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On the reconciliation of missing heritability for
genome-wide association studies

Guo-Bo Chen*

The definition of heritability has been unique and clear, but its estimation and estimates vary across studies. Linear mixed

model (LMM) and Haseman–Elston (HE) regression analyses are commonly used for estimating heritability from genome-wide

association data. This study provides an analytical resolution that can be used to reconcile the differences between LMM and HE

in the estimation of heritability given the genetic architecture, which is responsible for these differences. The genetic

architecture was classified into three forms via thought experiments: (i) coupling genetic architecture that the quantitative trait

loci (QTLs) in the linkage disequilibrium (LD) had a positive covariance; (ii) repulsion genetic architecture that the QTLs in the

LD had a negative covariance; (iii) and neutral genetic architecture that the QTLs in the LD had a covariance with a summation

of zero. The neutral genetic architecture is so far most embraced, whereas the coupling and the repulsion genetic architecture

have not been well investigated. For a quantitative trait under the coupling genetic architecture, HE overestimated the

heritability and LMM underestimated the heritability; under the repulsion genetic architecture, HE underestimated but LMM

overestimated the heritability for a quantitative trait. These two methods gave identical results under the neutral genetic

architecture. A general analytical result for the statistic estimated under HE is given regardless of genetic architecture. In

contrast, the performance of LMM remained elusive, such as further depended on the ratio between the sample size and the

number of markers, but LMM converged to HE with increased sample size.
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INTRODUCTION

Heritability has been defined under the context of the multiple
regression of an infinitesimal sample size.1 Recently, various methods
have been developed to search for missing heritability in genome-wide
association study (GWAS) data, which is typical high-dimensional data
(M44N; ie, the number of markers is larger than the sample size).2

Variance component methods, such as the modified Haseman–Elston
(HE) regression and the linear mixed model (LMM), estimate
heritability as being higher than do single-marker association
studies.3–5 For a quantitative trait such as height, the estimated
heritability was about 0.5 using variance component methods.
Compared with the empirical upper bound of the heritability of
height,6,7 which was thought to be approximately 0.8, the gap of
'missing heritability' has been much narrowed using variance compo-
nent methods. However, 'true heritability' has not yet been attained.
The majority endeavors focused on searching for 'missing heritability'
aim to fill the gaps between state-of-the-art (GWAS data; single-
marker GWAS provides the lower bound, and variance component
GWAS often offers a higher estimate) and old-fashioned designs (such
epidemiological data, providing the upper bound of heritability).
However, epidemiological and family-based studies are often criticized
for potential overestimation of heritability, if not fully justified, due to
the shared environment. Similarly, it is unknown whether the variance
component will overestimate or underestimate the heritability for
GWAS data.
Some researchers showed that LMM provided valid estimate of

heritability,8 whereas under various genetic architecture the estimated
heritability from GWAS data using maximum likelihood framework
may be ambiguous.9 Recently, Golan et al.5 and Chen10 independently

discovered the discrepancy between the estimates from LMM and HE
for the estimates of heritability for case-control studies (Chen also
found a discrepancy in quantitative traits). Of note, a method by
Golan et al.5 is called phenotype correlation–genotype correlation
(PCGC) regression, when without adjustment for covariates PCGC
resembles HE. For convenience, we call both of them HE thereby. For
more detailed discussion and controversies on the estimation of
heritability please refer to Table 1.
Two common issues should be noted. First, the estimation of

heritability is most often treated as a statistical procedure: a parameter
is estimated and assumed to be heritability as granted. Second, the
effect sizes of QTLs are assumed to be from a random distribution.
Estimation of heritability can be influenced by the genetic architecture,
such as the genomic locations of causal variants/QTLs or the ranges of
their effect sizes.11 As heritability is a genetic architecture parameter, it
is reasonable to examine how certain forms of genetic architecture,
implicitly or explicitly, will influence the estimation of variance
component methods. Although little is known about genetic archi-
tecture, the estimation of heritability depends on the genetic
architecture.11

This study closely scrutinized the genetic architecture without
assuming that QTLs were random along the genome, and addressed
this implication in the estimation of heritability. As demonstrated in
this study, the estimation of heritability depended on the genetic
architecture, which can be classified into three forms, underlying a
complex trait. Given the various methods proposed for estimating
heritability in GWAS data, LMM, which represents a method that is
built on maximum likelihood, and HE, which is built on least
squares, were studied in detail; they may differ dramatically in
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their estimations of heritability and reflect the genetic architecture
underlying a complex trait. The following conclusions were made:
(1) an increased estimate of heritability via variance component
methods can be the result of overestimation under the certain
forms of genetic architecture; (2) the difference between the
estimated heritability in LMM and that in HE may reveal the
genetic architecture underlying a complex trait.

