
REVIEW

On the importance of skewed offspring distributions
and background selection in virus population genetics

KK Irwin1,2, S Laurent1,2, S Matuszewski1,2, S Vuilleumier1,2, L Ormond1,2, H Shim1,2, C Bank1,2,3

and JD Jensen1,2,4

Many features of virus populations make them excellent candidates for population genetic study, including a very high rate of
mutation, high levels of nucleotide diversity, exceptionally large census population sizes, and frequent positive selection. However,
these attributes also mean that special care must be taken in population genetic inference. For example, highly skewed offspring
distributions, frequent and severe population bottleneck events associated with infection and compartmentalization, and strong
purifying selection all affect the distribution of genetic variation but are often not taken into account. Here, we draw particular
attention to multiple-merger coalescent events and background selection, discuss potential misinference associated with these
processes, and highlight potential avenues for better incorporating them into future population genetic analyses.
Heredity (2016) 117, 393–399; doi:10.1038/hdy.2016.58; published online 21 September 2016

INTRODUCTION

Viruses appear to be excellent candidates for studying evolution in
real time; they have short generation times, high levels of diversity
often driven by very large mutation rates and population sizes (both
census and effective), and they experience frequent positive selection
in response to host immunity or antiviral treatment. However, despite
these desired attributes, standard population genetic models must
be used with caution when making evolutionary inference.
First, population genetic inference is usually based on a coalescence

model of the Kingman type, under the assumption of Poisson-shaped
offspring distributions where the variance equals the mean and is
always small relative to the population size; consequently, only two
lineages may coalesce at a time. In contrast, viruses have highly variable
reproductive rates, taken as rates of replication; these may vary based
on cell or tissue type, level of cellular differentiation or stage in the
lytic/lysogenic cycle (Knipe and Howley, 2007), resulting in highly
skewed offspring distributions. This model violation is further intensi-
fied by the strong bottlenecks associated with infection and by strong
positive selection (Neher and Hallatschek, 2013). Therefore, virus
genealogies may be best characterized by multiple-merger coalescent
(MMC) models (see, for example, Donnelly and Kurtz, 1999; Pitman,
1999; Sagitov, 1999; Schweinsberg, 2000; Möhle and Sagitov, 2001;
Eldon and Wakeley, 2008), instead of the Kingman coalescent.
Second, the mutation rates of many viruses, particularly RNA

viruses, are among the highest observed across taxa (Lauring et al.,
2013; Cuevas et al., 2015). Although these high rates of mutation are
what enables new beneficial mutations to arise, potentially allowing for
rapid resistance to host immunity or antiviral drugs, they also render
high mutational loads (Sanjuán, 2010; Lauring et al., 2013). Specifi-
cally, the distribution of fitness effects has now been described across

taxa—demonstrating that the input of deleterious mutations far
outnumbers the input of beneficial mutations (Acevedo et al., 2014;
Bank et al., 2014; Bernet and Elena, 2015; Jiang et al., 2016). The
purging of these deleterious mutants through purifying selection can
affect other areas in the genome through a process known as
background selection (BGS) (Charlesworth et al., 1993). Accounting
for these effects is important for accurate evolutionary inference in
general (Ewing and Jensen, 2016), but essential for the study of viruses
because of their particularly high rates of mutation and compact
genomes (Renzette et al., 2016).
Given these distinctive features of virus populations and the

increasing use of population genetic inference in this area (see, for
example, Renzette et al., 2013; Foll et al., 2014; Pennings et al., 2014;
Renzette et al., 2016), it is crucial to account for these processes that
are shaping the amount and distribution of variation across their
genomes. We aim here to draw particular attention to MMC events
and background selection, and the repercussions of ignoring them in
population genetic inference, highlighting particular applications to
viruses. We conclude with general recommendations for how best to
address these topics in the future.

