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ABSTRACT: The Gram-negative bacterial pathogen Pseudomonas
aeruginosa uses three interconnected intercellular signaling systems
regulated by the transcription factors LasR, RhlR, and MvfR (PqsR),
which mediate bacterial cell−cell communication via small-molecule
natural products and control the production of a variety of virulence
factors. The MvfR system is activated by and controls the biosynthesis
of the quinolone quorum sensing factors HHQ and PQS. A key step
in the biosynthesis of these quinolones is catalyzed by the anthranilyl-
CoA synthetase PqsA. To develop inhibitors of PqsA as novel
potential antivirulence antibiotics, we report herein the design and
synthesis of sulfonyladeonsine-based mimics of the anthranilyl-AMP
reaction intermediate that is bound tightly by PqsA. Biochemical, microbiological, and pharmacological studies identified two
potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ and PQS production in
P. aeruginosa strain PA14. However, these compounds did not inhibit production of the virulence factor pyocyanin. Moreover,
they exhibited limited bacterial penetration in compound accumulation studies. This work provides the most potent PqsA
inhibitors reported to date and sets the stage for future efforts to develop analogues with improved cellular activity to investigate
further the complex relationships between quinolone biosynthesis and virulence factor production in P. aeruginosa and the
therapeutic potential of targeting PqsA.

P seudomonas aeruginosa is an opportunistic, Gram-negative
bacterial pathogen that poses a serious threat in

nosocomial infections, particularly in immunocompromised
patients, such as burn victims, those undergoing cancer therapy,
and HIV-infected individuals.1 It is also a leading cause of death
in cystic fibrosis patients.2 P. aeruginosa is highly prone to
antibiotic resistance through both intrinsic mechanisms such as
restricted cell permeability, antibiotic efflux, and biofilm
formation as well as acquired mechanisms such as target
mutation and enzymatic drug inactivation via horizontal gene
transfer.3,4 A promising strategy to overcome this growing and
challenging resistance problem in P. aeruginosa is to target
nonvital functions that are associated with pathogenicity, such
as the production of virulence factors.5,6 Because virulence
factors are not directly associated with bacterial viability,
antivirulence antibiotics may be less susceptible to the
development of drug resistance.7,8

The synthesis and secretion of numerous virulence factors in
P. aeruginosa are controlled by three quorum sensing systems
that mediate bacterial cell−cell communication using small-
molecule natural products.9,10 The LasR- and RhlR-regulated
systems use acyl homoserine lactones (AHL) as signaling
molecules, while the MvfR (PqsR)-regulated system uses two
quinolones, PQS (3,4-dihydroxy-2-heptylquinoline, Pseudomo-
nas Quinolone Signal)11 and its biosynthetic precursor HHQ
(2-heptyl-4-hydroxyquinoline).12 By binding the transcriptional
activator MvfR (PqsR), PQS and HHQ induce the expression
of a variety of virulence factor genes including their own
biosynthetic genes, promote biofilm formation, and interact
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with the distinct AHL-based quorum sensing systems.12−18

Although both HHQ and PQS bind to and activate MvfR, PQS
is 100-fold more potent than HHQ.12 Inhibition of HHQ and
PQS biosynthesis should therefore prevent MvfR activation,
and consequently MvfR-dependent gene regulation. Toward
this end, we report herein the design, synthesis, and
biochemical, cellular, and pharmacological evaluation of small-
molecule inhibitors of PqsA, an acyl-CoA synthetase used in
quinolone biosynthesis. Using rational design based on enzyme
mechanism, we have developed potent inhibitors of PqsA that
block quinolone biosynthesis in P. aeruginosa.

■ RESULTS AND DISCUSSION

Design and Synthesis of PqsA Inhibitors. Biosynthesis
of the quinolone HHQ is thought to involve PqsA−E, with
final conversion to PQS involving oxidation by PqsH (Figure
1).19,20 Inhibitors of the cyclase PqsD22−29 and the thioesterase
activity of PqsE,30 direct antagonists of the MvfR receptor,31−37

a dual inhibitor of PqsD and MvfR,38 as well as an inhibitor of
the upstream enzyme KynU, which is one source of the
anthranilic acid precursor,39 have been reported. Our efforts to
target this pathway have focused on PqsA, an acyl-CoA
synthetase (ligase) that catalyzes a key step in quinolone
biosynthesis.21 PqsA converts anthranilic acid to anthranilyl-
CoA via a two step process involving initial ATP-dependent
adenylation of anthranilic acid to form a tightly bound
anthranilyl-AMP intermediate, followed by thioesterification
with CoA to form anthranilyl-CoA. PqsA has been validated
previously as a promising therapeutic target using both genetic
and pharmacological approaches. pqsA− mutants do not
produce HHQ or PQS15,40 and are poor biofilm producers in
vitro.41 They also exhibit attenuated virulence in a mouse burn
infection model,16,42 reduced dissemination in a mouse lung
infection model,40 and less biofilm formation and increased
susceptibility to clearance by ciprofloxacin in a mouse tumor
infection model.43 There is no known human orthologue of
PqsA, although related aliphatic acyl-CoA synthetases are used
in metabolism. Thus, selective PqsA inhibitors would not be
expected to impact host cell viability. Moreover, haloanthrani-
late substrate analogues that act as either PqsA substrates or
inhibitors have been shown to inhibit PQS production in cell
culture21 and to decrease both quinolone production and
mortality in the mouse burn model.42

