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Adhesin with Intestinal Mucins Govern Epithelium Engagement and
Toxin Delivery

Pardeep Kumar,? F. Matthew Kuhimann,? Kirandeep Bhullar,® Hyungjun Yang,® Bruce A. Vallance,® Lijun Xia,® Qingwei Luo,?
James M. Fleckenstein®":°

Department of Medicine, Division of Infectious Diseases,® and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences,” Washington University

School of Medicine, St. Louis, Missouri, USA; Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USAS; Department of Pediatrics, Division of

Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada¢; Cardiovascular Biology Research Program, Oklahoma Medical Research

Foundation, Oklahoma City, Oklahoma, USA®

At present, there is no vaccine for enterotoxigenic Escherichia coli (ETEC), an important cause of diarrheal illness. Nevertheless,
recent microbial pathogenesis studies have identified a number of molecules produced by ETEC that contribute to its virulence
and are novel antigenic targets to complement canonical vaccine approaches. EtpA is a secreted two-partner adhesin that is con-
served within the ETEC pathovar. EtpA interacts with the tips of ETEC flagella to promote bacterial adhesion, toxin delivery, and
intestinal colonization by forming molecular bridges between the bacteria and the epithelial surface. However, the nature of
EtpA interactions with the intestinal epithelium remains poorly defined. Here, we demonstrate that EtpA interacts with glycans

presented by transmembrane and secreted intestinal mucins at epithelial surfaces to facilitate pathogen-host interactions that
culminate in toxin delivery. Moreover, we found that a major effector molecule of ETEC, the heat-labile enterotoxin (LT), may
enhance these interactions by stimulating the production of the gel-forming mucin MUC2. Our studies suggest, however, that
EtpA participates in complex and dynamic interactions between ETEC and the gastrointestinal mucosae in which host glycopro-
teins promote bacterial attachment while simultaneously limiting the epithelial engagement required for effective toxin delivery.
Collectively, these data provide additional insight into the intricate nature of ETEC interactions with the intestinal epithelium
that have potential implications for rational approaches to vaccine design.

nterotoxigenic Escherichia coli (ETEC) is a major cause of in-

fectious diarrhea in the developing world (1), where this or-
ganism causes millions of infections and hundreds of thousands of
deaths, particularly in young children (2). This organism contrib-
utes substantially to the large global burden of diarrheal illness
that has been associated with a number of important but poorly
understood sequelae, including “environmental enteropathy”
and compromised growth and cognitive development (3).

ETEC was discovered more than 40 years ago in cases of diar-
rheal illness clinically indistinguishable from cholera (4) and is
defined by the production of plasmid-encoded heat-labile entero-
toxin (LT) and/or heat-stable enterotoxin (ST). LT and ST must
successfully engage cognate receptors (GM-1 ganglioside and gua-
nylyl cyclase C, respectively) on the surface of epithelial cells to
activate the production of cyclic nucleotides. The respective
increases in intracellular cyclic AMP (cAMP) and cGMP trigger
signaling events culminating in altered salt and water absorp-
tion in the small intestine accompanied by voluminous watery
diarrhea (5).

Because of their substantial impact on global health, these
pathogens are a principal target for vaccine development. Unfor-
tunately, there is currently no vaccine that affords significant
broad-based protection against ETEC (6). Despite decades of re-
search, the current understanding of the pathogenesis of this com-
plex and highly varied pathogen remains incomplete. This is es-
pecially true of ETEC interactions with the intestinal epithelium
that are critical for efficient delivery of enterotoxins. While the
majority of ETEC pathogenesis investigations, and consequently
vaccine development efforts, have focused on plasmid-encoded
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fimbrial colonization factors (6, 7), recent studies have suggested
that the interactions of ETEC with the intestinal mucosa and
with host epithelial cells are highly complex and involve the
orchestrated deployment of virulence factors unique to this
pathovar, as well as highly conserved chromosomally encoded
molecules (8, 9).

Elucidation of ETEC molecular interactions with the intestinal
epithelium can identify new potential interdiction targets and po-
tentially inform novel approaches to vaccine development (10).
Recent studies have identified several molecules that engage intes-
tinal epithelial cells (11) or work to degrade intestinal mucins (12,
13) to permit ETEC to gain access to the intestinal epithelium and
enhance toxin delivery.

One potential novel vaccine candidate, EtpA, is a secreted ad-
hesin (14) that appears to act as a molecular bridge between ETEC
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TABLE 1 Bacterial strains and plasmids used in this study

EtpA Interactions with Intestinal Mucins

Strain or Reference(s)
plasmid Description” or source
Strains

H10407 Wild-type ETEC strain O78:H11 CFA/1 LT"/ST" EtpA™ 45, 46

jf576 LT (eltAB:Km") mutant of H10407 47

jf876 lacZYA:Km" 47

jf1668 etpA::Cm" mutant of H10407 15

1696 TOP10(pJL017, pJLO30) Amp® Cm* 16

TOP10 F~ mcrA A(mrr-hsdRMS-mcrBC) $80lacZAM15 AlacX74 recAl araD139 A(ara leu)7697 galU Invitrogen

galK rpsL (Str") endAl nupG

Plasmids

pJLO17 etpBA cloned into pBAD/Myc-His A with etpA in frame with myc and 6His coding regions, Amp" 20

pJLO30 etpC gene cloned into pACYC184, Cm" 15

“ Km", kanamycin resistance; Cm", chloramphenicol resistance; Amp", ampicillin resistance.

and the host epithelium (15), thereby promoting intestinal colo-
nization and toxin delivery. Although EtpA binds avidly to the tips
of ETEC flagella (15), permitting the bacteria to use these long
peritrichous structures to engage the intestinal surface, the targets
of EtpA-mediated adhesion and intestinal colonization remain
undefined. Here we demonstrate that this high-molecular-weight
extracellular adhesin interacts with glycans present on intestinal
mucins to promote bacterial adhesion and toxin delivery.

