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Abstract

A reference 535 bp barcode sequence from a fragment of the mitochondrial gene cytochrome 

oxidase I (COI), acquired from specimens of An. neivai Howard, Dyar & Knab, 1913 from its type 

locality in Panama, was used as a tool for distinguishing this species from others in the subgenus 

Kerteszia. Comparisons with corresponding regions of COI between An. neivai and other species 

in the subgenus (An. bellator Dyar & Knab 1906, An. homunculus Komp 1937, An cruzii Dyar & 

Knab, 1908 and An. laneanus Corrêa & Cerqueira, 1944) produced K2P genetic distances of 8.3–

12.6%, values well above those associated with intraspecific variation. In contrast, genetic 

distances among 55 specimens from five municipalities in the Colombian Pacific coastal state of 

Chocó were all within the range of 0–2.5%, with an optimized barcode threshold of 1.3%, the 

limit for unambiguous differentiation of An. neivai. Among specimens from the Chocó region, 18 

haplotypes were detected, two of which were widely distributed over the municipalities sampled. 

The barcode sequence permits discrimination of An. neivai from sympatric species and indicates 

genetic variability within the species; aspects key to malaria surveillance and control as well as 

defining geographic distribution and dispersion patterns.
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Introduction

In the Neotropical region, Colombia is second only to Brazil in number of malaria cases 

each year (Chaparro & Padilla 2012). Among malaria vectors in Colombia, Anopheles 
(Kerteszia) neivai Howard, Dyar & Knab, 1913 is often considered to be a secondary vector 

due to localized distribution, apparent natural infection rates and its larval habitat (Gutiérrez 

et al. 2008; Sinka et al. 2010). However, in the Pacific Coast of Colombia it may be 

HHS Public Access
Author manuscript
Zootaxa. Author manuscript; available in PMC 2016 November 21.

Published in final edited form as:
Zootaxa. ; 4175(4): 377–389.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



considered a primary vector of malaria, especially in isolated municipalities where medical 

access is still limited such as Litoral de San Juan (Charambirá) and Santa Bárbara-Iscuandé 

(Astaiza et al. 1988; Murillo et al. 1988). Those municipalities are located within mangrove 

environments, which are ideally suited to An. neivai, a species that undergoes larval 

development in bromeliads. Within this region, in Buenaventura, Valle del Cauca, 4.76% of 

this species has been found to be naturally infected with Plasmodium falciparum (Gutiérrez 

et al. 2008). In the mangrove environment of this region, the relative abundance of An. 
neivai surpasses other known malaria vectors, such as An. albimanus Wiedemann, 1820, and 

its biting activity has been shown to peak at dawn and dusk, times of increased fishing 

activity by locals (Escovar et al. 2013).

From a phylogenetic perspective, An. neivai occurs within the subgenus Kerteszia Theobald, 

which includes several species associated with malaria transmission and whose larvae 

undergo development primarily in bromeliads located in forests (Zavortink 1973). While one 

of the earliest recognized species of the subgenus Kerteszia, it has an extensive geographic 

distribution extending from Chiapas, Mexico to Peru and Bolivia (Stone et al. 1959; 

Zavortink 1973). Distinguishing An. neivai often has been difficult; questionable records of 

its distribution exist, especially from topographic areas of relatively high elevation 

(González & Carrejo 2009).

Evidence from molecular variability in mitochondrial DNA fragments and variation in 

morphological characters suggests that the current concept of An. neivai may represent a 

complex of closely related species (Linton 2009; Montoya-Lerma et al. 1987). Several 

Neotropical species of Anopheles have been shown to consist of one or more sibling 

(cryptic) species (Rosa-Freitas et al. 1998). Even though closely related, such species may 

exhibit ecological and behavioral differences that may affect their malaria transmission 

potential or susceptibility to insecticides (Collins & Paskewitz 1996). Molecular markers are 

now being used to elucidate the presence of cryptic species within long established malaria 

vectors such as An. cruzii, An. albitarsis Lynch Arribálzaga, 1878, and An. triannulatus 
(Neiva & Pinto, 1922) (Gómez et al. 2013; Gutiérrez et al. 2010; Lehr et al. 2005; Rona et 
al. 2009, 2012; Rosero et al. 2012; Silva-do-Nascimento et al. 2011).