Acyl-CoA synthetases belong to a superfamily of structurally
and mechanistically related adenylate-forming enzymes that
also includes nonribosomal peptide synthetase (NRPS)
adenylation domains and firefly luciferase.44 We45−53 and
others54−66 have used 5′-O-(N-acylsulfamoyl)adenosines (acyl-
AMS) and related compounds to inhibit such enzymes by
mimicking the cognate, tightly bound acyl-AMP intermediates.
Ishida and co-workers first applied this inhibitor design strategy

to mechanistically related aminoacyl-tRNA synthetases67 and
were inspired by the sulfamoyladenosine class of natural
products that includes nucleocidin and ascamycin.68−70 We
envisioned that anthranilyl-AMS (1, Table 1) or its sulfamide

analogue, anthranilyl-AMSN (2), might be effective inhibitors
of PqsA and quinolone biosynthesis. The close structural
analogues salicyl-AMS (3),45 salicyl-AMSN (4),59 and benzoyl-
AMS (5)59 would provide preliminary structure−activity
relationship data. We also envisioned that the corresponding
vinyl sulfonamides anthranilyl-AVSN (6) and salicyl-AVSN (7)
could inhibit PqsA through covalent binding to the incoming
CoA thiol nucleophile during the second half-reaction, forming
a mimic of the tetrahedral intermediate.71 This vinyl
sulfonamide inhibitor design strategy was previously used by
Aldrich and co-workers to target the NRPS salicylate
adenylation domain MbtA,71 which is involved in bacterial
siderophore biosynthesis, and we have also successfully applied
this strategy to an acyl-CoA synthetase MenE, which is involved
in bacterial menaquinone biosynthesis,48,49 as well as E1
activating enzymes involved in conjugation of ubiquitin and
ubiquitin-like modifier proteins.52,53

The acyl-AMS sulfamate (1, 3, 5) and acyl-AMSN sulfamide
(2, 4) inhibitors were readily synthesized by acylation of a
protected sulfamoyladenosine or corresponding sulfamide,
respectively, followed by global deprotection using aqueous
TFA (see Supporting Information for full details). The
sulfamidoadenosine precursor was prepared conveniently by

Figure 1. Biosynthesis of the P. aeruginosa quinolone quorum sensing factors HHQ and PQS is initiated by PqsA, an anthranilyl-CoA synthetase that
first activates anthranilic acid to form a tightly bound anthranilyl-AMP reaction intermediate and then catalyzes thioesterification with CoA to form
anthranilyl-CoA.

Table 1. Inhibition of PqsA by Designed Sulfonyladenosine
Inhibitorsa

inhibitor R X Ki
app (nM)b

anthranilyl-AMS (1) NH2 O 205 ± 4.0c

anthranilyl-AMSN (2) NH2 NH 170 ± 20c

salicyl-AMS (3) OH O 88 ± 12
salicyl-AMSN (4) OH NH 109 ± 18
benzoyl-AMS (5) H O 420 ± 69
anthranilyl-AVSN (6) NH2 36300 ± 4300
salicyl-AVSN (7) OH 15400 ± 1700

aAssays were performed with 60 nM PqsA. bCalculated based on
Dixon plots. cCompetitive inhibitor with respect to ATP (Ki = 16.5 ±
2.6 nM, calculated based on Morrison equation) and uncompetitive
with respect to anthranilate and CoA.
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Mitsunobu substitution of the 5′-alcohol of 2′,3′-acetonide-
protected adenosine with mono-N-Boc-sulfamide. The acyl-
AVSN vinyl sulfonamides (6, 7) were synthesized by
Mitsunobu substitution with the corresponding N-Boc-
arylvinylsulfonamides directly, followed by deprotection.72

Inhibition of PqsA by Anthranilyl-AMP Analogues.
With these inhibitors in hand, we evaluated their ability to
inhibit PqsA using a quantitative spectrophotometric assay with
recombinant PqsA, detecting formation of anthranilyl-CoA at
365 nm.21 Both anthranilyl-AMS (1) and anthranilyl-AMSN
(2) were potent inhibitors of PqsA, with Ki