MATERIALS AND METHODS

Bacterial strains and culture conditions. ETEC strain H10407 was ob-
tained from the good manufacturing practices lots of bacteria produced at
the Walter Reed Army Institute of Research, USA. The efpA mutant
(jf1668) and complemented (jf1697) strains of H10407 were generated
inaprior study (15). ETEC strains were routinely grown in Luria broth
(LB) or on Luria agar plates at 37°C from glycerol stocks preserved at
—80°C. The bacterial strains and plasmids used in this study are de-
scribed in Table 1.

Protein expression and purification. Recombinant EtpA (rEtpA) gly-
coprotein (rEtpAmycHis,) was purified from culture supernatants of E.
coli TOP10 carrying plasmids pJL017 and pJL030 as previously described
(16). Briefly, E. coli TOP10 carrying pJL017 and pJL030 (Table 1) was
grown overnight from frozen glycerol stocks and then diluted 1:100 into
fresh Luria broth containing ampicillin (100 pg/ml) and chlorampheni-
col (15 pg/ml) at 37°C and 230 rpm until the optical density at 600 nm
reached ~0.5 to 0.6. Recombinant protein expression was then induced
with 0.0002% arabinose for 6 h at 37°C. Culture supernatants containing
secreted protein were then concentrated with a filter with a 100-kDa cut-

TABLE 2 Human intestinal cell lines and siRNAs used in this study

off (Millipore), and rEtpAmycHis, protein was purified by immobilized
metal affinity chromatography (16).

Gel-forming MUC2 mucin was purified as described previously (12).
Briefly, the tissue culture supernatant of LS 174T cells was concentrated
with a filter with a 100-kDa cutoff and size exclusion chromatography was
performed with Sepharose CL-2B resin. MUC2-containing fractions were
collected in the void column volume, pooled, and preserved at —80°C.

Tissue culture and RNA interference (RNAi). All of the human intes-
tinal epithelial cell lines used (Table 2), including LS 174T (ATCC CL-
188), Caco-2 (ATCC HTB-37), CC2BBel (ATCC CRL-2102), and HT-29
(ATCC HTB-38), were purchased from the American Type Culture Col-
lection. LS 174T and Caco-2 cells were cultured in Eagle’s minimum es-
sential medium with 10 or 20% (final concentration) fetal bovine serum
(FBS), respectively, at 37°C in 5% CO,. CC2BBel (brush border-express-
ing derivative of Caco-2) cells were cultured in Dulbecco’s modified Ea-
gle’s medium supplemented with 10% FBS and human transferrin (10
pg/ml). HT-29 cells were routinely cultured in McCoy’s 5A medium sup-
plemented with 10% FBS (McCoy’s 5A-10) at 37°C in 5% CO,.

Mucin gene silencing in human intestinal cell lines was carried out
by RNAi. Reverse transfection was performed with Lipofectamine
RNAIMAX (Invitrogen) and predesigned/prevalidated MUC3A/B- and
MUC2-specific small interfering RNAs (siRNAs; Thermo Fisher Scien-
tific) (Table 2) at a final concentration of 20 nM in 96-well tissue culture
plates. Appropriate negative-control siRNA molecules were used at the
same concentration. For cultures grown for several days postconfluence,
fresh growth medium containing siRNA (20 nM) was replaced on alter-
nate days. Mucin knockdown was confirmed by immunoblotting with
specific antibodies as described above.

Cell line or

siRNA Description or target description Gene ID Source (no.) Reference
Cell lines

Caco-2 Epithelial (enterocyte), colonic adenocarcinoma ATCC HTB-37

CC2BBel Enterocyte, polarizes into monolayers with an apical brush border, ATCC CRL-2102

derived from Caco-2

HT-29 Epithelial (enterocyte), colonic adenocarcinoma ATCC HTB-38

LS 174T Colonic adenocarcinoma, MUC2 producing ATCC CL-188
siRNAs

MUC2 Oligomeric, gel-forming mucin 4583 TF* (9070)

MUC3A/B Cell surface membrane-bound mucin 4584 TF (s195330) 48

“TF, Thermo Fisher Scientific (Ambion).
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Protein interaction studies. To examine EtpA interaction with
MUC2 mucin by far-Western analysis, 10 pg of purified MUC2 was re-
solved by SDS-PAGE on NuPAGE Novex 3 to 8% Tris-acetate gel (Life
Technologies) and transferred to nitrocellulose membranes. The mem-
branes were blocked with 5% nonfat milk in Tris-buffered saline—0.01%
Tween 20 for 1 h and then incubated with 50 pg/ml purified rEtpA over-
night at 4°C. Proteins were detected by immunoblotting with rabbit anti-
MUC2 polyclonal antibody (H-300 sc15334; Santa Cruz) or affinity-pu-
rified anti-EtpA rabbit polyclonal antibody (15).

To test whether carbohydrate moieties are involved in EtpA-mucin
interactions, 100 wg of purified glycoprotein rEtpA or MUC2 was treated
with 10 mM (final concentration) sodium metaperiodate (NalO,; Sigma
S1878) in phosphate-buffered saline (PBS) for 1 h at 4°C in the dark.
NalO -treated proteins were then dialyzed overnight against PBS and
used in interaction studies.

