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Abstract

The emergence of whole-genome annotation approaches is paving the way for the comprehensive 

annotation of the human genome across diverse cell and tissue-types exposed to various 

environmental conditions. This has already unmasked the positions of thousands of functional cis-

regulatory elements integral to transcriptional regulation, such as enhancers, promoters and 

anchors of chromatin interactions that populate the noncoding genome. Recent studies showed that 

cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated 

with aberrant gene expression in cancer. Here we review these findings to showcase the 

contribution of the noncoding genome and its alteration in the development and progression of 

cancer. We also highlight the opportunities to translate the biological characterization of genetic 

and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or 

monitor disease.
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The identification and annotation of cis-regulatory elements in the human 

genome

The human genome is more than a collection of genes

The diploid human genome consists of over 6 billion bases of DNA that provide the genetic 

basis for our phenotypic individuality (1,2). Approximately 20,000 genes are encoded in the 

human genome and are transcribed into ~80,000 transcripts that are subsequently translated 
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into various proteins. Despite the importance of proteins in diverse cellular processes, 

protein coding sequences account for under 2% of the human genome (less than 120 million 

bases of DNA in the diploid genome). The role for the remaining noncoding bases (~98%) is 

a source of investigation and debate (1,3). Nearly half of the noncoding genome consists of 

repetitive elements including interspersed satellites, short interspersed nuclear elements, 

long interspersed nuclear elements, ribosomal DNA, DNA transposons and retrotransposons 

that impact various biological functions (4). Additionally, the noncoding genome harbors 

non-repetitive elements, including cis-regulatory elements such as promoters, enhancers and 

anchors of chromatin interactions (5,6). These cis-regulatory elements are directly involved 

in modulating gene expression and noncoding RNA transcription through long-range 

chromatin interactions (Figure 1A–D) (7,8). Identifying and characterizing functional 

noncoding elements within the genome hold great promise to improve our understanding of 

the human genome in health and disease. In this review, we focus on the progress in 

noncoding functional element annotation and recent advances demonstrating the central role 

of genetic and epigenetic alterations affecting noncoding cis-regulatory elements of 

relevance to cancer initiation and progression.

Identification and annotation of noncoding functional elements across the genome

The noncoding genome has historically been overlooked because of technical limitations 

hindering the characterization of its genetic and epigenetic nature. Recent advances in 

whole- genome annotation, inclusive of next-generation sequencing technologies, now offer 

the means to effectively delineate functional noncoding regions of the human genome. This 

annotation takes into account multiple definitions of functionality to incorporate the 

evolutionary, genetic and molecular biology perspectives.

From an evolutionary perspective, comparative analyses are commonly used to identify 

conservation of DNA sequences across related species (9). Genetic elements that are 

retained across species are generally considered biologically important and are thus 

considered functional. In a recent study, about 8% of the human genome has been reported 

to be under evolutionary constraint (10). Taking into account protein-coding sequences, this 

implies that functionality can be ascribed to approximately 6% of the noncoding genome 

(10,11). Identifying conserved DNA sequences through sequence alignment along a linear 

genome however disregards the three-dimensionality of the genome in which the sequence 

identity of cis- regulatory elements regulating the same gene, for instance, may be conserved 

across species despite localizing to neighboring yet distinct positions along the linear 

genome of different species. This is suggested by a comparative study of cis-regulatory 

elements between the human and mouse genomes revealing conservation at the level of 

transcription factor networks between these two species (12). Similar multi-species 

comparative analyses based on the chromatin binding profiles for multiple transcription 

factors with different DNA binding motifs exhibit conserved binding DNA sequence 

preferences but with limited binding event alignment across species (13–15). This supports 

the integration of epigenomics and comparative genomic to assist in the identification of 

functional elements in the context of the evolutionary perspective.
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From a genetic perspective, functional elements of the genome are defined by the ability of a 

variation in their DNA sequence, either a structural alteration or a Single Nucleotide Variant 

(SNV), to cause quantifiable phenotypic changes, inclusive of differential gene expression. 

This is exemplified by the mutations reported in the telomerase reverse transcriptase 
(hTERT) gene promoter in melanoma patients that increases hTERT gene expression 

(16,17). Until recently, the genetic approach was hampered by low-to-modest throughput 

methodologies. The recent development of high-throughput in vitro assays however, 

including the Massively Parallel Reporter Assay (MPRA), Massively Parallel Functional 

Dissection (MPFD) assay, Self-Transcribing Active Regulatory Region sequencing 

(STARR-seq) and Protein Binding Microarrays (PBMs) are now allowing to measure 

biochemical differences across cis-regulatory elements and genetically modified variants 

(18–21). These assays are further complemented with newly designed in silico approaches 

such as IntraGenomic Replicates (IGR) and Function Based Prioritization of Sequence 

Variations (FunSeq) that predict changes in DNA-protein interaction induced by genetic 

alterations (22–26). Together, these technologies enable researchers to assess the impact of 

thousands of genetic alterations found across the genome to quantifiably change phenotypic 

traits, thereby accelerating the identification of functional noncoding elements based on a 

genetic perspective.

