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Ancestry-based stratified analysis of Immunochip data
identifies novel associations with celiac disease

Koldo Garcia-Etxebarria1, Amaia Jauregi-Miguel1, Irati Romero-Garmendia1, Leticia Plaza-Izurieta1,
Maria Legarda2, Iñaki Irastorza2 and Jose Ramon Bilbao*,1

To identify candidate genes in celiac disease (CD), we reanalyzed the whole Immunochip CD cohort using a different approach

that clusters individuals based on immunoancestry prior to disease association analysis, rather than by geographical origin. We

detected 636 new associated SNPs (Po7.02×10−07) and identified 5 novel genomic regions, extended 8 others previously

identified and also detected 18 isolated signals defined by one or very few significant SNPs. To test whether we could identify

putative candidate genes, we performed expression analyses of several genes from the top novel region (chr2:134533564–

136169524), from a previously identified locus that is now extended, and a gene marked by an isolated SNP, in duodenum

biopsies of active and treated CD patients, and non-celiac controls. In the largest novel region, CCNT2 and R3HDM1 were

constitutively underexpressed in disease, even after gluten removal. Moreover, several genes within this region were coexpressed

in patients, but not in controls. Other novel genes like KIF21B, REL and SORD also showed altered expression in active disease.

Apart from the identification of novel CD loci, these results suggest that ancestry-based stratified analysis is an efficient strategy

for association studies in complex diseases.
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INTRODUCTION

Celiac disease (CD, MIM: 212750) is a chronic, autoimmune disorder
caused by intolerance to dietary gluten that develops in genetically
susceptible individuals. It is a common disease (around 1% of the
population) that is characterized by the presence of autoantibodies
against tissue transglutaminase and villous atrophy, crypt hyperplasia
and lymphocytic infiltration of the small intestinal mucosa. The major
histocompatibility complex region on 6p21 harbors the major con-
tributors to CD risk: in Caucasians, HLA-DQ2/-DQ8 heterodimers are
present in 490% of CD patients, but also in around 30% of the
general population, so that HLA alone cannot explain all the genetic
component.1 Genome-wide association studies (GWAS) and Immu-
nochip project identified 57 association signals from 39 loci, that
together contribute 5–7% to the genetic risk.1,2 More recently, new
association signals have been detected in the major histocompatibility
complex region, increasing up to 48% proportion of the heritability
that is known so far.3 However, the effect of rare, coding variants
within the Immunochip genes is minimal,4 and thus the remaining
genetic component related to CD should still reside, in part, in
common and known variants.
Despite the progress made, it has proven difficult to reconcile the

results from association analyses across different populations, and to
square SNP association results and expression levels of cis-located
genes in patient tissues.5,6 This limited success could be partly owing
to certain genetic heterogeneity within CD, so that not every associated
SNP is relevant to all CD cases. Random effects modeling has recently
shown that SNPs reported to be associated with the disease
(rs1050976C4T in IRF4, h38 chr6:g.408079C4T and rs11851414:

C4T in ZFP36L1, h38 chr14:g.68792785T4C) would not have
reached the significance threshold if heterogeneity among the different
collections analyzed in the Immunochip had been accounted for.7 In
the original analysis, a covariate was introduced to indicate collection
membership, but not the possible heterogeneity within. We believe
that heterogeneity within each one of the Immunochip cohorts could
be stronger than what has been assumed. In the present work, we
propose taking into consideration the (immuno)genomic background
of each individual (revealed by the Immunochip itself) rather than
geographical origin, as an alternative strategy for disease association
analysis of the Immunochip data.