SKEWED OFFSPRING DISTRIBUTIONS AND THE MMC

Inferring evolutionary history using the Wright–Fisher model:
benefits and shortcomings
Many population genetic statistics and subsequent inference are based
on the Kingman coalescent and the Wright–Fisher (WF) model
(Wright, 1931; Kingman, 1982). With increasing computational
power, the WF model has also been implemented in forward-time
methods, allowing the modeling of more complex evolutionary
scenarios versus backward-time methods. This also allows for the
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inference of population genetic parameters, including selection coeffi-
cients and effective population sizes (Ne), even from time-sampled
data (that is, data collected at successive time points) (Ewens, 1979;
Williamson and Slatkin, 1999; Malaspinas et al., 2012; Foll et al., 2014;
Foll et al., 2015; Ferrer-Admetlla et al., 2016; Malaspinas, 2016). These
methods are robust to some violations of WF model assumptions,
such as constant population size, random mating, and non-
overlapping generations, and have also been extended to accommo-
date selection, migration, and population structure (Neuhauser and
Krone, 1997; Nordborg, 1997; Wilkinson-Herbots, 1998).
However, it has been suggested that violations of the assumption of a

small variance in offspring number in the WF model, and in other
models that result in the Kingman coalescent in the limit of large
population size, lead to erroneous inference of population genetic
parameters (Eldon and Wakeley, 2006). Biological factors such as
sweepstake reproductive events, population bottlenecks, and recurrent
positive selection may lead to skewed distributions in offspring number
(Eldon and Wakeley, 2006; Li et al., 2014); examples include various
prokaryotes (plague), fungi (Zymoseptoria tritici, Puccinia striiformis,
rusts, mildew, oomycetes), plants (Arabidopsis thaliana), marine organ-
isms (sardines, cods, salmon, oysters), crustaceans (Daphnia) and
insects (aphids) (reviewed in Tellier and Lemaire, 2014). The resulting
skewed offspring distributions can also result in elevated linkage
disequilibrium despite frequent recombination, as linkage depends
not only on recombination rate, but also on the degree of skewness
in offspring distributions (Eldon and Wakeley, 2008; Birkner et al.,
2013). Such events may also skew estimates of FST relative to those
expected under WF models, as there is a high probability of alleles being
identical by descent in subpopulations, where the expectation of
coalescent times within subpopulations is less than that between
subpopulations regardless of the timescale or magnitude of gene flow
(Eldon and Wakeley, 2009).
The assumption of small variance in offspring number may often be

violated in virus populations as well. For example, progeny RNA virus
particles from infected cells can vary up to 100-fold (Zhu et al., 2009).
Second, features such as diploidy, recombination, and latent stages are
expected to increase the probability of multiple-merger events (Davies
et al., 2007; Taylor and Véber, 2009; Birkner et al., 2013). Third,
within their life cycle, viruses experience bottleneck events during
transmission and compartmentalization, followed by strong selective
pressure from both the immune system and drug treatments. Finally,
at the epidemic level, extinction–colonization dynamics drive popula-
tion expansion (Anderson and May, 1991).
All of these aspects characterize, for example, HIV, a diploid virus

with extraordinary rates of recombination (Schlub et al., 2014).
Transmitted and founder viruses undergo at least two distinct genetic
bottlenecks (one at physical transmission and one at infection,
respectively; Joseph and Swanstrom, 2015), followed by strong selection
imposed by the immune system (Moore et al., 2002). At the epidemic
scale, besides multiple events of colonization (Tebit and Arts, 2011),
strong heterogeneity in the virus transmission chain has also been
observed (see, for example, Service and Blower, 1995).

