7 1.0000 11   6 0.1091
   Present 28 23 44   7
Stage
   Ⅰ-Ⅱ 25 17 0.6049 33   9 0.7525
   Ⅲ-Ⅳ 13 13 22   4
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the first study that describes gains at 9p in GC.
Amplifications on 9p have been reported in eso

phageal cancer[30], lung sarcomatoid carcinoma[31] 
and breast cancer[32]. Towle et al[33] found that 16.6% 
(36/217) of the cell lines carried regions of genomic 
gain spanning part of chromosome 9p13. Additionally, 
1.8% (4/217) harbored high-level DNA amplification 
of this region, including a ductal breast carcinoma 
line (B0T-474), a tongue squamous cell carcinoma 
line (SCC-9), a melanoma line (WM-115), and an 
osteosarcoma line (MG-63). 

Because this region harbors several tumor-related 
genes, several studies in the literature have correlated 
gene copy number alterations of 9p13 with cancer[24,34]. 
Sarhadi et al[34] observed that the gain of chromosome 
9p13 encompasses many genes, such as KIAA1161, 
C9orf24, C9orf25, DNAI1, ENHO, CNTFR, LOC415056, 
C9orf23, DCTN3, ARID3C, SIGMAR1, GALT, IL11RA, 
CCL27, CCL19, CCL21 and FAM205A, in different types 
of cancer.

In this study, we selected the IL11RA and MELK 
genes to validate this amplification region in GC cell 
lines and primary gastric adenocarcinoma. The results 
showed an increase in the copy number of the MELK 
gene in ACP02, ACP03, AGP01 and PG100. Moreover, 
19.1% (13/68) and 55.9% (38/68) of gastric tumors 
showed ≥ 3 copies of IL11RA and MELK, respectively. 

Kamradt et al[24] analyzed a small amplicon at 
9p13.3 in prostate cancer cell lines and validated 
IL11RA copy number gain in 75% (15/20) of prostate 
tumors. In addition, it has been demonstrated that 
IL11RA is overexpressed in GC, colon cancer, breast 
cancer, prostate cancer and osteosarcoma[35-41]. IL11RA 
encodes a specific receptor for IL11, and the IL11/
IL11RA signaling pathway is involved in the regulation 
of several biological activities, such as adipogenesis, 
osteoclastogenesis, neurogenesis, and megakaryocyte 
maturation and platelet production[42,43].

With regard to MELK, the other gene that was 
selected for validation, this study describes, for the 
first time, that the copy number gain of the MELK gene 
occurs in cancer. To our knowledge, only one previous 
study on astrocytoma samples has investigated MELK 
amplification, and they did not find any MELK copy 

number gain[44]. 
MELK is a highly conserved serine/threonine kinase 

that was first found to be expressed in a wide range 
of early embryonic cellular stages, and as a result, it 
has been implicated in embryogenesis and cell cycle 
control[45]. Additionally, several studies have identi
fied MELK overexpression in stem cell populations 
and several human cancers, including aggressive 
astrocytoma, breast cancer, prostate cancer, melanoma 
and GC[44-49]. 

Preclinical studies have suggested MELK as a po
tential therapeutic target for multiple cancers. Since 
then, novel therapeutics that selectively inhibit MELK 
have been developed, such as OTSSP167, which is 
currently in a Phase I trial for patients with solid tumors 
and who have not responded to treatment[45,50-53].

Li et al[54] observed MELK overexpression more 
frequently in GC lesions than in the corresponding 
noncancerous mucosa and that higher MELK levels 
were associated with lymph node involvement, distant 
metastasis, and poor prognosis in patients with GC. 
In addition, these authors demonstrated that reducing 
MELK expression or inhibiting its kinase activity 
resulted in growth inhibition, G2/M arrest, apoptosis 
and the suppression of the invasive capability of GC 
cells in vitro and in vivo. MELK knockdown also led 
to alterations in the levels of epithelial mesenchymal 
transition (EMT)-associated proteins. Furthermore, 
in GC patient-derived xenograft models, targeted 
treatment with OTSSP167 showed anticancer effects. 
These results suggest that MELK may be a promising 
target for GC treatment.

In conclusion, our results from generating genome 
wide DNA copy number profiles in GC cell lines and 
validation in primary gastric adenocarcinoma spe
cimens revealed genomic aberrations redundancies, 
indicating that the cell lines retain the gross genomic 
architecture of primary tumors. Moreover, the cha
racterization of a small gained region at 9p13.3 in GC 
cell lines and primary gastric adenocarcinoma samples 
revealed MELK as a candidate target gene this region 
that may possibly be linked to the development of GC. 
Therefore, we hypothesize that the copy number gain 
of MELK may be a mechanism of gene overexpression 

Figure 1  9p13 amplification by fluorescence in situ hybridization analysis in ACP02 (A), ACP03 (B) and AGP01 (C) cell lines. Magnification of × 60.
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and may represent an interesting therapeutic target in 
gastric carcinogenesis. 
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