From a molecular biology perspective, functional noncoding elements are identified based 

on biochemical measurements. Following-up on the work from independent laboratories 

characterizing biochemical activity across the noncoding genome, the Encyclopedia of DNA 

Elements (ENCODE) project launched in 2003 significantly accelerated the identification of 

biochemically active noncoding elements of the human genome. This was made possible 

using a series of high-throughput assays including Chromatin Immunoprecipitation-

sequencing (ChIP-seq), RNA-sequencing and DNase I hypersensitive site sequencing 

(DNase-seq) across a collection of normal and cancer cell lines from different tissues of 

origin (27–29). Overall, this led the ENCODE project to predict biochemical activity across 

approximately 80% of the human genome (27). Other initiatives, including The Functional 

Annotation of the Mammalian Genome (FANTOM) project and the International Human 

Epigenome Consortium (IHEC), inclusive of the Roadmap Epigenomics project, Blueprint, 

DEEP, Canadian Epigenetics, Environment and Health Research Consortium (CEEHRC) 

and Core Research for Evolutional Science and Technology (CREST), are further 

contributing to the biochemical characterization of the human genome to identify functional 

elements (30–32). Overall, these efforts led to the annotation of a diverse set of functional 

elements, inclusive of cis-regulatory elements, populating the noncoding genome to 

establish transcriptional programs in a lineage-specific manner across many cell and tissue-

types.

In accordance to the aberrant changes in gene expression profiles promoting cellular 

dedifferentiation and pluripotency during cancer development, cis-regulatory elements 

integral to transcriptional programs are garnering attention in the field of cancer genetics.
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Cis-regulatory elements are targets of genetic and epigenetic alterations in 

cancer

Genetic and epigenetic alterations target promoters in cancer

Promoters correspond to the basic unit of regulation required for the expression of any 

transcript located upstream of the target gene transcription start site (33). The initiation of 

gene transcription involves the recruitment of coactivator proteins to assist in a series of 

steps, culminating in the assembly of the transcription pre-initiation complex consisting of 

general transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH) and RNA 

polymerase II. The activation of the RNA Polymerase II results in transcriptional 

elongation(34,35).

Genetic alterations populate promoters in cancer

Given the fundamental role of promoters in transcription, genetic alterations targeting their 

underlying sequences can directly contribute to aberrant gene expression (Figure 2A). This 

is exemplified by the recurrent somatic mutations identified in the hTERT gene promoter in 

multiple human cancers including melanoma, glioma, glioblastoma, medulloblastoma, lung 

adenocarcinoma, thyroid cancer, bladder cancer and hepatocellular carcinoma (16,17,36–

40). This same promoter is also affected by genetic predisposition, specifically by the 

rs2853669 Single Nucleotide Polymorphism (SNP) located 246 base-pairs upstream from 

the start codon (17). These genetic alterations create DNA recognition motifs for members 

of the E26 Transformation-Specific (ETS) transcription factor family, leading to the 

increased binding of ETS factors, promoting an increase in hTERT expression (16,17,41). 

The continued hTERT gene expression normally suppressed in somatic cells can result in the 

aberrant lengthening of telomeres to favor cellular immortalization and oncogenesis (42). In 

addition to the hTERT gene promoter, recent whole-genome analyses of various cancer 

types have also reported a significant burden of mutations at the WDR74, MED16, SDHD 
and TFPI2 gene promoters (41,43). Furthermore, genetic alterations in the SDHD and 

hTERT promoters have also been shown to discriminate patient outcome in a collection of 

cancer types, including melanoma, glioma, glioblastoma, medulloblastoma, thyroid, liver 

and bladder cancer, supporting their usefulness as biomarker for patient stratification (36–

38,41,43–46).

Structural variations involving promoters can also contribute to oncogenesis. A prototypical 

example consists of a fusion between the ETS factor ETS-Related Gene (ERG) proto-

oncogene and the promoter region of the Transmembrane Protease, Serine 2 (TMPRSS2) 
gene through an intronic deletion on chromosome 22q22.2-3 (47). The TMPRSS2:ERG 
(T2E) fusion, reported in approximately 50% of prostate cancer patients, places ERG gene 

expression under the control of the androgen-regulated TMPRSS2 promoter, resulting in an 

oncogenic increase in ERG transcript and protein levels (47,48). The increase in ERG 

protein resulting from the T2E fusion can upregulate the expression of target genes that 

favor prostate cancer cell migration and invasion, including CXCR4 and ADAMTS-1 
(47,49), and has been associated with higher grade prostate cancer (50). Fusion of the 

TMPRSS2 promoter with other ETS family members, such as ETS Variant 1, 4 and 5 

(ETV1, ETV4, ETV5), have also been reported in another 5–10% of prostate cancer patients 
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(48). More recently, structural variations including deletions, duplications, inversions and 

translocations associated with breakpoints at chromosome 9p24 that cluster within the 3′-

Untranslated Region (UTR) of the PD-L1 gene have been reported in multiple cancers, 

including adult T-cell leukemia, large B-cell lymphoma and stomach adenocarcinoma (51). 

These aberrant structural alterations targeting the 3′-UTR of PD-L1 elevate the stability of 

PD-L1 transcripts and expression, suggested to aid cancer cells in escaping anti-tumor 

immunity (51). Together, these studies showcase that promoters can be targeted by either 

inherited or acquired genetic alterations, inclusive of both SNVs and structural variants, that 

contribute to oncogenesis.