Beyond WF assumptions: the MMC
A more general coalescent class of models, summarized as the MMC
class, can account for these violations, particularly for (non-Poisson)
skewed offspring distributions, by allowing more than two lineages to
coalesce at a time (Table 1). These are often derived from Moran models
(Moran, 1958), generalized to allow multiple offspring per individual.
In contrast to the Kingman coalescent (for which P(k42)= 0, where k T
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is the number of lineages coalescing simultaneously), a probability
distribution for k-merger events determines coalescence.
The parameters inferred under the MMC differ from those inferred

under the Kingman coalescent in several notable respects. In the
Kingman coalescent, effective size Ne scales linearly with census size N,
whereas for the MMC it does not (Huillet and Möhle, 2011). Thus
genetic diversity is a nonlinear function of population size. Coalescent
trees under the MMC also have more pronounced star-like genealogies
with longer branches (Figure 1), and their site frequency spectra (SFSs)
are skewed toward an excess of low-frequency and high-frequency
variants because of these branch lengths (Eldon and Wakeley, 2006;
Blath et al., 2016), generating a more negative Tajima’s D (Birkner
et al., 2013). With similar migration and population size, alleles fix at
a higher rate per population in the MMC than under the Kingman
coalescent, and thus higher FST is expected between subpopulations
(Eldon and Wakeley, 2009). Furthermore, the efficacy of selection
increases, as selection acts almost deterministically between multiple-
merger events; in the WF model, genetic drift counteracts selection
fairly strongly (Der et al., 2011), but in generalized models where
offspring distributions are wide, beneficial mutations may be more
likely to escape stochastic loss and thus continue to fixation.
Furthermore, the fixation probability of a new mutant with a positive
selection coefficient approaches 1 as the population size increases, in
stark contrast with traditional expectations under the standard WF
model (Der et al., 2011).
Not accounting for skewed offspring distributions can lead to

misinference. For instance, Eldon and Wakeley (2006) showed that for
Pacific oysters, which have been argued to undergo sweepstake-like
reproductive events (Hedgecock, 1994a), the estimated population-
wide mutation rate θ inferred under the Kingman coalescent is two
orders of magnitude larger than that obtained from the C-coalescent

(see below)—9 vs 0.0308, respectively—and, indeed, provides a poor
fit to the data.

The C-coalescent
Introduced by Eldon and Wakeley (2006), the C-coalescent (also
called the ‘Dirac-coalescent’) differentiates two possible reproductive
events in the underlying forward process (Figure 2). Either a standard
Moran model reproduction event occurs (with probability 1− ε), where
a single individual is randomly chosen to reproduce and the (single)
offspring replaces one randomly chosen nonparental individual; all other
individuals, including the parent, persist. Alternatively, a ‘sweepstake’
reproductive event occurs (with probability ε) (Hedgecock, 1994b),
where a single parent replaces C*N individuals. If these sweepstake
events happen frequently enough, the rate of C*N-reproduction events
will be much greater than that of two-reproduction events, and the
underlying coalescent process will consequently be characterized by MM
events; if two or more parents were to replace C*N individuals,
simultaneous MM events may occur in a single generation resulting
in a Ξ -coalescent. However, in contrast to other MMC models (for
example, Ξ -coalescent or other Λ-coalescents), the parameter C has
a clear biological interpretation as the fraction of the population that is
replaced in each sweepstake reproductive event. Though the assump-
tion of a fixed C (as in the normal C-coalescent) seems biologically
unrealistic, it can be avoided by treating C as a Poisson parameter.
Finally, despite its appealing connection to biologically relevant
measures, the appropriateness of making inferences based on the
C-coalescent still depends on the biology of the specific virus being
studied. Thus, model choice is still essential, and the best-fit coalescent
should be assessed on a case-by-case basis.