In the current study we evaluated a fragment of mitochondrial Cytochrome Oxidase I (COI), 
which represents the barcode region as described by Hebert et al. (2003, 2004). Standardized 

mitochondrial fragments from COI (DNA barcodes) have been used to identify mosquitoes 

(Cywinska et al. 2006; Harrison et al. 2012; Kumar et al. 2007; Ruiz-Lopez et al. 2012), 

including species from the Colombian Andes (Rozo-Lopez & Mengual 2015). Also, in 

Colombia, DNA barcodes were used to distinguish An. calderoni Wilkerson, 1991, An. 
punctimacula Dyar & Knab, 1906 and An, malefactor Dyar & Knab, 1906; part of a closely 

related species group with high morphological similarities and of medical importance, 

especially with regard to An. calderoni (González et al. 2010). DNA barcodes also have 

been used to evaluate intraspecific variability, especially in some Neotropical Anopheles 
(Gutierrez et al. 2010; Jaramillo et al. 2011; Mirabello & Conn 2006). Thus, when haplotype 

diversity in the malaria vector An. darlingi Root, 1926 was assessed among several 

municipalities in two western states of Colombia, many shared haplotypes were 

encountered, inferring a high level of gene flow (Gutierrez et al. 2010). Similarly, in the 
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same region of Colombia, low genetic differentiation was noted among populations of the 

malaria vector An. nuneztovari Gabaldon, 1940, where previous evidence suggests the 

existence of a species complex (Jaramillo et al. 2011).

The present study was designed to obtain a reference barcode sequence from specimens of 

An. neivai from its type locality in Panama and to evaluate the efficacy of this barcode 

region to differentiate An. neivai from other species in the subgenus Kerteszia. Also, 

haplotype diversity in An. neivai was evaluated over a similar size area as that described for 

An. darlingi and An. nuneztovari (Gutierrez et al. 2010; Jaramillo et al. 2011) but for the 

distinctive Pacific coastal region of Colombia. Haplotype structure in An. neivai was further 

contrasted between the Colombian municipalities and the species’ type locality in Panama.

Materials and methods

We collected specimens from the type locality at Portobelo, Colon Panama; as well as five 

municipalities within the Colombian department of Chocó: Acandí, Jurubidá, Nuquí, Bahía 

Solano, and Litoral de San Juan (Fig. 1, Table 1). The Colombian localities were chosen on 

the basis of epidemiological indications of malaria transmission (SEM 1957, Astaiza et al. 
1988, INS 2015). While a few adult specimens were obtained using aspirators, most were 

collected as larvae and pupae in tank bromeliads and reared to adults under laboratory 

conditions similar to those described by Pecor & Gaffigan (1997). Fourth-stage larval and 

pupal exuviae, as well as male genitalia, associated with some of the reared specimens were 

mounted in Euparal following procedures presented by Pecor & Gaffigan (1997). 

Identification of many specimens (n = 34) was based on morphological characters as 

presented in Zavortink (1973), González & Carrejo (2009) and Harrison et al. (2012). 

Specimens were deposited at Museo Entomológico Francisco Luis Gallego, at Universidad 

Nacional de Colombia sede Medellin (MELFG). Additionally, thirty-one specimens were 

later identified on the basis of the COI-barcode sequences obtained, and added to the genetic 

pool for analysis.