MATERIALS AND METHODS

The linear model of a complex trait
For a quantitative trait, under the Hardy–Weinberg equilibrium the additive
genetic variance ðs2AÞ is

s2A ¼ SL
l¼12plqlb

2
l þ SL

l1¼1Sl2al1rl1 ;l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl1ql1 2pl2ql2

p
bl1bl2 ð1Þ

in which p l(≤ 0.5) is the allele frequency for the reference allele at the lth QTL,
ql= 1− pl the frequency for the alternative allele, rl1 ;l2 is the correlation measure
between the lth1 and the lth2 QTLs, and bl1 is the additive effect for the l

th
1 locus.

Equation 1 is the classic definition of additive genetic variance, referring to page
102 in Lynch and Walsh.12 For ease of discussion: (i) the phenotype and the
genotypes are standardized, and consequently, h2 ¼ s2A; (ii) only narrow-sense
heritability is discussed here; and (iii) every QTL is perfectly tagged. Due to the
context, s2A and h2 will be used interchangeably.

The decomposition of genetic architecture
The additive variance component expressed in Equation 1 can be decomposed as

s2A ¼ s2A:w þ s2A:w ¼ SL
l¼1b

2
l þ SL

l1¼1Sl2al1rl1 ;l2bl1bl2 ð2ÞPL
l¼1 b

2
l is the within-locus variance, denoted as s2A:w , and SL

l1¼1Sl2al1

2rl1 ;l2bl1bl2 is the between-locus variance/covariance, denoted as s2A:w .
Analogously, h2 ¼ h2A:w þ h2A:w .
The unit of s2A:w is rl1 ;l2bl1bl2 , a three-element product characterizing a pair

of QTLs. Given the two possible signs for rl1 l2 , bl1 , and bl2 , it generates eight
combinations. Thus, for the ease of discussion of this two-QTL scenario, it is
presumed that the reference alleles of two QTLs have been aligned such that
rl1; l2 > 0 (changing the reference alleles will not change the sign of rl1 ;l2bl1bl2 ,
Supplementary Note I). If rl1 ;l2bl1bl2 > 0, the genetic unit is called the coupling
phase, where QTLs with the same effect sign are clustered together. It is
equivalent to argue whether a detected QTL is actually the aggregation of a pair
of small-effect QTLs with the same sign. If rl1; l2bl1bl2o0, it is called the
repulsion phase, where QTLs with opposite effect signs are clustered together.
It is analogous to argue whether a detected QTL is actually the aggregation of

two QTLs with opposite signs. If rl1 ;l2bl1bl2 ¼ 0, this is the neutral phase,
where QTLs are in linkage equilibrium for the two-QTL scenario.
Thus, the smallest genetic architecture in this definition has at least two

QTLs, and the total between-locus variance s2A:w ¼ SL
l1¼1S

L
l2al1

rl1 ;l2bl1bl2 now
can be written as the aggregation of the repulsion and coupling phases along the
genome, s2A:w ¼ P

repulsion phaseþP
coupling phase. Depending on if

s2A:w is 0, or greater/smaller than 0, the genetic architecture is split into
three forms:
(1) the coupling genetic architecture where s2A:w > 0;
(2) the repulsion genetic architecture where s2A:wo0;
(3) and the neutral genetic architecture where s2A:w ¼ 0.
When the neutral genetic architecture is assumed, the heritability can be

simplified as h2R ¼ h2A:w ¼ SL
l¼1b

2
l . For almost all recent variance component

publications,3–5,8,9,13 a random distribution of effects, leading to a neutral
genetic architecture, along the genome is assumed. Therefore, it is subsequently
demonstrated that the coupling/repulsion genetic architecture helps to reconcile
the estimation of heritability for GWAS data.