Application to viruses
There are several reasons why a modified Moran model may better
capture virus evolution than models converging to the Kingman
coalescent, even though it does not account for fitness differences
between individuals. First, virus evolution is driven by strong bottle-
necks during host transmission and intrahost selection processes that
likely result in skewed offspring distributions (Figure 3) (Gutiérrez
et al., 2012; Tellier and Lemaire, 2014). Furthermore, viruses display the
MMC-typical low Ne/N ratio (Pennings et al., 2014; Tellier and
Lemaire, 2014), can adapt rapidly (Neher and Hallatschek, 2013),
and may have sweepstake-like reproductive events in which a single
virion can propagate a large fraction of the entire population (Grenfell
et al., 2004; Pybus and Rambaut, 2009). For example, the influenza
virus hemagglutinin segment appears to be under strong directional
selection imposed by host immunity (and sometimes drug treatment),
resulting in a ladder-like genealogy (as depicted in Figure 3a), suggest-
ing that only a few viruses seed the entire next generation (Grenfell
et al., 2004). That being said, some challenges remain (see Box 1), such

Figure 1 Multiple-merger and Kingman coalescent realizations. Example of
genealogies and samples from (a) the Kingman coalescent and (b) a
multiple-merger coalescent. Panels on the left show the evolutionary process
of the whole population, whereas those on the right show a possible
sampling and its resulting genealogy. Colors correspond to different (neutral)
derived allelic states, where black denotes the wild type.

Figure 2 Depiction of the modified Moran model underlying the
C-coalescent. Lineages between the present and the next generation, where
N is the population size, ε is the probability of a sweepstake event and C is
the fraction of the population that is replaced in each such event. Labels in
the top row give the number of parental individuals reproducing in a given
manner (represented by color), whereas labels in the bottom row give the
number of corresponding offspring per parent.
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as rigorously defining the term ‘generation’ for virus populations, and
subsequently confirming that the per-generation mutation rate is on the
order of the coalescent timescale cN, a prerequisite for the use of any
coalescent approach. Finally, viruses with little or no recombination
may be prone to clonal interference, and this should be explicitly
accounted for in population models and resulting coalescents (see, for
example, Strelkowa and Lässig, 2012).
The processes that make viruses ideal candidates for MMCs can

differ by scale (see Figure 3); for example, following transmission
events, there are severe founder effects and potentially high recombina-
tion within the host (for example, HIV and human cytomegalovirus).
Subsequent compartmentalization may introduce intrahost population
structure through bottlenecks, colonization events, and extinction
events (Renzette et al., 2013). To date, it remains unclear how often
MMCs fit the patterns of variation observed in intrahost versus
interhost virus populations—but such comparisons are increasingly
feasible (Box 1). Finally, periods of latency—temporary virus inactiva-
tion with cessation of reproduction—should be incorporated in such
modeling, potentially as recurring mass extinction events (Taylor and
Véber, 2009). Thus, multiple MMC models are a necessary but not
final step toward addressing the various patterns observed at different
scales of virus evolution (Table 1).
The large data sets often generated from viruses may also prove

impractical for the likelihood-based methods commonly employed for
MMCs. This limitation has partially been overcome by Eldon et al.
(2015), who proposed an approximate likelihood method along with
an approximate Bayesian computation approach based on the SFS to
distinguish between the MMC and exponential population growth.
Although both effects are expected to result in very similar SFSs,

characterized by an excess of singletons as compared with the Kingman
coalescent, the bulk and tail of the SFS (that is, the higher-order
frequency classes) typically differ, which can be assessed by approx-
imate likelihood-ratio tests and approximate Bayes factors (Eldon et al.,
2015; see Box 1).

PURIFYING SELECTION AND LINKAGE IN VIRUS

POPULATIONS

Modeling background selection
The joint modeling of the effects of genetic drift and positive selection,
including in experimental evolution studies of virus populations, has
improved our ability to distinguish adaptive from neutral mutations
by minimizing the chance that the rapid fixation of a neutral allele
is incorrectly interpreted as strong positive selection (Li et al., 2012;
Foll et al., 2014; see Box 2). However, there is another process that
must be incorporated if we are to fully understand mutation
trajectories in virus populations: background selection.
BGS was originally proposed to explain patterns of reduced diversity