Epigenetic alterations accumulate at promoters in cancer

The activity of cis-regulatory elements is greatly dependent on their chromatin accessibility. 

Promoters found in compacted chromatin, known as heterochromatin, are inactive while 

those found in accessible chromatin, known as euchromatin, are actively engaged in 

transcriptional regulation. Epigenetic modifications, inclusive of DNA methylation, histone 

modifications or variants, readily influence chromatin accessibility by affecting the density 

of nucleosomes (Figure 2B) (29,52,53). Changes in chromatin accessibility, either increasing 

or decreasing its compaction, through epigenetic alterations can directly impact cancer 

development.

This is highlighted by changes in DNA methylation at CpG dinucleotides commonly 

reported at promoters of target gene or noncoding transcribed regions across different types 

of cancer (Figure 2B) (54,55). For example, the promoters of numerous tumor suppressor 

genes such as RASSF1A, BRCA1, APC, MLH1 and p16 are hypermethylated in 

osteosarcoma, endometrial carcinoma, glioblastoma, pancreatic, breast, colorectal, ovarian 

and non-small cell lung cancer (56–63). The hypermethylation of these promoters correlates 

with the reduced expression of their associated gene (58–60,64–66). Similar results were 

reported for noncoding transcribed regions, inclusive of micro (miR) and long noncoding 

RNAs (lncRNA). For instance, the hypermethylation of the miR-124a promoter is associated 

with reduced miR-124a expression in leukemia, lymphoma and colon, breast and lung 

cancer (67). Similarly, DNA hypermethylation of the bidirectional miR-34b/c promoter 

relates to miR-34b/c silencing in colorectal cancer cells, favorable to colony formation (68). 

Finally, DNA hypermethylation of the MEG3 lncRNA promoter is linked with the reduced 

MEG3 expression in multiple cancers (69–71) and associates with poor prognosis in gastric 

cancer patients (72). In summary, aberrant DNA hypermethylation can affect both coding 

and noncoding gene promoters to impact oncogenesis. Noteworthy, differential methylation 

status at promoters can inform on clinical outcome. For instance, DNA methylation of the 

GSTP1 promoter on chromosome 11q13 can discriminate malignant from normal prostate 

tissue (73,74). Methylation status of the HOXD3 promoter on chromosome 2q31 also 

segregates low-grade prostate cancer from intermediate and high-grade prostate cancer (75). 

Moreover, the methylation status of the MGMT promoter in glioma patients on chromosome 

10q26 has been suggested to be a predictor of treatment response and post-treatment survival 

to temozolomide and alkylating agents (76,77). These studies support that DNA methylation 

patterns at promoters can also potentially serve as biomarkers to stratify cancer patients for 

treatment response and distinct clinical outcomes.
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Conversely, promoters can undergo DNA demethylation as cancer develops (78), and the 

loss of DNA methylation at promoters associates with the overexpression of the associated 

gene. Demethylation at the ELMO3 gene promoter for instance is associated with its 

overexpression in human lung cancer (79). In accordance with the proposed role of ELMO3 
in cellular migration, the overexpression of ELMO3 has been documented in metastatic lung 

cancer (79,80). Promoter demethylation driving the aberrant expression of uPA, involved in 

tumor progression and metastasis is similarly reported in invasive prostate cancer (81,82). 

The treatment of invasive prostate cancer PC-3 cells with S-adenosylmethionine, previously 

shown to favor hypermethylation, inhibits uPA gene expression and cell invasion in vitro, 

suggesting that the inhibition of promoter demethylation may be a potential therapeutic 

strategy against aberrantly activated tumor-promoting genes (81).

Promoters can also be epigenetically marked by specific histone modifications (Figure 2B), 

and aberrant fluctuation of these modifications has been linked to oncogenesis. The co-

occupancy of lysine 4 and 27 trimethylation on histone H3 (H3K4me3 and H3K27me3, 

associated with activation and repression of transcription, respectively) defines a “bivalent” 

state found at the promoters of genes poised for expression (83–85). These bivalent 

promoters can transit into either active (H3K4me3-positive and H3K27me3-negative) or 

silent (H3K4me3-negative and H3K27me3-positive) states during cell differentiation (85). 

During colorectal cancer initiation, gains and losses of the H3K4me3 modification at 

promoters are associated with differential gene expression (86). The loss of the H3K27me3 

modification has also been linked to aberrant activation of oncogenic gene transcription, 

including MKI67 and CD133, a proliferation marker and a cancer stem cell marker, 

respectively (87). Moreover, the loss of both H3K4me3 and H3K27me3 modifications is 

associated with aberrant gains in promoter methylation in colorectal cancer (87). Apparent 

gains and losses of the H3K27me3 modification at promoters also discriminates androgen 

deprivation-resistant versus sensitive prostate cancer cells, suggesting a role for epigenetic 

alterations at promoters during cancer progression (88). Unfortunately, these observations do 

not delineate the causal role of changes in either H3K4me3 or H3K27me3 at promoter in 

cancer. Future work relying on the recent development of epigenetic editing technologies, 

such as Transcription Activator-Like Effector (TALE) or deactivated-Cas9 (dCas9) fused 

with epigenetic writer or eraser proteins (e.g. TALE-TET1, TALE-LSD1, dCas9-p300)(89–

93) will provide an opportunity to directly assess the role for the changes in histone 

modifications targeting promoters in oncogenesis. In support, increased IL1RN gene 

expression was achieved in cells expressing the dCas9-p300 fusion protein targeted to the 

IL1RN promoter, which allowed for lysine 27 acetylation of histone H3 (H3K27ac) (91).