ATP values of 205
and 170 nM, respectively (Table 1). Further analysis of these
“tight-binding inhibitors” using the Morrison equation73,74

indicated that both anthranilyl-AMS (1) and anthranilyl-AMSN
(2) are competitive inhibitors with respect to ATP (Ki = 16.5 ±
2.6 nM; 10.5 ± 2.3 nM, respectively) and uncompetitive
inhibitors with respect to anthranilate and CoA.
Interestingly, both salicyl-AMS (3) and salicyl-AMSN (4)

exhibited potency similar to that of the cognate anthranilyl
inhibitors, indicating that an o-phenolic moiety is tolerated by
PqsA. This is generally consistent with the previous finding that
salicylate, while not accepted as a substrate, does inhibit PqsA.21

Benzoyl-AMS (5) was a somewhat weaker inhibitor, indicating
the importance of an ortho substituent on the aromatic ring.
This is again consistent with previous biochemical studies
indicating that benzoate, while accepted as a PqsA substrate,
exhibits a much weaker Km compared to anthranilate (150 μM
vs 8 μM).21 In contrast, the corresponding vinyl sulfonamide
analogues 6 and 7 were relatively poor inhibitors, at least on the
short time scale of this assay. This is consistent with previous
studies within this structural superfamily of enzymes, in which
we have shown that related vinyl sulfonamides are effective but
slow-binding inhibitors of another acyl-CoA synthetase MenE
when assayed in the presence of CoA,48,49 while Aldrich et al.
have reported that salicyl-AVSN (7) is a weak inhibitor of the
salicylate adenylation enzyme MbtA in the absence of the
corresponding thiol nucleophile MbtB.71

Inhibition of P. aeruginosa Quinolone Production by
Anthranilyl-AMP Analgoues. Next, we evaluated the five
most potent PqsA inhibitors 1−5 for their ability to inhibit
HHQ and PQS quinolone production in P. aeruginosa strain
PA14 (Figure 2). HHQ and PQS concentrations were
determined by LC-MS/MS quantitation75 relative to deuter-
ated internal standards (see Supporting Information for full
details). The vinyl sulfonamide analogues 6 and 7 were
excluded due to their lack of biochemical potency.
6-Fluoroanthranilate (6FABA), a substrate analogue reported
previously to inhibit quinolone production at millimolar
concentrations,42 was used as a positive control. Compounds
were initially tested at 1.5 mM concentration, and HHQ and
PQS were quantified at 8 and 20 h, respectively. These time
points were selected based on an initial time course study of
quinolone production in the absence of inhibitors, with HHQ
or PQS production peaking at these respective time points. The
parent inhibitor anthranilyl-AMS (1) exhibited good inhibition
of both HHQ and PQS production under these conditions
(67% and 77% inhibition, respectively), whereas the sulfamide
analogue anthranilyl-AMSN (2) was more potent (90% and
92% inhibition, respectively), consistent with its increased
biochemical potency against PqsA. In contrast, salicyl-AMS (3),
salicyl-AMSN (4), and benzoyl-AMS (5) were much less
potent inhibitors of quinolone production, despite their similar
biochemical potencies against PqsA. This could be due to

differences in cell penetration, stability, and/or target
specificity. Finally, because inhibitors of the quinolone quorum
sensing pathway should not impact bacterial growth, we
confirmed that none of the six inhibitors above inhibited
growth over 20 h (see Supporting Information Figure S1).
Encouraged by the ability of anthranilyl-AMS (1) and

anthranilyl-AMSN (2) to inhibit HHQ and PQS quinolone
production, we investigated the activity of these two inhibitors
and 6FABA in greater detail. In untreated controls, HHQ and
PQS production peaked at 8 and 20 h, respectively. Previously
reported time course studies have similarly shown that HHQ
levels peak at 6−8 h while PQS levels continue to rise.15,76 All
three inhibitors were able to decrease quinolone production in
a dose- and time-dependent manner (Figure 3). While none of
the inhibitors blocked quinolone production completely at any
of the concentrations tested, both anthranilyl-AMSN (2) and
6FABA were able to inhibit or delay quinolone production at
concentrations as low as 100 μM. Such a perturbation might
still be sufficient to impact P. aeruginosa virulence in vivo.
Indeed, 6FABA and related haloanthranilate substrate ana-
logues have been shown to increase survival significantly in a
mouse burn infection model, despite the fact that they only
reduce HHQ levels partially compared to untreated controls in
tissue directly underlying the infection site.42 Anthranilyl-AMS
(1) exhibited the same trend of inhibition, albeit again with
lower potency.