in regions of low recombination—patterns that were previously
suggested to be the signature of genetic hitchhiking around strongly
beneficial mutations (see Begun and Aquadro, 1992 and Charlesworth
et al., 1993). It was argued that only neutral mutations present on the
‘least-loaded’ chromosomes—that is, those with the fewest deleterious
mutations—have appreciable probabilities of reaching high frequen-
cies or fixation. Kimura and Maruyama (1966) showed that the
proportion of chromosomes belonging to the least-loaded class is

f 0 ¼ exp � U

2hs

� �
; ð1Þ

Figure 3 Example of processes spurring MM events in virus populations. Examples include (a) intrahost adaptation (a selective process) and (b) interhost
transmission (a demographic process). The tree in (a) characterizes, for example, neuraminidase (NA) or hemagglutinin (HA) evolution in the influenza A
virus, driven by positive selection; selection by host immunity is ongoing, whereas that from drug treatment may be intermittent. The tree in (b) represents
interhost transmission and its associated bottleneck; for viruses that compartmentalize (such as human cytomegalovirus and HIV), similar patterns follow
transmission to new compartments. The colored squares below the trees roughly indicate the diversity of the population through time. Intrahost adaptation
may temporally decrease diversity owing to genetic hitchhiking, though single snapshots may not reflect varying temporal levels of diversity. During interhost
transmission, diversity decreases owing to the associated bottleneck but then may quickly recover in the new host.
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where U is the rate of mutation to a deleterious state, s is the selection
coefficient against homozygous mutations and h is the dominance
coefficient. For simplicity of modeling, h is usually set to 1 for viruses
that carry a single copy of their genome in each virion, although
polyploid effects could arise in the case of multiple virions infecting
the same cell.
The least-loaded class, and thus genetic diversity in the presence of

BGS, is dependent on the balance between the influx of deleterious
mutations (occurring at rate U) and their removal by natural selection
(according to the product hs). Assuming that offspring exclusively
originate from the least-loaded class of individuals, Charlesworth et al.
(1993) expressed the expected neutral diversity due to background
selection as

p ¼ 4 f oNe m; ð2Þ
where Ne is the effective population size and μ is the mutation rate.
As BGS reduces the number of reproducing individuals, genetic drift
increases, thus reducing genetic diversity and increasing stochasticity
in allele trajectories. Furthermore, as only the genetic diversity
segregating in the least-loaded class can be observed, population size
inferred from measures of genetic diversity may be underestimated if
BGS is not properly taken into account (Ewing and Jensen, 2016).
In the BGS model described above, strongly deleterious mutations

are maintained in mutation-selection balance such that no skew in
the SFS is expected, as rare variants are rapidly purged. Thus, a simple
rescaling of Ne is often used as a proxy for the effects of BGS (see, for

example, Hudson and Kaplan, 1995; Zeng and Charlesworth, 2011;
Prüfer et al., 2012; Zeng, 2013). However, recent work has demonstrated
that although this rescaling is appropriate for strongly deleterious
mutations, it is largely inappropriate for weakly deleterious mutations
that may segregate in the population. Figure 4 shows the skew in
estimates of population size obtained using an approximate
Bayesian computation approach when BGS is prevalent for two
populations A and B that have split at time τ= 2Ne generations
(reproduced from Ewing and Jensen, 2016). Furthermore, experimental
work on the shape of the distribution of fitness effects in many
organisms indicates that weakly deleterious mutations represent an
important class (see, for example, Eyre-Walker and Keightley, 2007;
Bank et al., 2014). These mutations may act to skew the SFS toward rare
alleles as they decrease the expected frequency of linked neutral
mutations relative to neutral expectations. As subsequent demographic
inference is based on the shape of this SFS, this effect should be properly
accounted for by directly simulating weakly deleterious mutations rather
than implementing a simple rescaling, as is common practice (Box 2).
Though important analytical progress has been made in this area (see,
for example, McVean and Charlesworth, 2000), simulations remain the
best option for the nonequilibrium demographic models and alternative
coalescents recommended here for inference in virus populations.