Genetic and epigenetic alterations target enhancers in cancer

Enhancers are cis-regulatory elements found tens to thousands of base-pairs away from their 

target gene promoter that can modulate gene expression independently of their orientation 

compared that of their target gene. They serve to modulate the activation of promoters and 

fine-tune transcription in a cell-type specific manner, a property that renders enhancer 

activity modulation ideal for genetic and epigenetic alterations to impact cell identity, 

abrogate cellular differentiation and promote oncogenesis (94).
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Genetic alterations at enhancers affect gene expression in cancer

Genetic predispositions for various traits and diseases identified through genome-wide 

association studies preferentially map to noncoding cis-regulatory elements, particularly 

enhancers, in a disease- and tissue-specific manner (Figure 3A) (95). Risk-SNPs found in 

enhancers can change the DNA recognition motifs of transcription factors to alter their 

binding to the chromatin, directly impacting the transactivation potential of enhancers, and 

modulate target gene expression (95).

This is exemplified by the colorectal cancer risk-associated SNP rs6983267 identified on 

chromosome 8q24 (96,97) that maps to an enhancer containing a consensus TCF4 

recognition motif upstream of the MYC gene (98,99). The variant risk-allele of this SNP 

increases the binding of TCF4 to the enhancer compared to the reference allele, driving the 

aberrant overexpression of MYC (98,99). In agreement with the 8q24 region physically 

interacting with the MYC promoter in other cancer types (100), the rs6983267 locus is 

associated with the risk of developing other cancers including liver, lung and prostate cancer 

(101,102). More recently, multiple lymphoma risk-associated SNPs (rs2445610, 

rs13255292, rs7826019, rs59602790) were shown to map to subtype-specific lymphoma cis-

regulatory elements within the chromosome 8q24 risk-locus (103). Separately, the risk-

associated SNP rs1859961 maps to a prostate cancer-specific enhancer in the chromosome 

17q24.3 prostate cancer risk locus that regulates SOX9 gene expression (104). Aberrant 

SOX9 gene expression is associated with increased risk for prostate cancer and is involved in 

prostate oncogenesis in mice (105). The rs4784227 SNP at the chromosome 16q12.1 breast 

cancer risk-locus provides further evidence of genetic alterations targeting enhancers in 

cancer. The variant risk-allele of the rs4784227 SNP changes the sequence of a Forkhead 

DNA recognition motif within an enhancer that regulates the transcription of the TOX3 
gene, favoring the binding of the FOXA1 transcription factor (106). The increased binding 

of FOXA1 represses the transactivation ability of the enhancer through the recruitment of 

the transcriptional repressor Groucho/TLE, resulting in the decreased expression of the 

TOX3 tumor suppressor gene (106).

Finally, SNPs can also target units of enhancers referred to as Clusters Of Regulatory 

Elements (COREs), such as super-enhancers or stretch-enhancers, which correspond to 

multiple enhancers in close proximity to each other (Figure 3A) (107,108). This is 

showcased by the rs2168101 SNP mapping to a tissue-specific super-enhancer near the 

LMO1 neuroblastoma oncogene on chromosome 11p15 (109). The variant allele of this SNP 

disrupts the binding of GATA3 to lower the expression of LMO1, reducing the risk of 

developing neuroblastoma (109,110).

While these examples consist of single functional SNPs changing the activity of enhancers, 

recent work demonstrated that multiple SNPs within a risk-locus can impact distinct 

enhancers, classifying these as Multiple Enhancer Variants (MEVs) risk-loci (111). These 

MEVs have been reported to contribute to disease onset, including cancer. For instance, 

three SNPs (rs12352658, rs7847449 and rs10759944) in linkage disequilibrium with each 

other within the chromosome 9q22 thyroid cancer risk-locus can change the transactivation 

potential of two different enhancers that physically interact with the promoter of the FOXE1 
and PTCSC2 genes (112). This likely account for the reduced expression of the FOXE1 and 
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PTCSC2 genes associated with the 9q22 risk-locus in normal thyroid tissue from cancer 

patients (113). Overall, the functional interpretation of risk-loci identified through genome-

wide association studies showcases the contribution of genetic alteration in enhancers to 

promote cancer development.