Effect of Anthranilyl-AMP Analogues on P. aeruginosa
Pyocyanin Production. We next investigated the ability of
these PqsA inhibitors to block production of the virulence

Figure 2. Inhibition of HHQ (8 h) and PQS (20 h) quinolone
production in P. aeruginosa strain PA14 (1.5 mM inhibitors). Statistical
significance relative to the blank was assessed using a two-tailed
unpaired Student t-test with 95% confidence intervals; *p < 0.05, **p
< 0.01, ***p < 0.001, and ****p < 0.0001.
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factor pyocyanin. Although both anthranilyl-AMS (1) and
anthranilyl-AMSN (2) were able to reduce HHQ and PQS
production at 1 mM concentration (1, 47 and 40% inhibition,
respectively; 2, 84% and 84% inhibition, respectively; Figure 3),
neither inhibited pyocyanin production at this concentration
(see Supporting Information Figure S2). Of note, MvfR
antagonists37 and PqsD inhibitors25,38 that similarly inhibit
quinolone production but not pyocyanin production have been
reported previously. Haloanthranilate substrate analogues have
been reported to inhibit both quinolone and pyocyanin
production but may impact multiple targets in this complex
signaling network.42 This is indicative of the complex
relationship between HHQ and PQS quinolone biosynthesis,
induction of the MvfR regulon, and production of pyocyanin.
Compound Accumulation of Anthranilyl-AMP Ana-

logues in P. aeruginosa. It is well-known that P. aeruginosa
has high intrinsic resistance to small-molecule antibiotics due to
limited membrane permeability and high efflux.3,4 We
hypothesized that this may be the basis for the difference
between the potent biochemical activity of our PqsA inhibitors
and their modest cellular potencies in P. aeruginosa. Thus, we
carried out compound accumulation studies with anthranilyl-
AMS (1), anthranilyl-AMSN (2), and 6FABA in P. aeruginosa
PA14 using an LC-MS/MS quantitation approach (see Figure
4).77 Cells were grown in LB to early log phase (OD600 ≈ 0.5),
treated with 1000 μM compound for 30 min, then centrifuged
and rapidly washed four times with cold PBS to remove surface-
associated compound. The cells were lysed by multiple freeze−
thaw cycles, centrifuged, and precipitated with methanol
containing an internal standard (benzoyl-AMS, 5). Compound
concentration in the lysate was quantitated by LC-MS/MS
relative to the internal standard and the intracellular
concentration was calculated based on CFU determination of
the culture just prior to washing. Anthranilyl-AMS (1),
anthranilyl-AMSN (2), and 6FABA accumulated to
20−30 μM intracellular concentration under these conditions,
corresponding to 2−3% penetration relative to the 1000 μM
extracellular concentration applied. These results suggest that

limited penetration of anthranilyl-AMS (1) and anthranilyl-
AMSN (2) into P. aeruginosa contributes to the differences
between their biochemical and cellular potencies observed
above, although other factors such as metabolic stability and/or
off-target binding must also be considered. These integrated
data provide a basis to correlate biochemical inhibition,
bacterial compound accumulation, and cellular activity and
indicate that membrane penetration and/or efflux evasion are
keys to improving the cellular activity of these rationally
designed PqsA inhibitors.

Conclusions. The P. aeruginosa quinolone signaling system
is an attractive target for the development of novel therapeutics
that block virulence factor production. We have developed a
series of rationally designed inhibitors of the anthranilyl-CoA
synthetase PqsA, which catalyzes a key step in P. aeruginosa
quinolone biosynthesis. Anthranilyl-AMS (1) and anthranilyl-
AMSN (2) were identified as potent biochemical inhibitors of
PqsA having moderate inhibitory activity against HHQ and
PQS quinolone production in P. aeruginosa. Compound
accumulation studies suggest that the limited cell penetration
of these inhibitors may contribute to this difference in
biochemical versus cellular activities. This work provides direct
pharmacological validation of PqsA as a promising target to

Figure 3. Dose- and time-dependent inhibition of HHQ (top) and PQS (bottom) quinolone production in P. aeruginosa strain PA14 over 24 h.

Figure 4. Compound accumulation in P. aeruginosa strain PA14 after
incubation with 1000 μM extracellular concentration for 30 min.
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inhibit HHQ and PQS quinolone biosynthesis in P. aeruginosa.
Future efforts will focus on developing analogues with
improved cell penetrance or combinations with efflux pump
inhibitors or membrane-permeablizing antibiotics to provide
more potent cellular activity. These inhibitors will then be
useful probes for investigating the interplay between quinolone
signaling and virulence factor production in P. aeruginosa,
including quantitative assessment of the level and timing of
virulence factor inhibition required to impact in vivo virulence,
as well as evaluation in conjunction with other antibiotics,
particularly those targeting the interconnected LasR- and RhlR-
regulated quorum sensing systems,78 with the long-term goal of
developing novel antivirulence strategies to treat P. aeruginosa
infections.
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