The conventional definition of heritability under the context of
multiple regression (h2R)
As argued above, the heritability can be split into two components under the
multiple regression of infinitesimal sample size

h2R ¼ h2A:w þ h2A:w ð3Þ

Before the availability of GWAS data, h2R is often estimated from epidemiolo-
gical data via structural equation or linkage analysis.6,7 Those estimates are
often served as the upper bound in searching 'missing heritability'.

Heritability estimated under LMM (h2LMM and h2LMM:e)
In LMM, the variance component of a trait is modeled as

var yð Þ ¼ As2A þ Is2e ¼ A s2A:w þ s2A:w
� �þ Is2e

Where A is a realized genetic relatedness matrix for samples. Between a pair of
individuals i and j, Aij ¼ 1

MS
M
k

ðxik�2pkÞðxjk�2pkÞ
2pkqk

, in which M is the number of
markers and xk counts the reference alleles for the kth marker. s2A can be
estimated via the restricted maximum likelihood estimator.14,15 It should be
noted, as will be shown below, that when s2a:wa0, LMM will give a biased
estimate. As discussed by de los Campos et al,9 the actual estimated statistic,
which is often taken as heritability, remains a fundamental question for LMM.
h2LMM denotes the heritability estimated by LMM, and h2LMM ¼ s2A

s2Aþs2e
, in which

Table 1 A summary of various arguments regarding searching for missing heritability

Conclusion

Author(s) Methods Quantitative traits Case-control

Yang et al.3 LMM Unbiased NA

HE Unbiased NA

Lee et al.4 LMM NA Unbiased

HE NA NA

Speed et al.13 LMM (weights) Unbiased Underestimated

HE NA NA

Lee and Chow8 LMM Unbiased

NA NA

de los Campos et al.9 LMM (a Bayesian version) Biased NA

HE NA NA

Golan et al.5 LMM Unbiased Underestimate

HE Unbiased Unbiased

Chen.10 LMM Biased (under- or overestimate) Biased (under- or overestimate)

HE Biased (under- or overestimate) Biased (under- or overestimate)

Abbreviations: HE, modified Haseman–Elston regression; LMM, linear mixed model; NA, if not mentioned in their reports.
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s2A þ s2e is considered a proxy for s2y . Alternatively, in this study, an ad hoc
estimate of heritability was also defined as

h2LMM:e ¼ 1� s2e
s2y

ð4Þ

h2LMM and h2LMM:e might differ across genetic architectures. Other ad hoc
estimates include introducing weights to A matrix as proposed by Speed et al.13

Heritability as defined under the HE regression (h2HE)
Using a modified HE (or PCGC as proposed by Golan et al.),5,10 the variance
component can be modeled as Yij ¼ uþ bAij þ εij, in which μ is the mean of
the model, b is the regression coefficient, Yij ¼ ðyi � yjÞ2 is the squared
difference between a pair of individuals, and εij is the residual. A is the realized
genetic relatedness matrix for samples, as used for LMM above. Chen10 and
Golan et al.5 both adopted this framework. Golan et al. derive the regression
coefficient under the assumption that s2A:w ¼ 0; when s2A:wa0, Golan et al. did
not provide a solution. In Chen’s work, the mathematical expectation of the
regression coefficient was derived regardless of whether s2A:w was zero or not.10

After all, Golan et al.5 took the estimate as heritability directly, whereas Chen
found a much broad variation of the estimate and discussed the condition it
was, or not was, equal to heritability (h2R).
Chen’s original work is too long to present here; therefore, only partial

results are shown.10 Without losing generality, the regression coefficient of HE
is as follows (see Equation 1 and Table 1 in Chen’s original work)

b ¼ �2
SM
k¼1S

L
l1¼1S

L
l2¼1rkl1rkl2bl1bl2=M

SM
k1¼1S

M
k2¼1r

2
k1k2

=M2 ð5Þ

The denominator SM
k1¼1S

M
k2¼1r

2
k1k2

=M2 ¼ r2M:M is the averaged linkage
disequilibrium (LD) between the markers. The heritability is estimated as
h2HE ¼ �b