To examine the interaction of EtpA with MUCS3, cell lysate prepared
from Caco-2 cells grown as described above for 8 days after they attained
confluence was used as the source of MUCS3. Briefly, Caco-2 cell mono-
layers cultured in 100- by 15-mm tissue culture plates were washed three
times with PBS, scraped off, transferred to a 1.5-ml microcentrifuge tube,
and lysed by five cycles of freezing (dry ice) and thawing (37°C water bath)
in 500 pl of lysing buffer (50 mM sodium phosphate [pH 7.4], 250 mM
NaCl, 5 mM EDTA, 0.1% Triton X-100, 0.1 mM phenylmethylsulfonyl
fluoride, and protease inhibitor cocktail [EDTA-free complete protease
cocktail; Roche]). Cell suspensions were sheared several times with a sy-
ringe and needle and then centrifuged at 10,000 X g, for 10 min at 4°C. A
total of 10 mg of protein was recovered from the supernatant fraction of
the cell lysate, diluted to a 1-ml final volume with PBS, and preclarified
with 50 pl of rProtein A resin (Repligen). The clarified lysate was rotation
mixed with 100 pg of purified rEtpA, 50 .l of protein A beads (50% slurry
in PBS), and 5 pl of mouse anti-human MUC3 (IgG2a) monoclonal an-
tibody (MA1-35702; Pierce) overnight at 4°C. The following day, protein
A resin was collected by centrifugation, washed four times with PBS—
0.01% Tween 20, and boiled in 50 pl of Laemmli sample buffer for 10 min.
The proteins were resolved by SDS-PAGE as described above, and immu-
noblotting was performed with affinity-purified rabbit anti-EtpA poly-
clonal antibody or goat anti-MUC3A/B polyclonal antibody (sc-13314;
Santa Cruz).

BLI. Bio-Layer Interferometry (BLI) was used to determine the affin-
ity of EtpA for MUC2 with OctetRed96 (Pall fortéBIO Corporation,
USA). Briefly, purified MUC2 was biotin labeled with the protein bi-
otinylation reagent EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scien-
tific) in accordance with the manufacturer’s protocol and immobilized
on streptavidin (SA) biosensors (18-5019; Pall fortéBIO Corporation).
Twofold serial dilutions (1,000, 500, 250, 125, 62.5, and 31.25 nM) of
purified rEtpA were prepared in 1X PBS and used as the analyte. Experi-
ments were performed in triplicate, and affinity constants (K, values)
were obtained from a global fit of real-time kinetic measurements from
the titration series calculated as 1:1 binding with Octet software version
8.1 (Pall fortéBIO Corporation).

Real-time quantitative PCR (qPCR). Following overnight treatment
of HT-29 cells with LT (0.1 pg/ml), cells were washed once with PBS and
then the contents of 3 wells of a 96-well plate were combined and resus-
pended in 500 pl of TRIzol reagent. Following RNA extraction with phe-
nol-chloroform for 3 min on ice, samples were centrifuged at 14,000 X g
for 15 min. A 200-pl volume of the aqueous phase was recovered, com-
bined with isopropanol for 90 min at —80°C, and then centrifuged at
14,000 X g for 20 min. The pellet was washed once with 75% ethanol, air
dried, and resuspended in DNase I (Invitrogen) for 30 min at room tem-
perature, and the remaining RNA was purified (RNeasy; Qiagen). The
total RNA was quantified by measurement of A,., (Eon Take3; BioTek,
VT, USA).

cDNA was generated with the SuperScript VILO cDNA synthesis kit
(Invitrogen) by using 0.5 g of RNA with or without reverse transcriptase.
qPCR was performed with SYBER Green master mix (Thermo Fischer)
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and 10 ng of cDNA. Glyceraldehyde 3-phosphate dehydrogenase was used
for standardization with forward primer 5'-ACCCACTCCTCCACCT
TTGA and reverse primer 5 -CTGTTGCTGTAGCCAAATTCG. MUC2
was detected with forward primer 5'-GCTCATTGAGAACGATG and re-
verse primer 5'-CTTAGTGTCCAGCTCCAGCA. All reactions were per-
formed in triplicate on an Applied Biosystems 7500 real-time PCR system
and analyzed with 7500 System Software v1.40. Fold change was calcu-
lated by AAC with Excel software.

ETEC adhesion and toxin delivery assays. In vitro assays of ETEC
adhesion and delivery of LT were performed with control and MUC3A/B
siRNA-treated Caco-2 cells in 96-well plates. Caco-2 cells were cultured
for up to 8 days after cell confluence to permit cell differentiation and
MUCS3 protein expression to become detectable by immunoblotting. Bac-
teria to be tested were grown overnight in 2 ml of LB with appropriate
antibiotics, diluted 1:100 into fresh medium on the morning of the exper-
iment, and grown for an additional 90 min to mid-logarithmic growth
phase. A 1-pl sample of bacterial culture was then added to each well of
the 96-well Caco-2 tissue culture plate in quadruplicate. After 1 h, the
monolayers were washed three times with tissue culture medium and then
treated with 0.1% Triton X-100 in PBS for 5 min. Triton X-100 lysates
containing total cell-associated bacteria were then diluted 1:10 in PBS and
plated onto Luria agar with appropriate antibiotics. Bacterial adherence
was calculated as the percentage of organisms recovered per CFU of inoc-
ulum.

To examine effective delivery of LT, cultures of bacteria were grown
overnight and Caco-2 monolayers were infected as described above. After
incubation at 37°C in 5% CO, for 2 h, monolayers were washed three
times with prewarmed tissue culture medium. After the medium was re-
placed, the plates were returned to the tissue culture incubator for an
additional 2.5 h. The efficiency of toxin delivery was determined by mea-
suring the cellular cAMP levels induced in monolayers following ETEC
infection relative to those in cells infected with LT mutant jf576 (Table 1)
with a commercial enzyme-linked immunosorbent assay kit (Arbor As-
says, Ann Arbor, MI).