Similar to inherited genetic variants, acquired somatic mutations can alter enhancer activity 

and contribute to oncogenesis (Figure 3A). While enhancers are typified by a reduced 

mutational density compared to the genome found in heterochromatin, argued to result from 

active DNA repair in these elements (114), mutations do preferentially accumulate in 

enhancers present in the tissue from which the tumor originates (115). For example, a 

putative enhancer region of the PAX5 gene essential for the commitment of lymphoid 

progenitors into the B-cell lineage located on chromosome 9p13 is found to be recurrently 

mutated in chronic lymphocytic leukemia tumors (116,117). These mutations mapping to 

this enhancer are significantly correlated with altered PAX5 gene expression. Moreover, the 

CRISPR/Cas9-mediated deletion and introduction of mutations at this enhancer region in B-

cells reduced PAX5 gene expression, suggesting these mutations directly alter the activity of 

the enhancer to disrupt PAX5 expression (116). Moreover, heterozygous 2–18 basepair indel 

mutations map to an intergenic site 7.5 kilobases upstream of the TAL1 transcription start 

site reported in 8 of 146 T-cell acute lymphoblastic leukemia samples, all changing the 

enhancer landscape by creating binding motifs for the MYB transcription factor (118). This 

allows MYB binding to the chromatin followed by the recruitment of its binding partner 

CBP, a lysine acetyltransferase, leading to the formation of a super-enhancer upstream of the 

TAL1 oncogene to drive its overexpression (118).

In addition to point mutations, enhancer activity is also affected by structural variants in 

cancer, such as inversions, translocations and copy number alterations (Figure 3A). In 

medulloblastoma, the GFI1 and GFI1B loci are translocated from transcriptionally silent 

chromatin regions into the proximity of active super-enhancers, presenting them as novel 

oncogenic drivers (119). Similarly, the repositioning of an enhancer near the GATA2 gene 

on chromosome 3q21 to an ectopic region near the EVI1 gene through inversions and 

translocations has been reported in acute myeloid leukemia (120). This leads to the 

formation of a super-enhancer that physically interacts with the EVI1 promoter through 

chromatin interactions, reducing the expression of GATA2 while simultaneously increasing 

the expression of the EVI1 proto-oncogene (120). In glioblastoma, the aberrant expression 

of the hTERT gene is also suggested to be affected by the rearrangement of a super-enhancer 

normally found on chromosome 10q22 to the hTERT gene promoter located on chromosome 

5p15 (121). Likewise, the overexpression of MYC reported in multiple myeloma is mediated 

through a translocation of a 3′ IgH super-enhancer adjacent to the MYC oncogene (107). 

Moreover, as a result from the fusion between MYB and QKI (MYB-QKI) in angiocentric 

gliomas, active enhancers including two super-enhancers demarcated by H2K27ac are 

translocated from the QKI gene locus located on chromosome 6q26 near the MYB gene 

located on chromosome 6q23 to support aberrant MYB expression (122). The MYB gene is 

also targeted by translocations in adenoid cystic carcinoma with the NFIB and TGFBR3 loci 

(123). The translocations juxtapose enhancers, including super-enhancers, to the MYB 
locus, giving rise to a positive feedback loop regulating the aberrant expression of this potent 

oncogene mediated by the binding of the MYB protein to the translocated super-enhancer 
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(123). Finally, copy number alterations in regions that harbor super-enhancers can also 

contribute to aberrant gene expression (Figure 3A). For instance, two focal amplification 

events of regions harboring super-enhancers were identified and associated with the aberrant 

expression of the MYC oncogene in uterine corpus endometrial carcinoma and lung 

adenocarcinoma (124). The CRISPR/Cas9-mediated deletion of a 1.7 kb enhancer, part of 

the super-enhancer region driving MYC overexpression in lung adenocarcinoma NCI-H2009 

cells led to a significant reduction in MYC expression and impaired clonogenic growth, 

suggesting that super-enhancer amplification can prompt aberrant gene expression (124). 

Additional amplification events of regions inclusive of super-enhancers associated with an 

increase in gene expression are also observed near the KLF5, USP12, and PARD6B genes in 

head and neck squamous cell carcinoma, colorectal cancer and liver hepatocellular 

carcinoma, respectively (124).

In summary, various types of genetic alterations targeting enhancers can adversely modulate 

their activity to impact normal transcription and gene expression, and contribute to cancer 

development.

Epigenetic alterations accumulate at enhancers in cancer

Enhancer activity is also subject to epigenetic regulation (Figure 3B). Aberrant DNA 

methylation observed at enhancers in cancer was suggested to be more closely relate to 

changes in gene expression than at promoters (125). This may partly be due to differential 

transcription factor binding. Transcription factors are suggested to bind DNA 

hypomethylated enhancers more readily than DNA methylated enhancers as exemplified by 

the enrichment of FOXQ1 binding within DNA hypomethylated enhancers previously 

implicated in colorectal cancer oncogenesis (125–127). DNA hypomethylated enhancers 

responsive to ESR1 binding in breast cancer are also suggested to be critical for the 

development of ESR1-positive breast cancer (128). Moreover, aberrant enhancer DNA 

hypomethylation during oncogenesis is suggested to associate with the upregulation of 

cancer-related gene expression, whereas DNA hypermethylation at enhancers correlates with 

reduced target gene expression (128,129). In support of this, a putative DNA 

hypomethylated enhancer is associated with the increased expression of its target genes 

including the MYC and RNF43 oncogenes, and DNA hypermethylation at enhancers are 

associated with the reduced expression of DAXX and GET4 in breast cancer (126,128). 

These studies suggest a linkage between aberrant DNA methylation at enhancers and its 

potential role in altering transcription factor binding and gene expression in cancer 

development.