Total DNA was extracted from each sample using the macerate method of Collins et al. 
(1987), as adapted by Uribe et al. (1998) and (Uribe et al. 2001) in a final elution volume of 

50 μL. A 650–700 bp fragment of the COI-barcode region was amplified with the primers 

described in Kumar et al. (2007) because the primers provided in Folmer (1994) failed to 

yield consistent positive amplicons. PCR amplification was carried out in a final volume of 

30 μL, including 6 μL of GoTaq® 5X buffer (Promega), 1.2 μL of dNTP (2.5 mM), 0.48 μL 

of MgCl2 (25 mM), 0.6 μL of each primer, 0.18 μL of GoTaq® DNA polymerase and 2 μL 

of purified DNA. All PCR amplifications were verified using electrophoresis on a 1% 

agarose gel with Gelstar® (Lonza), only positive PCR products were purified for cycle 

sequencing using a MultiScreen®HTS Vacuum Manifold (EMD Millipore). DNA 

sequencing was performed on both strands for each positive PCR product using BigDye 

3.1® sequencing kit (ThermoFisher Scientific), in a 10 μL reaction including 2 μL ABI 5X 

dilution buffer, 0.5 μL Big Dye, 1 μL of primer and 2 μL of PCR product. Both strands were 

sequenced. Each sequencing reaction were purified using BigDye XTerminator® 

purification kit (ThermoFisher Scientific) using 45 μL of SAM solution, 10 μL XTerminator 
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and 2 μL cycle sequencing for each sample. Finally, all samples were analyzed in an ABI 

3500XL® (Applied Biosystems) automated capillary sequencer.

Sequence quality was assessed with Sequence Scanner 1.0® (Applied Biosystems 2011) 

based on the quality estimators CRL and QV20. Consensus sequences were obtained with 

Bioedit 7.25 (Hall 1999) and Geneious ® 6 (Kearse et al. 2012). A multiple alignment was 

constructed using Muscle (Edgar 2004). The final aligned data matrix was comprised of 535 

base pairs. The presence of nuclear copies of mitochondrial origin (NUMTs) was evaluated 

as in Hlaing et al. (2009). To verify the identity of the amplified region, the sequences were 

aligned with the whole mitochondrial genome of An. albitarsis (NCBI accession number 

NC020662). Sequences from the type locality were compared to deposited sequences of 

species in the subgenus Kerteszia in GenBank using the Blast algorithm implemented by 

Altschul et al. (1990) and, also, by using the Barcoding of Life (BOLD) Identification 

System (IDS) described by Ratnasingham & Hebert (2007). The sequences included were: 

An. cruzii (KU551285), An. homunculus (KU551283); An. laneanus (KU551288) as part of 

recent Kerteszia mitochondrial genome sequences from Oliveira et al. (2016), as well as 

those of An. bellator (KU551287), An. lepidotus Zavortink, 1973 (JQ041286) and An. 
pholidotus Zavortink, 1973 (JQ041288-87). In addition, sequence from a collected specimen 

of An. marajoara Galvao & Damasceno, 1942 and a COI sequence of An. albitarsis 
(NC020662) were included, since the subgenus Nyssorhynchus Blanchard is closely related 

to Kerteszia (Harbach 2013). No barcode sequences of An. neivai from the type locality 

were recovered from GenBank. From the BOLD database, 51 records of sequences 

described as An. neivai were retrieved, 33 of which originated from Colombia. However, 

none of the sequences have been published nor are they available from the BOLD database.

Polymorphism and haplotype diversity (Hd) in the COI barcoding region of An. neivai was 

evaluated using DNASP 5 (Librado & Rozas 2009). Intra- and inter-species variation 

(barcoding gap) was estimated from genetic distances based on the K2P model that 

distinguishes between transitions and transversions (Kimura 1980), available in MEGA 6 

(Tamura et al. 2013). A threshold for barcode gap at the species level was calculated for 

detecting the possible presence of cryptic species using the SPIDER package (Brown et al. 
2012), available in R 3.2 (R Developement Core Team 2015). To further explore the 

existence of cryptic species associated to An. neivai, a statistical parsimony network was 

obtained using TCS 1 (Clement et al. 2000), based on previously identified haplotypes. 