Effect of LT on in vitro MUC2 expression and ETEC adhesion. The
effect of LT or the closely related cholera toxin (CT, catalog no. 110B; List
Biological Laboratories, Inc.) on MUC2 expression was studied in
HT-29 cells. Briefly, confluent HT-29 cell monolayers were cultured in
96-well tissue culture plates or on coverslips in 24-well plates as men-
tioned above and toxin treatment was performed by replacing the
culture medium with fresh medium containing a 0.1-p.g/ml final con-
centration of LT or CT for the times indicated. Confocal immunoflu-
orescence microscopy was performed to detect HT-29 cell surface-
associated MUC2. To detect cell-associated MUC2, HT-29 cell
monolayers were lysed in Laemmli sample buffer and samples were
boiled, resolved by SDS-PAGE, and transferred to nitrocellulose mem-
branes prior to immunoblotting.

Periodate oxidation of cell monolayers. To investigate the role of
mucin glycans expressed on the surface of HT29 cells in bacterial adhe-
sion, ETEC adhesion assays were performed as described above with un-
treated cells or cells fixed with 2% paraformaldehyde for 30 min at 37°Cin
5% CO,. NalO, (2 mM final concentration) oxidation of fixed cell mono-
layers was performed for 30 min, followed by the addition of 1% glycerol
and incubation for 10 min to quench excess periodate. Cells were washed
with PBS, and an adherence assay was performed as described above.
Control cells were treated in an identical manner, except for the addition
of periodate.

ETEC murine colonization. Five- to 8-week-old female mice
(C57BL/6) were purchased from Charles River Laboratories International
Inc., USA. Mice were pretreated with streptomycin (5 g/liter) in drinking
water for 24 h to inhibit gut microbes, followed by the provision of drink-
ing water without antibiotics for 12 h as previously described (17). A
125-pl volume of famotidine (20-mg/ml stock) was injected intraperito-
neally per mouse to reduce gastric acidity 1 h before the mice were chal-
lenged by oral gavage with ~10° CFU of the lacZYA::Km" jf876 or etpA::
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Cm" jf1668 mutant strain. Mice were sacrificed 24 h after infection, the
small intestine was collected and lysed in 5% saponin as previously de-
scribed (17), and lysates were plated onto Luria agar plates containing
kanamycin (25 pg/ml) or chloramphenicol (15 pg/ml).

To examine the role of efpA in mediation of the colonization of
C57BL/6 parental mice, competition experiments were performed as pre-
viously described (15). Briefly, mice were prepared as described above and
then challenged with ~1 X 10° CFU of jf876 (Table 1) mixed with the
etpA mutant jf1668 (etpA::Cm”) in a final volume of 400 wl. After 24 h, the
intestinal lysates were plated separately onto Luria agar medium contain-
ing either chloramphenicol (15 pg/ml) or kanamycin (25 pg/ml). The
competitive index (CI) was then determined for individual mice as fol-
lows: CI = [mutant (Cm")/wild-type (Km") output CFU]/(mutant/wild-
type input CFU), where the input fraction was determined directly by
colony counting prior to final preparation of the inoculum.

The duration of intestinal colonization of C57BL/6 mice was first ex-
amined by assaying the number of CFU of bacteria shed over time follow-
ing an intestinal challenge with 1 X 10° CFU of either strain jf876
(lacZYA::Km") or etpA mutant (etpA::Cm") strain jf1668 bacteria. Starting
1 day after the challenge, six fecal pellets per mouse were collected every 24
h for 7 days and resuspended in PBS. Dilutions in PBS were then plated
onto Luria agar plates containing kanamycin or chloramphenicol.

Immunohistology and confocal microscopy. Sections of mouse
small intestine were collected and preserved in Carnoy’s fixation solution
(chloroform-ethanol-acetic acid, 3:6:1) to preserve mucins and then par-
affin embedded. For mucin immunostaining, slides were deparaffinized
by sequential washing in xylene and ethanol. Briefly, slides were immersed
in fresh xylene twice for 10 min each and then transferred to 100% ethanol
for 2 min, followed by sequential washing for 1 min each in 95, 70, 50, and
30% ethanol. Slides were then transferred to 0.85% NaCl solution for 2
min and immersed in 1X PBS for 2 min. Deparaffinized and rehydrated
slides were then labeled with anti-Muc2 (MUC2) rabbit or anti-Muc3
(MUC3) goat polyclonal primary antibody as described above, followed
by Alexa Fluor 488-conjugated goat anti-rabbit or donkey anti-goat anti-
body (Life Technologies). To study EtpA colocalization with mucins,
mouse intestinal sections fixed in Carnoy’s solution were deparaffinized,
blocked with 1% bovine serum albumin in PBS, and incubated with bio-
tinylated rEtpA (50-pg/ml final concentration) for 2 h at 37°C or over-
night at 4°C. After washing with PBS three times, EtpA was detected with
Qdot 605 SA conjugate (Life Technologies). In experiments involving
EtpA colocalization with Dolichos biflorus agglutinin (DBA) lectin, unla-
beled rEtpA (50-pg/ml final concentration) and biotinylated DBA lectin
(1:100; Vector Laboratories catalog no. B-1035) were added to mouse
intestinal sections fixed in Carnoy’s solution as described above. EtpA was
detected with rabbit anti-EtpA polyclonal antibody (1:200), followed by
Alexa Fluor 488-conjugated goat anti-rabbit antibody (1:400) (Life Tech-
nologies), and SA-conjugated Qdot 605 (1:400) was used to detect biotin-
ylated DBA lectin (Life Technologies). Confocal microscopy images were
captured with a Zeiss LSM 510 Meta confocal laser scanning microscope
(CLSM). Data were then analyzed with Volocity three-dimensional image
analysis software (version 6.2; PerkinElmer, Inc.) as previously described
(13).