Enhancers permissive to transcription factor binding are commonly flanked by nucleosomes 

mono- and dimethylated on lysine 4 of histone H3 (H3K4me1 and H3K4me2) (130–133). 

Moreover, active enhancers are further discriminated from poised enhancers by being 

flanked with H3K27ac nucleosomes (Figure 3B) (134). Genome-wide profiling for 

H3K4me1 in both normal colon epithelia and colorectal cancer cells revealed thousands of 

enhancers, termed Variant Enhancer Loci (VEL) that are either lost or gained in colorectal 

cancer cells compared to normal colon crypts, suggestive of ectopic enhancer activity in the 

process of cancer initiation (86). These VEL associate with differential expression of their 
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putative target gene in normal versus colon cancer cells (86). Specifically, enhancers active 

in normal colon but inactive in colorectal cancer cells, are found near genes that are part of 

the normal colon gene expression profile and vice versa (86). VEL also characterize cancer 

progression. For instance, thousands of enhancers active in endocrine therapy-sensitive 

breast cancer cells are no longer active in endocrine therapy-resistant cells (135). This 

change in enhancer usage reflects differences in the transcriptional machinery that inform on 

alternative therapeutic strategies (135). Moreover, cells resistant to gamma-secretase 

inhibitor (GSI) in T- cell acute lymphoblastic leukemia appear to be epigenetically labile as 

they can readily re- activate a transcriptional program typical of GSI sensitive cells upon 

GSI withdrawal. Furthermore, these cells are sensitive to BRD4 inhibition (136), known to 

antagonize the activity of super-enhancers (137).

The cause of epigenetic alterations at enhancers is still under investigation but whole exome 

sequencing of tumor samples supports a role for genetic alterations in chromatin remodeling 

factors (138). This is exemplified by the mutational load in EP300 (p300), ARID1A, 

CREBBP (CBP), MLL3/4 and LDB1 genes reported in bladder cancer, hepatocellular 

carcinoma, non-Hodgkin lymphoma, medulloblastoma, breast cancer and colon cancer 

(139– 145). Mutations in MLL3/4 are proposed to destabilize the MLL3/4 protein, reduce its 

binding to transcription factors or to inactivate its catalytic domain that can impact the 

methylation of nucleosomes at enhancers (138,146). Likewise, evidence suggests that 

mutations in the tumor suppressor ARID1A gene (147) can impinge upon the activity of this 

SWI/SNF chromatin remodeling complex subunit to favor oncogenesis (148). Overall, this 

warrants further characterization of mutations in chromatin factors to delineate their impact 

on cis-regulatory element activation.

Anchors of chromatin interaction are targets of genetic and epigenetic alterations in 
cancer

Chromosomes are organized into a hierarchy of chromatin interactions that coordinate the 

interplay between enhancers and promoters to regulate the expression of their target 

transcripts (Figure 1). Chromatin interactions, also referred to as chromatin loops, mediate 

the communication between diverse types of cis-regulatory elements separated by large 

genomic distances at the kilobases scale by bringing them into close physical proximity. 

Megabase-scale chromatin interactions define topologically associated domains (TADs) 

separated by boundaries that are broadly conserved across cell- and tissue-types and 

demarcate active from inactive chromatin domains (Figure 1A–B) (149–151). Smaller range 

chromatin interactions anchored at promoters facilitate the interactions with enhancers in a 

cell type-specific manner and relate to cell type-specific gene expression profiles (Figure 

1C) (152–155). These promoter-enhancer chromatin interactions are constrained within 

TAD boundaries because these limit their formation across adjoining TADs to insulate target 

gene promoters from aberrant enhancer activity (Figure 1D) (156). Chromatin interactions 

are mediated by factors that recognize the DNA sequence at loop anchors in conjunction 

with intermediary proteins. The anchors that define TAD boundaries are occupied by the 

CCCTC-binding protein (CTCF), which recognizes a specific 12 basepair consensus motif, 

and the cohesin complex consisting of RAD21, STAG1, SMC1a and SMC3 (Figure 1D) 

(157).
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Although the vast majority of TAD boundaries harbor CTCF/cohesin binding sites, co-

binding of these factors does not necessarily create these boundaries. In fact, several studies 

have shown that the majority of CTCF/cohesin binding sites do not block physical long-

range chromatin interactions, and are therefore considered to be located outside of TAD 

boundaries (152,155,158). A subset of CTCF and cohesin co-bound sites are implicated in 

interactions involving anchors within a few hundred kilobases from each other, such as 

promoter-enhancer or enhancer-enhancer interactions (152,159,160). While CTCF binding 

appears to be directed to distal cis-regulatory elements as opposed to promoters 

(149,161,162), the chromatin-interaction factor ZNF143 directly occupies promoters 

(153,154,163,164) to anchor chromatin interactions (Figure 1C) (154). Studies that have 

examined genome-wide interaction maps in conjunction with transcription factor binding 

profiles have identified additional factors that preferentially occupy anchors of chromatin 

interactions (150,153,154). Some of these additional proteins found at anchors, such as the 

Mediator complex, assist in the formation of chromatin interactions (161). However, the role 

for most of the factors present at anchors of chromatin interactions remains to be 

determined.