SUBJECTS AND METHODS
We reanalyzed the 139 553 SNPs from the Immunochip in 12 041 CD patients
and 12 228 non-celiac controls. To stratify individuals according to their genetic
background, we first detected 8537 conserved LD blocks of SNPs using Plink8

and selected one random SNP from each block. These 8537 SNPs were used to
calculate the possible number of ancestries using Admixture9 and the optimal
number was set to 30 because it was the first K with a lower cross-validation
value than the next K (Supplementary Figure S1). We then assigned each
individual to 1 of the 30 immunogroups (named this way because they are
based on the Immunochip SNPs), according to their major ancestry compo-
nent (Supplementary Figure S2). Immunogroup sizes ranged from 19 to 4178
individuals (Supplementary Table S1), and contained celiac and control
individuals from different geographical origins, except for one where all the
samples of Indian origin clustered (Supplementary Figure S3), stressing the
limitations of the Immunochip for the genetic analysis of non-European
populations.10 Finally, we performed an association analysis, correcting for
stratification of the 30 immunogroups, using a Cochran–Mantel–Haenszel test
implemented in Plink.8 We set the significance cutoff to Po7.02× 10− 07, as
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there were 71 208 independent tests (8537 LD blocks plus 62 671 SNPs outside
them), as calculated previously.10 The results of the association study are
available at GWAS Central http://www.gwascentral.org/study/HGVST1839.
The expression of 14 protein-coding genes was measured in intestinal biopsies

from 15 CD patients at the time of diagnosis and after 42 years on gluten-free
diet (GFD), and from 15 non-celiac controls (Supplementary Table S3). CD was
diagnosed according to the ESPGHAN criteria. The study was approved by the
Cruces University Hospital, and Basque Clinical Trials and Ethics Committees
(CEIC- E09/10 and PI2013072), and biopsies of distal duodenum were obtained
by endoscopy after informed consent from all subjects or their parents. Total
RNA was extracted using the NucleoSpin microRNA kit (Macherey-Nagel,
Düren, Germany) and converted to cDNA using the AffinityScript cDNA
Synthesis kit (Agilent Technologies, Santa Clara, CA, USA). Gene expression
was analyzed using Fluidigm Biomark 48.48 dynamic arrays (Fluidigm Corp.,
South San Francisco, CA, USA) and commercially available TaqMan Gene
Expression assays, including RPLPO as an endogenous control of input RNA
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Relative expression was
calculated using the accurate ΔΔCt method and normalized to the average
expression value of the control samples. Difference between conditions was
tested using nonparametric tests, paired in the case of the comparison between
active and treated CD. Gene expression data are available at Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo) with accession number
GSE84729.

RESULTS AND DISCUSSION

There were 4881 SNPs significantly associated with CD
(Supplementary Figure S4), of which 636 had not been detected in
the original analysis (Supplementary Figure S5). Only one previously
associated region was not detected: hg38 chr14:68,792,689–68,805,252
(P= 3.146× 10− 06), where ZFP36L1 had been proposed as the
putative candidate gene, a region which was also ‘missed’ by the
Random Effects study.7 A total of 500 novel SNPs were located in five
previously unidentified genomic regions or close to or within four
previously known loci, extending two of them; and there were also
several isolated signals defined by one or few significant SNPs (Table 1,
Supplementary Table S2). The most strongly associated novel region

(hg38 chr2:134,533,564-136,169,524) contains markers and genes that
have been associated with type 2 diabetes11 (Figure 1a).
In this region, CCNT2 and R3HDM1 showed decreased expression

between CD patients and controls, both at diagnosis and on GFD
(Figure 1b), pointing to a constitutive defect. CCNT2 is a cyclin that is
involved in cell cycle and RNA transcription. R3HDM1 is a poorly
characterized gene that could have a poly(A) RNA-binding function.
The expression of the aspartate-tRNA ligase gene DARS was also
reduced in patients, although it was not significant in active disease. In
addition, the expression of genes within the region was strongly
correlated among CD patients but not in controls (Figure 1c),
suggesting common, disease-dependent regulatory mechanisms in
the region, as has been previously shown.12,13 The lactase gene LCT
showed a pronounced decrease in expression in active CD that
recovered after GFD treatment (Supplementary Figure S6), indicative
of the lactose intolerance observed in active CD. The other novel
regions identified (Table 1) contain genes relevant to the immune
response associated with allergy (IL21R),14 Crohn’s disease15 and
psoriasis16 (IL23R and IL12RB2).
Our analysis also identified novel SNPs in previously known regions,