RESULTS
EtpA interacts with the gel-forming mucin MUC2. In the intes-
tinal lumen, bacteria encounter mucin glycoproteins, including
MUC2, which is secreted by goblet cells within the mucosa. In the
colon, MUC2 forms a thick complex barrier between the heavy
burden of commensal organisms and the epithelium (18) and
MUC?2 adjacent to the colonic epithelial surface is densely packed
and firmly attached, thereby effectively excluding bacteria (19).
ETEC preferentially colonizes the small intestine, where the
organism effectively delivers its toxin payload (5). In contrast to
the mucin layer in the colon, the MUC2 layer in the small intestine
is relatively thin and loosely attached to the epithelial surface (19).
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FIG 1 EtpA interacts with the major secreted intestinal gel-forming mucin
MUC2. (a) Far-Western immunoblot analysis demonstrating binding of full-
length rEtpA glycoprotein to purified human MUC2 (middle). On the left and
right are negative controls. The arrowheads at the left and right represent the
migration of MUC2 and EtpA, respectively. BSA, bovine serum albumin. (b)
BLI studies with rEtpA glycoprotein and purified MUC2. The dissociation
constant (K,) determined from a global fit of real-time kinetics from the rEtpA
titration series shown in the key at the right is shown above the binding curves.
The gray line (o) represents MUC2 alone. (c) EtpA colocalizes with Muc2 in
the murine small intestine. Shown are CLSM images of Muc2 (green), bound
biotinylated rEtpA detected with SA-coated nanodots (red, Qdot 605), and
epithelial cell nuclei (blue). EtpA-negative controls are shown in the bottom
row. (d) During ETEC infection of murine small intestinal mucosal surfaces,
Muc2 (green) colocalizes with EtpA (red) on the surface of ETEC. The images
in the bottom row represent magnified, deconvolved regions enclosed at lower
magnifications in the top row. Locations of individual bacteria are indicated by
arrows.

We therefore questioned whether, in addition to deploying re-
cently described mucin-degrading enzymes (12, 13), this patho-
gen might be equipped to engage MUC2 to establish intestinal
colonization. Because the EtpA adhesin promotes effective small
intestinal colonization (20) and early studies demonstrated bind-
ing to goblet cells (15), we first examined the interaction of this
secreted protein with MUC2.

In far-Western analyses, rEtpA interacted with immobilized
MUC2 purified from goblet cell-like line LS 174T (Fig. 1a). To
confirm these interactions, we examined EtpA binding to MUC2
by BLI. Here, rEtpA bound to MUC2 with submicromolar affinity
(Kp, ~1077) (Fig. 1b; see Data Set S1 in the supplemental mate-
rial). Likewise, we found that rEtpA colocalized with Muc2 in the
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murine small intestinal mucosa (Fig. 1c). Following infection and
mouse small intestinal colonization with ETEC, we found that
EtpA secreted by the bacteria also colocalized with Muc2 and that
the bacteria appeared to be coated with Muc2 (Fig. 1d). Collec-
tively, these data suggested that the previously noted EtpA-medi-
ated colonization of the small intestine (20) occurs in part through
the interactions of this secreted adhesin with Muc2 in the intesti-
nal lumen.

EtpA interacts with intestinal glycocalyx transmembrane
mucin MUC3. ETEC has long been known to interact with the
glycocalyx on the apical surface of enterocytes (21-23). This gly-
coprotein-rich layer coating the microvilli of the small intestine is
thought to be formed by a number of transmembrane mucins
(24), the most abundant and best studied being MUCS3 (25, 26).
Because we had previously shown that EtpA also interacts with the
surface of intestinal epithelial cells (15), we examined whether this
adhesin could engage MUCS3. Incubation of EtpA with sections of
small intestine from mice demonstrated that EtpA adhesin bound
to the surface intestinal villi at sites of Muc3 expression (Fig. 2a).
In addition, we demonstrated that following incubation with po-
larized human Caco-2 BBe enterocytes, which make apical brush
borders (27), EtpA colocalized with MUC3 (Fig. 2b). Likewise,
coimmunoprecipitation of lysates from these cells with antibodies
against MUCS3 yielded EtpA (Fig. 2c). The results suggest that
EtpA can engage both secreted gel-forming mucins and trans-
membrane molecules. To examine the functional significance of
EtpA interactions with MUCS3, we depleted target epithelial cells
of MUC3 by RNAIi (Fig. 2d). Cells treated with MUC3 siRNA
exhibited significantly (P < 0.0001) diminished binding of EtpA
(Fig. 2e). Likewise, EtpA-expressing ETEC adhered less efficiently
to cells depleted of MUC3 (Fig. 2f), resulting in decreased func-
tional delivery of LT, as determined by cAMP activation (Fig. 2g).