Genetic alterations target anchors of chromatin interaction

Maintaining the genetic identity of anchors of chromatin interaction ensures appropriate 

chromatin folding to guide the regulation of transcriptional programs in normal cells. 

Chromatin interaction frequencies can be affected by genetic alterations targeting anchors of 

chromatin interaction (Figure 4A), as showcased by the rs12913832 human pigmentation-

associated risk-SNP mapping to the HERC2 enhancer modulating the loop interaction with 

the oculocutaneous albinism II (OCA2) promoter (165). Similarly, the ZC3HAV1 gene-locus 

harbors a functional SNP rs13228237 capable of altering the interaction frequency between 

the ZC3HAV1 gene promoter and a distal enhancer located 200 kilobases away by imposing 

an allele-specific bias in the binding of the chromatin interaction factor ZNF143 (154). 

Furthermore, an analysis of mutations reported in the International Cancer Genome 

Consortium (ICGC) pan-cancer database revealed that the DNA recognition motifs for 

CTCF and ZNF143 are among the motifs with the highest average number of cancer-

associated mutations (166). Moreover, in a study of 213 colorectal tumors, mutations were 

reported to accumulate in the DNA recognition motif for CTCF and its flanking sequences 

(167). Variation in the sequences flanking core transcription factor binding sites has a 

significant impact on binding. Indeed, these variations can explain why factors from the 

same family, which often recognize nearly identical core recognition motifs, have distinct 

genome-wide binding profiles and serve different biological functions in vivo (168–172).

While these studies did not distinguish between mutations affecting TAD boundaries versus 

inner-TAD promoter-enhancer or enhancer-enhancer interactions, several recent reports have 

focused on the role of genetic alterations at TAD boundaries. For instance, CTCF binding 

sites that define TAD boundaries show a striking enrichment for mutations compared to non-

boundary CTCF binding-sites in liver and esophageal carcinomas (173). Moreover, the 

CRISPR/Cas9-mediated deletion of two CTCF/cohesin binding sites commonly mutated in 

T cell acute lymphoblastic leukemia (T-ALL) results in the loss of TAD boundaries and 

leads to a significant increase in LMO2 and TAL1 genes expression, two proto-oncogenes 
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involved in hematopoiesis (173). Hence, genetic alterations to the anchors of chromatin 

interaction can disrupt the activity of noncoding regulatory elements and impact downstream 

target gene expression.

Aberrant epigenetic modifications target anchors of chromatin interactions in cancer

A distinctive feature of CTCF binding sites is the absence of DNA methylation (174–176). 

Genome-wide CTCF binding in multiple cell types negatively correlates with DNA 

methylation (176,177). Changes to the DNA methylation profile at anchors of chromatin 

interactions can compromise CTCF binding and its activity (Figure 4B). This was recently 

reported in human IDH mutant gliomas that exhibit a CpG Island Methylator Phenotype 

(CIMP), characterized by genome-wide hypermethylation at CTCF/cohesin binding sites 

(178). Moreover, IDH1 mutants were shown to be sufficient in driving the CIMP phenotype 

in gliomas resulting in aberrant gene expression programs (179). Hypermethylation CTCF/

cohesin binding sites interferes with CTCF binding to the chromatin, which results in altered 

chromatin interactions and aberrant expression of the PDGFRA oncogene (178). The CIMP 

phenotype is known in several other cancer types including colorectal, breast, endometrial 

cancer (180). Although the effect of genome-wide methylation on the binding of chromatin-

interaction factors in these cancer types is yet to be assessed, results in gliomas combined 

with the well-established mutual-exclusivity between CTCF binding and DNA methylation 

on the chromatin suggests that epigenetic alterations impacting chromatin interactions might 

be common across many cancer types.

Clinical implications for the functional noncoding genome

Identifying therapeutic opportunities and biomarkers within the functional noncoding 
cancer genome

Specific factors are recruited to cis-regulatory elements including BRD4, a chromatin reader 

featuring two N-terminal bromodomains that bind to acetylated histones to subsequently 

recruit transcriptional activators (137,181). BRD4 inactivation with bromodomain inhibitors 

such as JQ1 and iBET can inhibit the cis-regulatory element activity as reported for super-

enhancers that can drive oncogene overexpression. This is showcased in the repression of 

aberrant MYC expression in various malignancies, including medulloblastoma, B-cell acute 

lymphoblastic leukemia, acute myeloid leukemia, Merkel cell carcinoma and resistance in T-

cell acute lymphoblastic leukemia that halt proliferation (136,181–186). Moreover, BRD4 

inhibition induces differentiation and growth arrest in patient-derived NUT midline 

carcinoma cells (186). This example suggests that chemical modulation of cis-regulatory 

element activity can be of benefit to treat cancer.