extending two of them (Supplementary Table S2). In the hg38
chr1:200,901,626–201,054,931 region (Supplementary Figure S7A),
C1orf106 is the proposed candidate gene for CD,2 but there were
several associated SNPs that extend it 3′-wards up to CACNA1S;
including KIF21B, a kinesis related to immune-mediated chronic
diseases like multiple sclerosis,17 whose expression was significantly
increased in active CD (Supplementary Figure S8A).
In the hg38 chr2:60,850,682–61,644,518 region (Supplementary

Figure S7B), PUS10 was the proposed candidate gene,2 but our results
extend the region 5′-wards to REL and up to XPO1 on the 3′side. Both
genes participate in the NFκB pathway, which is known to be altered
in CD.12,18 The expression of REL (Supplementary Figure S8B), a gene
associated with CD,19 was reduced in active CD patients.
There were also seven genes with only one significant SNP

(Supplementary Table S2) sometimes because those regions have a

Table 1 Summary of relevant CD-associated regions identified or extended in this study (excluding the MHC)

Region covered by associated

markersa Previously reported region

Number of

significant

new SNPs

Number of

SNPs in

the region Top SNP (P-value; odds ratio) Genes in the regionb

chr1:66,920,521-67,373,890 — 6 489 rs17497947:G4T; hg38 chr1:

g.66991516G4T (1.5×10−7; 0.88)

SLC35D1, C1orf141, IL12RB2,
IL23R

chr1:200,899,734-201,054,931 chr1:200,912,264 51 267 rs7522462:A4G; hg38 chr1:

g.200912467G4A (7.8× 10−12; 0.86)

C1orf106, KIF21B, CACNA1S

chr2:43,116,667-43,133,808 — 13 64 rs12466022:A4C; hg38 chr2:

g.43131922C4A (2.5×10−8; 0.88)

Intergenic

chr2:60,731,152-61,660,852 chr2:60,959,694-60,977,721 184 997 rs777585:C4T; hg38 chr2:

g.61185424C4T (1.7×10−16; 0.84)

PUS10, LINC01185, REL,
PEX13, KIAA1841, USP34, XPO1

chr2:134,533,564-136,169,524 — 41 134 rs6754311:C4T; hg38 chr2:

g.135950412T4C (7.6×10−21; 1.23)

TMEM163, ACMSD, CCNT2-AS1,
CCNT2, MAP3K19, RAB3GAP1,
ZRANB3, R3HDM1, LCT, MCM6,
DARS

chr15:28,120,472-28,285,036 — 2 3 rs12913832:A4G; hg38 chr15:

g.28120472A4G (1.4×10−15; 1.20)

HERC2

chr16:27,403,018-27,414,415 — 2 4 rs12934152:C4T; hg38 chr16:

g.27403018T4C (8.6×10−08; 1.129)

IL21R

All positions correspond to the hg38 genome assembly.
aNearby SNPs with Po7.02×10−7 in our analysis.
bPreviously identified candidate genes are underlined.
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very low SNP density. From them, we analyzed the expression of
SORD, a gene involved in the interconversion of polyols, that has been
related to type 2 diabetic retinopathy,20 and its expression was
significantly lower in CD individuals (Supplementary Figure S8C).
Finally, a number of novel SNPs were located in intergenic regions,
but functional analyses will be necessary to determine their possible
role in disease susceptibility.
In conclusion, the immunoancestry-based analysis of the Immu-

nochip data has allowed us to discover novel regions associated with
CD that harbor genes that are functionally altered in patient intestinal
mucosa. We believe that this type of stratified analysis is applicable to
other large-scale genotype data from complex disease association
studies and will help to find novel susceptibility genes, and to
conciliate genotype and expression data.
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