Glycans expressed on mucins are important for recognition
by EtpA. Gastrointestinal mucins are heavily glycosylated proteins
in which more than 80% of the structure consists of carbohydrates
(24). Because EtpA interacts with multiple mucins, we investi-
gated the contribution of glycans expressed on these proteins to
EtpA binding. As shown in Fig. 3a, interruption of the glycan
structure with NalO, drastically reduced EtpA binding to MUC2,
suggesting that one or more sugars decorating the mucin protein
backbone are important for EtpA binding. Mucin molecules are O
glycosylated at serine or threonine residues, where N-acetylgalac-
tosamine (GalNAc) is the first sugar added by GalNAc transferase
enzymes in the Golgi apparatus, followed by “core” enzymes that
add additional sugars to GalNAc. The “core 3” enzyme 31,3-N-
acetylglucosaminyltransferase (C3GnT), which is most abundant
in the intestinal tract, extends the GaINAc O-glycan structure by
adding GIcNAc (28). The resulting core 3-derived O glycans can
then be extensively modified by additional glycosyltransferases
and other enzymes, resulting in complex mucin glycoprotein
structures. We found that EtpA bound relatively poorly to small
intestinal sections of mice that were deficient in either Muc2 ex-
pression (Muc2™'7) or C3GnT (C3GnT /") (Fig. 3b), again sug-
gesting that EtpA interacts primarily with one or more glycans on
mucins rather than the protein backbone.

EtpA interactions with GaINAc direct binding to epithelium.
Mucins in the intestine are O glycosylated by the addition of
GalNAc to Ser and Thr moieties of the respective proteins, and
further substitution of these GalNAc residues yields a diverse rep-
ertoire of glycan structures (29) that may be differentially glyco-
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FIG 2 EtpA interaction with cell surface MUCS3 is required for optimal ETEC
epithelial cell interaction and toxin delivery in vitro. (a) EtpA interacts with Muc3
in the murine small intestine. The top row shows rEtpA (biotinylated) binding to
the surface of ileal sections detected with Qdot 605. Negative controls lack rEtpA
(row 2). (b) EtpA colocalizes with MUCS3 on the apical surface of intestinal entero-
cytes. The top row shows biotinylated EtpA binding (detected with SA-Qdot 605)
to Caco-2 BBe cells and colocalization with MUCS3 (green); negative controls (no
EtpA, no anti-MUC3 primary antibody) are shown in the bottom row. (c) EtpA
immunoblot assay showing EtpA coimmunoprecipitation studies. Lanes: 1, no-
antibody negative control (9); 2, coimmunoprecipitation with anti-MUC3 anti-
body; 3, anti-EtpA antibody (+immunoprecipitation [IP] control). (d) siRNA-
mediated depletion of MUC3 from the surface of Caco-2 epithelial cells. Shown in
the immunoblot assay at the top is MUC3 produced by Caco-2 epithelial cells
following treatment with transfection reagent alone (lane 1), control siRNA (lane
2), or MUC3 siRNA (lane 3). Tubulin was used as a loading control. (e) Depletion
of cell surface MUC3 leads to diminished EtpA interaction with Caco-2 cells. Data
represent EtpA immunofluorescence signals quantitated with Volocity imaging
analysis software in MUC3 siRNA-treated cells and controls. (f) Optimal ETEC
interaction with epithelial cells requires MUC3. Shown are bacteria adherent to
MUCS3 siRNA-treated cells and controls. (Colors represent results from two inde-
pendent experiments performed on different days). (g) Optimal delivery of LT by
ETEC requires MUC3. The LT-negative (eltAB) mutant was included as a negative
control. Dashed horizontal lines represent geometric mean values. Statistical cal-
culations were performed by Mann-Whitney two-tailed nonparametric testing.
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FIG 3 EtpA interaction with MUC2 is glycan dependent. (

) Far-Western
immunoblot assay of EtpA binding to MUC2 before and after treatment with
NalO, to open the saccharide ring structures. The control blot on the left
shows MUC2 protein detected before and after NalO, treatment. (b) EtpA
interactions with murine small intestinal Muc2 are dependent on core glycan
synthesis. Confocal immunofluorescence images of EtpA interaction with

Muc? in sections of small intestine from wild-type (wt) (C57BL/6) mice (row
2). A no-EtpA control (—) is shown in row 1, and interaction with a Muc2 ™/~
homozygous deletion mutant is shown in row 3. The bottom row demon-
strates the limited interaction of EtpA in sections from mice deficient in
C3GnT.

sylated, dependent on their relative location within the intestine
(30). Expression of blood group-related antigens that terminate in
GalNAc are among glycans that exhibit varied expression in the
gastrointestinal tract (31). Interestingly, we found that in the mu-
rine small intestine, EtpA colocalized with the DBA lectin, which
binds to terminal GalNAc residues (Fig. 4a). Similarly, we were
able to completely block EtpA interactions with small intestinal
Muc2 by using exogenous GalNAc, but not N-acetylglucosamine
(GleNAc) (Fig. 4b). Similarly, the addition of exogenous GalNAc,
but not GlcNAg, significantly impaired bacterial adhesion (Fig.
4¢) and EtpA-dependent toxin delivery (Fig. 4d), suggesting that
EtpA may exert its function as an adhesin by acting as a GalNAc
lectin, similar to other previously described microbial adhesins
that target intestinal mucins (32, 33).