The identification of genetic and epigenetic alterations in functional noncoding cis-

regulatory elements also provides a source of biomarkers to monitor cancer development 

(187–190). For instance, genetic alterations mapping to the hTERT promoter are associated 

with advanced cancer staging and poor patient survival in glioma, bladder and thyroid cancer 

patients (40,45,191–193). Mutations in the hTERT promoter in glioma patients particularly 

have been suggested to confer radioresistance and resistance to temozolomide treatment 

(191,194). Moreover, aberrant hypermethylation of the hTERT promoter can also serve as a 
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predictive biomarker for poor survival in ependymoma patients (195). Similarly, the CIMP 

phenotype has shown promise as a discriminator for patient stratification and outcome in 

ependymoma, glioma, glioblastoma, colorectal cancer and hepatocellular carcinoma 

(180,196–201). These studies collectively suggest that genetic and epigenetic alterations 

targeting noncoding elements offer new opportunities for biomarker discovery in cancer to 

guide treatment and disease monitoring.

Conclusion

In summary, evidence supports the critical role of the noncoding genome in maintaining 

normal transcriptional programs and cell identity. Genetic and epigenetic alterations 

targeting functional noncoding cis-regulatory elements reported in cancer can alter these 

transcriptional programs and promote oncogenesis. These alterations inform on tumor 

biology and also reveal new biomarkers for patient stratification associated with distinct 

outcome. Hence, the comprehensive characterization of the noncoding cancer genome offers 

a promising avenue to delineate new therapeutic opportunities, identify biomarkers for 

disease monitoring and ultimately improve patient care.
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Statement of Significance

The majority of genetic and epigenetic alterations accumulate in the noncoding genome 

throughout oncogenesis. Discriminating driver from passenger events is a challenge that 

holds great promise to improve our understanding of the etiology of different cancer 

types. Advancing our understanding of the noncoding cancer genome may thus identify 

new therapeutic opportunities and accelerate our capacity to find improved biomarkers to 

monitor various stages of cancer development.
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Figure 1. The genome is organized through a hierarchy of long-range interactions
A) Large chromosomal neighborhoods associate with each other in the nuclear space. 

Euchromatic regions that are associated with high transcriptional activity tend to cluster in 

the center of the nucleus. In contrast, heterochromatic regions associated with transcriptional 

repression tend to cluster at the nuclear periphery. B) Heat map representing virtual genome-

wide chromatin interaction maps. Mega-base scale chromatin interaction partitions the 

genome into domains of interactions known as Topologically Associated Domains (TADs). 

TAD boundaries preclude interactions between neighboring TADs, therefore restricting most 

interactions to within their borders. C) Enhancer-promoter chromatin interactions are 

mediated by the chromatin-interaction factors ZNF143 and CTCF, in concert with several 

accessory/co-binding proteins. These factors act in concert with several co-binding/

accessory/associated proteins to influence genome organization via enhancer-promoter 

interactions. Enhancer-promoter interactions are at the kilobase (Kb) scale and are highly 

cell-type specific. D) Anchors of chromatin interactions that define TAD boundaries are 

enriched for CTCF and cohesin binding. TADs are up to a megabase (Mb) in scale and are 

highly conserved across cell types.
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Figure 2. Genetic and epigenetic alterations are observed at gene promoters in cancer
A) Alterations in the sequences of promoters can modulate transcription factor binding 

affinity for the DNA to change the expression of the associated gene. This can arise through 

somatic mutations or inherited Single Nucleotide Variants (SNVs). B) Changes in the 

epigenetic identity, either based on changes in the DNA methylation or histone 

modifications was reported in cancer initiation and progression that influence promoter 

activity and results in altered gene expression in cancer.
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Figure 3. Genetic and epigenetic alterations are observed at enhancers in cancer
A) Single Nucleotide Variants (SNVs) and structural variations can alter enhancer activity. 

SNVs and somatic mutations observed in enhancers can modulate the activity of these 

regulatory elements by changing their affinity for transcription factors. Translocation of a 

region that acts as an enhancer that places it in proximity of an oncogene can drive its 

aberrant expression. Similarly, amplification of an active enhancer element that is associated 

with an oncogene can drive its over-expression and subsequently contribute to oncogenesis. 

These genetic alterations to enhancers ultimately serve to modulate expression of oncogenes 

or tumor-suppressor genes. B) Changes in the epigenetic identity have been reported at 

enhancers in cancer. Hyper- or hypomethylation of CpGs at enhancers affects the 

accessibility of the DNA to transcription factors. Changes in the composition of post-

translational modifications to histone in enhancers are thought to impact transcription factor 

binding to the chromatin. Increased histone acetylation increases chromatin accessibility to 

favor transcription factor binding, whereas loss of acetylation decreases chromatin 

accessibility thereby modulating the activity of enhancer.
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Figure 4. Genetic and epigenetic alterations targeting anchors of chromatin interactions
A) ZNF143 recognizes a DNA binding motif that is enriched at promoters. Genetic 

alteration in the consensus motif of ZNF143 can deter ZNF143 binding and result in the 

impaired chromatin interactions between promoters and enhancers and impact the 

expression of target genes. B) Anchors of chromatin interactions that define topologically 

associated domains (TADs) are bound by CTCF. Disruption of CTCF binding at these 

anchors can abrogate the formation of chromatin interactions to ultimately disrupt the three-

dimensional organization of the genome in cancer. CTCF recognizes a 12 base-pair (bp) 

consensus motif mutated in various cancer types. The binding of CTCF to the DNA can also 

be compromised by DNA methylation, as reported in glioblastoma.
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