Comparisons with other species in the subgenus Kerteszia and An. albitarsis were derived 

from K2P distances using criteria presented by Hebert et al. (2003) and Kumar et al. (2007). 

A K2P based dendrogram with bootstrap support was estimated using the APE package 

(Paradis 2012), also available in R.

Results

Genetic variability within the 535 base pair barcode region of COI was examined for 65 

individuals of An. neivai. Within the type locality (n=10), three haplotypes were 

encountered, which were divergent by four substitutions (Tables 1 and 2). These haplotypes 

were compared with sequences available in GenBank for other species of the subgenus 

Kerteszia. The pairwise genetic similarity between An. neivai and other species of Kerteszia 
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ranged between 88–92%: An. pholidotus (90–91%), An. lepidotus (88–90%), An. cruzii 
(90%), and An. homunculus (92%). Differences between the sequences of An. neivai, other 

species of Kerteszia and An. albitarsis are presented in terms of genetic distance (K2P 

distances) in Fig. 2. In this figure the first dotted box (A) of the three distinct ranges 

presented represents intraspecies distances for An. neivai, which varied between 032.5%. 

The second range (B) represents the differences between An. neivai and other species in 

Kerteszia (An. pholidotus, An. lepidotus, An. cruzii and An. homunculus), which varied 

between 8.3 to 12.6 %. The last range (C) represents differences between specimens of 

Kerteszia and An. albitarsis, which varied from 13 to 15.2%. For An. neivai, a barcode 

threshold of 1.3% (Fig. 3) was calculated, indicating the limit at which accumulative errors 

are minimized and no concurrence occurs with the distance rank of specimens assigned to 

another taxonomic identity (species) nor are nonspecific DNA sequences present (false and 

positive negatives) (Brown et al. 2012). The neighbor joining dendrogram in Fig. 4 presents 

a summary of K2P distances and infers that all An. neivai sequences conform to a single 

cluster with 100% bootstrap support. Considered together, these results indicate a clear 

separation of An. neivai from other species in the subgenus Kerteszia.

Among the 55 specimens of An. neivai from five municipalities in the Chocó region of 

Colombia, 18 COI haplotypes were detected in association with 26 polymorphic sites. All 

variation among these sites were transitions with the exception of a single transversion. The 

Colombian haplotypes varied from the Panamanian ones by 6312 nucleotide differences 

(Table 2). A majority of the Colombian specimens were from the municipalities of Bahía 

Solano (21) and Litoral de San Juan (19). While 11 haplotypes were detected from Bahía 

Solano only 5 were observed from Litoral de San Juan. Two Colombian haplotypes (1 and 

8), differing by a single transition, were the most frequently encountered with similar 

distributions spanning approximately 500 km. In addition, they exhibited a close relationship 

to most of the other Colombian haplotypes (Table 1, Fig. 5). Haplotype diversity (Hd), Nei 

(1987) ranged from 0 at Nuquí (3 specimens) to 0.99 at Bahía Solano (21 specimens), while 

in Litoral de San Juan (19 specimens) and Portobelo (10 specimens) Hd values were similar 

(0.67–0.69 respectively).

Discussion

With an extensive geographic distribution and indications of both morphologic and 

molecular variability, emphasis was placed on developing a molecular marker for An. neivai 
based on specimens originating from its type locality in Panama (Linton 2009; Montoya-

Lerma et al. 1987; Zavortink 1973). Despite of its usefulness for most metazoans, the 

barcode universal primers (Folmer 1994) do not always produce consistent PCR products for 

specimens preserved under differing conditions. Furthermore, presence of mutations at 

nucleotide positions where primers anneal require alternative primers sets in order to 

produce COI DNA barcodes (Hajibabaei et al. 2006; Kumar et al. 2007; Park et al. 2010). 