LT alters mucin expression, favoring bacterial adhesion. We
have previously shown that LT is required for efficient intestinal
colonization (17) and that it enhances bacterial adhesion (34);
however, the mechanisms underlying these effects are as yet un-
known. CT has previously been shown to promote mucin secre-
tion in the intestinal lumen (35). Therefore, we questioned
whether LT, which is a structural and functional homologue of
CT, could enhance mucin expression on the surface of the intes-
tinal epithelium and promote bacterial adhesion through EtpA.
Interestingly, we found that exposure of enterocytes to exogenous
LT promoted the expression of MUC2 mucin (Fig. 5a and b) and
promoted the binding of rEtpA to the surface of target epithelial
cells (Fig. 5¢). Adhesion by wild-type ETEC bacteria, as well as the
LT-negative isogenic eltA mutant, was also significantly enhanced
following treatment of target host cells with LT; however, these
changes were largely abrogated in the efpA mutant strain (Fig. 5d).
In addition, pretreatment of cells with siRNA targeting MUC2
expression (Fig. 5e) or with NalO, (Fig. 5f) significantly impaired
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FIG 4 EtpA interactions with glycans containing GalNAc. (a) EtpA localizes
to epithelial surface structures that bind the DBA GalNAc lectin. (b) Addition
of exogenous GalNAc (middle row) prevents EtpA binding to Muc2 on the
epithelial surface. The top row shows an EtpA binding control in the absence of
exogenous sugars (@), and the bottom row shows a GlcNAc control. (¢) Addi-
tion of exogenous GalNAc inhibits EtpA-mediated bacterial adhesion. (d)
GalNAc impairs LT-mediated activation of cAMP to target epithelial cells by
ETEC expressing EtpA. Solid blue circles represent the EtpA-expressing wild-
type (wt) H10407 strain, open blue circles represent the isogenic etpA deletion
mutant, and open gray circles represent the LT-negative (eltA) mutant. Statis-
tical comparisons were performed by two-tailed Mann-Whitney nonparamet-
ric testing (*, P < 0.05; ***, P < 0.001; ns, not significant).

the adhesion of EtpA-producing wild-type bacteria. Collectively,
these findings suggest that LT is able to induce changes in target
epithelial cells that include enhanced display of surface proteogly-
cans that promote interactions with ETEC through one or more
adhesin molecules, including EtpA.

EtpA, mucin, and intestinal glycans direct ETEC coloniza-
tion. Earlier studies with outbred mice suggested that EtpA plays
an important role in establishing intestinal colonization and that
immunization with this secreted ETEC antigen impairs the ability
of ETEC to infect the small intestine (20, 36, 37). To first establish
the role of EtpA in inbred (C57BL/6) mice, we performed compe-
tition assays with wild-type ETEC and the efpA isogenic mutant.
As anticipated, the etpA mutant colonized the small intestines of
these mice poorly relative to the wild-type strain (Fig. 6a). Like-
wise, in fecal shedding studies, we found that infection with the
etpA mutant was eliminated more rapidly than wild-type infec-
tion, with only one of nine efpA mutant-infected mice remaining
colonized at the end of 1 week, compared to eight of nine mice
infected with the wild-type strain (Fig. 6b).

We next examined the impact of intestinal mucin glycoprotein
expression on intestinal colonization by ETEC. Interestingly, in
Muc2/~ or C3GnT ™/~ mice, infection with wild-type ETEC re-
sulted in an unanticipated increase in overall colonization of the
proximal small intestine relative to that in parental C57BL/6 mice
(Fig. 6¢). Colonization of Muc2 '~ mice by the etpA mutant re-
mained somewhat diminished relative to that by wild-type ETEC
(Fig. 6d), potentially reflecting the ability of EtpA to engage mul-
tiple intestinal glycoproteins in addition to Muc2. On the basis of
the diminished capacity of EtpA to interact with mucosa from
mice lacking C3GnT, we anticipated that the impact of the efpA
mutation on colonization would be diminished in these mice.
Indeed, the etpA mutant colonized C3GnT ™/~ mice at least as
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FIG 5 LT enhances mucin expression and EtpA-dependent ETEC adhesion. (a) Production of MUC2 is enhanced by LT. Shown in immunoblot images are cell
lysates probed with anti-MUC2 antibody following exposure to LT at a final concentration of 0.1 wg/ml for the times indicated. (b) MUC2 gene expression is
enhanced by LT (n = 4 replicates, P = 0.03 by Mann-Whitney nonparametric testing). (c) EtpA binding to the surface of intestinal epithelial cells is enhanced
following LT exposure. Shown are CLSM images of EtpA binding to intestinal epithelial cells with and without LT treatment. (d) Pretreatment with LT enhances
adhesion of ETEC to target epithelial cells. Shown are the percentages of bacteria associated with HT29 cells 1 h after infection of LT-pretreated cells (+) or
control untreated cells (—). Dashed horizontal lines represent geometric mean values (n = 8 replicates). ***, P < 0.001 by Mann-Whitney nonparametric testing.
(e) LT-induced enhancement of adhesion is dependent on MUC2. (n = 7 replicates per group). (f) LT-mediated increase in adhesion requires intact glycan

targets. Shown are LT-associated increases in adhesion to epithelial cells with and without NalO,. wt, wild type.

efficiently as the ETEC wild-type strain (Fig. 6e), potentially re-
flecting the multiplicity of ETEC adhesins that can direct coloni-
zation in the absence of EtpA.

These data suggested a complex relationship between intestinal
colonization and eukaryotic glycoprotein expression. We specu-
lated that ETEC may engage multiple intestinal glycoproteins
with a variety of different adhesins, including EtpA, and that
while mucin could serve as a point of attachment for ETEC in
the lumen, these glycoproteins could also preclude efficient
access of the bacteria to the epithelial surface. Accordingly, we
observed a significantly greater number of ETEC bacteria at-
tached to the epithelial surface of the proximal small intestine
in Muc2™'~ or C3GnT /™ mice than in C57BL/6 mice (Fig. 6f).
These findings extend earlier observations made with other E.
coli pathovars that preferentially colonize the colon (18) and dem-
onstrate that the relatively thin layer of secreted mucin in the small
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intestine likewise limits the migration of ETEC to enterocytes,
where toxin delivery occurs.