The effects of background selection on inference in virus
populations
Efforts to estimate the impact of BGS in nonviral organisms have been
well reported. One of the most notable examples is that of Comeron
(2014), who estimated levels of BGS in Drosophila melanogaster based
on the results of Hudson and Kaplan (1995) and Nordborg et al. (1996)
using a high-definition recombination map, with results indicating
strong effects across the genome. For viruses, similar efforts are in their
infancy (Box 2), with the first attempt at such estimation in a virus
reported recently by Renzette et al. (2016), utilizing the theoretical
predictions of Innan and Stephan (2003). Interestingly, the full
spectrum of recombination frequencies is available in viruses—from
non-recombining (for example, most negative-sense RNA viruses),
to re-assorting (for example, influenza viruses), to rarely recombining
(for example, hepatitis C and West Nile viruses), to frequently
recombining (for example, HIV) — offering a highly promising
framework for comparative analyses investigating the pervasiveness of
BGS effects (Chare et al., 2003; Simon-Loriere and Holmes, 2011).
Furthermore, given the high mutation rates and compact genomes of
many viruses, evolutionary theory suggests effects at least equal to those
seen in Drosophila.
In order to accomplish such inference, improved recombination

maps for virus genomes will be important. With such maps in hand,
and given the amenability of viruses to experimental perturbation, it
may indeed be feasible to understand and account for BGS in models
of virus evolution.

FUTURE DIRECTIONS

Given that skewed offspring distributions and pervasive linked
selection are likely important factors influencing the inference of virus
population parameters, it is important to note that multiple backward
and forward simulation programs have recently been developed that
make the modeling of these processes feasible (Hernandez, 2008;
Messer, 2013; Thornton, 2014; Eldon et al., 2015; Zhu et al., 2015).
This will allow researchers to directly simulate from parameter
ranges relevant for their population of interest, developing
a better intuition for the importance of these processes in shaping
the observed genomic diversity. More concretely, the ability to now

Box 1 Future challenges in MMC models

In order to make multiple-merger coalescent (MMC) models biologi-
cally relevant for viruses, a number of important tasks remain:

1. Describe summary statistics that capture demographic features and
processes when offspring distributions are highly skewed; such
patterns will be required for large-scale inference in
a computationally efficient (for example, approximate Bayesian)
framework.

2. Better understand the behavior of commonly used summary
statistics under such models, as done for FST by Eldon and
Wakeley (2009), for commonly used divergence, site frequency
spectrum, and linkage disequilibrium-based statistics.

3. Determine which MMCs are best suited for different scales of virus
evolution (that is, intrahost, interhost, global); develop novel models
if necessary.

4. Investigate the effects of violations of MMC assumptions (for
example, overlapping generations, number of multiple-merger
events) on inference.

Box 2 Future challenges in identifying the effects of BGS

As background selection (BGS) almost certainly affects inference in
virus populations, accounting for its effects is critical. Future chal-
lenges include:

1. Account for BGS effects on the SFS by directly simulating weakly
deleterious mutations, rather than by rescaling Ne.

2. Improve recombination maps for virus genomes.
3. Develop models combining the effects of nonequilibrium demogra-

phy, positive selection, and BGS, ideally to allow for the joint
estimation of all associated parameters.

4. Extend methods applied to other taxa to virus populations; for
example, establishing a baseline of variation for use as a null
expectation to estimate BGS levels across the genome, as done for
Drosophila.
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simulate in a computationally efficient framework opens the possibility
of directly implementing approximate Bayesian computation inference
approaches under these models. Thus, by drawing mutations from
a biologically realistic distribution of fitness effects and allowing
offspring distributions to appropriately vary, it is now possible
to reimplement common demographic estimation or genome scan
approaches; these modified approaches would be based on more
appropriate null expectations of the shape of the SFS, the extent of
linkage disequilibrium, and the degree of population divergence.
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