The 535 bp COI barcode region utilized in this study appears to clearly distinguish An. 
neivai from other species in Kerteszia (An. bellator, An. homunculus, An. cruzii, and An. 
laneanus) as revealed by K2P genetic distance divergences of 8.3312.6%. This range is 

similar to the interspecific divergence (mean 8.2%, range 7.638.7%) derived from COI 
sequences by Harrison et al. (2012) for comparisons between An. pholidotus and An. 
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lepidotus. Also, using the COI barcoding region, Linton (2009) observed interspecific 

differences averaging 7.2% among four species of Kerteszia. Furthermore, comparisons 

between Panamanian specimens of An. neivai and those from the Pacific coast of Colombia 

revealed only small differences in K2P distances, all less than 2.5%, and, thus, below the 

barcode limit of 4% (0–3.9 %) for defining a species [single taxonomic unit] (Cywinska et 
al. 2006; Escovar et al. 2012; Foster et al. 2013; Kumar et al. 2007; Ruiz-Lopez et al. 2010). 

In addition, Arregui et al. (2015) report differences from 3–7% between species complexes, 

such as An. albitarsis and An. oswaldoi, Peryassú, 1922. Considered together, these results 

indicate that the 535 bp COI barcoding region appears to be an effective tool for 

differentiating An. neivai.

With the relative ease in which COI barcode sequences are now produced and their unique 

specificity, the COI barcode region provides a means to evaluate the extensive geographic 

distribution of An. neivai and may be helpful in evaluating the existence of sibling or cryptic 

species from different environments and geographic regions (Hebert et al. 2003). Indications 

of morphological variation in An. neivai have been noted by Montoya-Lerma et al. (1987), 

and differences exceeding 3% in the COI barcode region have been reported by Linton 

(2009) among specimens from Colombia, Ecuador and Venezuela. This level of variability 

could indicate the presence of cryptic species, especially when compared to local 

distributions in Colombia and the species type locality. When comparing mutation rates of 

the same sequence region in An. fluviatilis James 1902, differences reached only 0.8 % 

including those between forms S and T (Kumar et al. 2013).

The presence of two highly frequent haplotypes (1 and 8), which differed by a single 

transition, among specimens from Colombia (Fig. 2) suggests they may represent 

hypothetical ancestors from which many of the other haplotypes were derived as was 

suggested for An. pseudopunctipennis Theobald, 1901 (Dantur Juri et al. 2014). Both of 

these haplotypes were most abundant at the southernmost Colombian municipality sampled, 

and while also present near the Panamanian border, they were not encountered at the type 

locality in Panamá. The minimal number of mutations between specimens of An. neivai 
from the type locality and those from Colombia was six. Based on a larger fragment of the 

COI gene, 978 bp, Mirabello & Conn (2006) found differences of seven mutational steps 

between specimens of An. darlingi from Central America and Colombia. Comparisons of 

haplotype divergence among Kerteszia species by Lorenz et al. (2015) detected a magnitude 

of difference between An. cruzii and An. homunculus of 23 mutations.

While An. neivai is primarily associated with low elevation coastal regions, several records 

of its presence at relatively high elevations occur in the literature including municipalities in 

the Colombian Departments of Antioquia, Cundinamarca, and Boyacá (González & Carrejo 