DISCUSSION

Collectively, the findings described here suggest that ETEC has
evolved to exploit and manipulate a number of glycoproteins ex-
pressed by the intestinal epithelium, including secreted and trans-
membrane mucins. Interestingly, the data suggest that these bac-
teria are equipped with at least one protein, the secreted EtpA
adhesin, that can engage multiple mucin glycoproteins to facilitate
bacterial attachment and ultimately delivery of their enterotoxin
payloads. Previously, EtpA has been shown to bind to the ends of
ETEC flagella, where it is thought to permit the use of these long
peritrichous structures to initiate adhesion (15). The studies de-
scribed here suggest that EtpA may also accumulate at the surface
of ETEC bacteria as they migrate through the mucin layer in the
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FIG 6 EtpA and intestinal glycoproteins impact intestinal colonization. (a) Competition experiments demonstrating impaired colonization of etpA mutant
strain jf1668 relative to wild-type ETEC strain jf876 in parental C57BL/6 mice. (b) etpA mutants (open blue symbols) exhibit accelerated fecal shedding relative
to wild-type (wt, solid gray symbols) H10407 ETEC. Symbols depict geometric mean colonization values, and superscript values adjacent to the symbols indicate
the numbers of mice (out of nine in each group) that have completely cleared the infection at each time point. (c) Alteration of intestinal glycoprotein production
alters intestinal colonization by ETEC. Shown are parental C57BL/6 mice (solid symbols), Muc2 mutant mice (open blue symbols), and C3GnT mutant mice
(open gray symbols) infected with wild-type ETEC jf876. Dashed horizontal lines represent geometric mean values throughout panels a, ¢, d, and e. *, P < 0.05;
** P < 0.01 by Mann-Whitney nonparametric testing. (d) Colonization of Muc2 ™'~ mice by wild-type ETEC or etpA mutant jf1668. (e) Colonization of
C3GnT ™'~ mice by wild-type ETEC or etpA mutant jf1668. (f) The image at the top left shows a single wild-type ETEC bacterium (identified by anti-O78
antibody, green) bound to the epithelial surface of a small intestinal villus following infection of C57BL/6 mice. The higher-magnification image at the bottom
left is an averaged z-stack projection. The graph at the right depicts the number of O78™" bacteria attached to the surface of enterocytes in sections of proximal
small intestine from wild-type C57BL/6, C3GnT ", and Muc2 '~ mice. Blue symbols represent duodenum, and gray symbols represent jejunum. Horizontal

bars represent geometric mean numbers of bacteria per villus. *, P < 0.05 by Mann-Whitney two-tailed nonparametric comparisons.

small intestine, potentially permitting these organisms to tran-
siently engage the mucosa en route to the apical surface of entero-
cytes, where toxin delivery occurs.

ETEC may be equipped to exploit the thin layer of MUC2 (38)
coating the small intestine in initial colonization events mediated
by EtpA. Further enzymatic degradation of this layer by recently
described MUC2-degrading proteases (12, 13) could then permit
ETEC direct access to the fine glycocalyx layer on the apical surface
of small intestinal enterocytes likely formed by transmembrane
mucins, including MUC3 (24). A potential limitation of murine
colonization studies is that because of sequence divergence be-
tween mucin orthologues, it is not clear whether the EatA serine
protease, which degrades human MUC2 (12), is capable of de-
grading murine Muc2 mucin and an inability to effectively nego-
tiate the barrier formed by this secreted mucin could alter the
dynamics of intestinal colonization. While the in vitro data pre-
sented here suggest that interaction with secreted glycoproteins,
including MUC2, and transmembrane mucins, including
MUCS3, may ultimately be required for efficient toxin delivery
at the epithelial surface, our data may also suggest that engag-
ing these intestinal glycoproteins also permits the elimination
of these organisms, as wild-type bacteria more effectively col-
onized the glycoprotein-deficient mice. Our findings are there-
fore in keeping with earlier studies that demonstrated that MUC2
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is involved in keeping both pathogens and commensal strains
from effectively interacting with epithelial cells (18), particularly
in the colon, where a thicker layer of mucin serves as an effective
barrier to a large burden of organisms (19).

The interaction of ETEC with the intestinal mucosa, similar to
that of other enteric pathogens, is likely to be highly dynamic,
involving the interaction of a number of adhesins, including the
canonical colonization factor antigens, as well as mucin-modify-
ing enzymes (39). Interestingly, a principal ETEC effector, LT, has
previously been shown to enhance intestinal colonization (17)
and bacterial adhesion (34). While this phenotype could relate to
anumber of alterations in the host epithelium, the data presented
here indicate that ETEC may utilize LT to augment the display of
one or more intestinal glycoprotein targets, including MUC2,
which the bacteria can then exploit to promote effective bacterial
adhesion. LT and the structurally and functionally similar CT in-
crease CAMP in the target intestinal epithelium, leading to protein
kinase A-mediated activation of the cystic fibrosis transmembrane
regulator (CFTR) and ultimately net efflux of salt and water into
the intestinal lumen. Interestingly, both CT- and forskolin-in-
duced increases in cAMP (40) have been shown to stimulate the
production and secretion of mucin in the intestine (35, 41), and
bicarbonate secretion via the CFTR has been shown to be required
for effective mucin secretion (42). Therefore, enterotoxin produc-
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tion of LT by ETEC could theoretically alter the glycoprotein land-
scape in a number of ways that transiently favor the bacterium.

Intriguingly, recent studies have demonstrated that during the
peak of the severe cholera-like illness caused by ETEC, this patho-
gen emerges in diarrheal stool in a predominant clonal population
that coincides with transient displacement of the commensal mi-
crobiota (43, 44). However, within days, ETEC bacteria are sup-
planted as the commensal microbiota re-emerges and the infec-
tion resolves. Studies aimed at further defining the complex
nature of pathogen-host interactions that permit ETEC to gain a
transient foothold in the small intestine could inform novel inter-
diction strategies and vaccine development approaches.
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