2009; SEM 1957), the Venezuelan Andes (Rubio-Palis 1991) and Ecuador (Arregui et al. 
2015). The purported presence of An. neivai in atypical environments may be evaluated on 

the basis of barcode sequences. Such analyses would be appropriate for delimiting An. 
neivai’s distribution, from the perspectives of both elevation and geographic range, and also 

for detecting potential cryptic species. In turn, this knowledge should be beneficial for 

understanding An. neivai’s role in malaria transmission and for undertaking control 

measures.
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FIGURE 1. 
Collection municipalities map for Anopheles neivai in Colombia (CO) and Panama (PA).
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FIGURE 2. 
Genetic differences (K2P) among An. neivai collected specimens (A) and against other 

species from Kerteszia (B) and Nyssorhynchus from NCBI (C).
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FIGURE 3. 
DNA barcode threshold optimization for An. neivai.
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FIGURE 4. 
Dendrogram (K2P) for An. neivai specimens from Colombia, Panama, with other Kerteszia 
and Nyssorhynchus species (based on a 535 bp COI alignment. Branch support was 

provided by bootstrap resampling (10000 replicates).
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FIGURE 5. 
Haplotype network for An. neivai collected in Colombia and Panama (based on a 535 bp 

COI alignment).
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TABLE 1

Collection information for Anopheles neivai in Panama and Colombia and its associated haplotypes (based on 

a 535 bp COI alignment).

Country, Dept. Municipality n Haplotype (n) Capture site: [NCBI register/Museum Catalog No (life stage*)]

Panama, Colón Portobelo (Pbelo)a 10 17 (5) cs1: [KM234373/NC_27056 (L), † KM234396 (L), † KM234409 
(L), KM234433/NC_27057 (L)]

cs2: [KM234435/NC_27059(A)]

18 (3) cs1: [† KM234385(L), † KM234400(L), † KM234429(L)]

19 (2) cs1: [KM234402/NC_27058 (L), † KM234415(L)]

Colombia, Chocó Acandí (Aca) 2 ‡1 cs3: [† KM234371(F)]

2 cs3: [† KM229741(F)]

Jurubidá (Juru) 10 ‡1 (6) cs4: [KM234376/NC_27055 (F)]

cs5: [† KM234401(A), † KM234404(A), † KM234405(A), † 

KM234406(A), † KM234419(A)]

‡8 (2) cs5: [† KM234398(A), † KM234425(A)]

12 cs5: [† KM234411(A)]

20 cs5: [† KM234387(A)]

Nuquí (Nq) 3 ‡8 (3) cs6: [† KM234403/ NC 26137 (M), † KM234432(F)]

cs7: [† KM234413/ NC 26136 (M)]

Bahía Solano (BS) 21 3 (6) cs8: [KM234375(A), † KM234395(F), KM234397(A), 

KM234408(A), † KM234434(F)]

cs9: [† KM234412(F)]

4 cs8: [KM234389(A)]

5 cs10: [† KM234420(M)]

6 (2) cs11: [† KM234379(M)]

cs8: [KM234416(A)]

7 cs8: [† KM234381(A)]

‡8 (2) cs8: [KM234374(A), KM234378(A)]

10 cs8: [† KM234388(F)]

13 (2) cs8: [† KM234372(M), KM234424(A)]

14 cs8: [ KM234417(A)]

15 cs8: [KM234384(A)]

16 (3) cs8: [KM234380(A), † KM234382(F), KM234391(A)]

Litoral de San Juan (LSJ) 19 ‡1 (9) cs12: [† KM234383(F), KM234386(A), KM234394(A), 
KM234399(A), KM234410(A), KM234426(A), KM234428(A), 

KM234430(A), † KM234431/NC 26433(F)]

‡8 (7) cs12: [KM234390(A), KM234393/NC_26391 (A), KM234414(A), 
† KM234418(F), † KM234421(F), KM234423(A), † 
KM234427(F)]
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Country, Dept. Municipality n Haplotype (n) Capture site: [NCBI register/Museum Catalog No (life stage*)]

9 cs12: [KM234422(A)]

11 cs12: [KM234407(A)]

21 cs12: [KM234392(A)]

*
[L: larvae, A: adult, M: adult Male, F: adult Female].

a
Type locality for An. neivai.

cs: capture site

†
species previously identified with taxonomy based in morphology,

‡
haplotypes found in several municipalities.
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