2. When there is only one marker in Equation 5, b ¼ �2r2M:Qh
2
Q, in

which rM:Q is the correlation between the marker and the QTL; h2Q is
the heritability of the QTL. An alternative expression for HE regression
coefficient is

b ¼ �2

1
M SM

k s2A;k:w
h i

þ SM
k s2A;k:w
h in o

r2M:M

8<
:

9=
; ð6Þ

which decomposes the numerator to the within-locus variance, s2A;k:w , and the
between-locus variance, s2A;k:w (Supplementary Note II). Equation 6, which
resembles Equation 2, indicates how s2A;k:w , the covariance, will influence the
estimate. The implications of these two components are not trivial in the
inference of genetic architecture for complex traits.
Scenario 1: When it is the neutral genetic architecture, SM

k s2A;k:w
h i

¼ 0.
Equation 5 can be simplified as

b ¼ �2Lh2A:w ð7Þ

in which L ¼ r2Q:M
r2M:M

. r2Q:M, an unknown parameter, indicates the mean of the

LD between a marker and a QTL. When there is no h2A:w , h
2
HE ¼ b

�2 ¼ Lh2R. L

can be 1 when every marker is a QTL, and h2HE ¼ h2R directly leads to an
unbiased estimate of heritability.
Scenario 2: When either the coupling or repulsion genetic architecture

is present, the between-locus component contributes to the estimate in
Equation 6. SM

k s2A;k:w
h i

can be positive or negative depending on the
underlying genetic architecture. Then there is no simple way to find the
heritability (h2R) for the trait. As demonstrated in the simulation below, a
discrepancy was observed between the respective estimates of LMM and HE.
In addition, weights can be introduced into the HE regression for Aij, as

proposed by Speed et al.13 In general, as long as the weights follow a normal
distribution, the estimated heritability will be nearly identical to that without
weights (Supplementary Note III).

RESULTS

Simulation I: the genetic unit (two QTLs) of the genetic architecture
In order to demonstrate how genetic architecture affects the estima-
tion of heritability, the smallest genetic architecture, which only has
two QTLs, was considered first. We simulated 1000 unrelated
individuals, and two equally frequent QTLs, which had identical
effect sizes, were tagged perfectly on the genome. The heritability was
h2R ¼ 2p1q1b

2
1 þ 2p2q2b

2
2 þ 2r1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p1q12p2q2

p
b1b2 ¼ h2A:w þ h2A:w ¼ 0:5:

The LD between the pair of two consecutive single-nucleotide
polymorphism markers was set to rj;jþ1 ¼ �0:9;�0:8;�0:7;yf
0:7; 0:8; 0:9g. When rj;jþ1 was positive, it led to the coupling genetic
architecture; when rj;jþ1 was negative, it led to the repulsion genetic.
The number of genetic markers M was set to 2, 100, 200, 500, 750,
1000, 2000, and 5000, and the allele frequency was 0.5 for each
marker. These two QTLs were always located on the M

2

� �th
and

M
2 þ 1

� �th
markers. The genetic relatedness matrix A between the

individuals was calculated using all M markers. Heritability was
estimated using LMM and HE, respectively. For HE, based on
Equation 5, it could be predicted that E h2HE

� � ¼ 1þr1;2
1þr21;2ð Þh

2
R

(Appendix). The analytical results for h2LMM was hardly known due
to the likelihood, which maximizes to unpredictable maximization if it
is not specified correctly.
Figure 1 illustrates the influence of the coupling/repulsion genetic

architecture on the estimation of heritability. Under either the
coupling or repulsion genetic architecture, neither HE nor LMM gave
unbiased estimates of heritability; unbiased estimates were only
generated under the neutral genetic architecture (LD= 0), regard-
less of the number of QTLs and the markers. For HE, the influence
of genetic architecture was predictable (Appendix), and the
estimated heritability agreed well with Eðh2HEÞ. HE underestimated
the true heritability, ĥ

2

HEo0:5, under the repulsion genetic
architecture; HE overestimated the true heritability, ĥ

2

HE > 0:5,
under the coupling genetic architecture. The whole pattern was
consistent for h2HE under different M/N ratios. So, the performance
of HE should be predictable for the estimation of heritability, at
least in the simulated scenarios.
For LMM, the findings were more complicated. The bias of the

estimate was not only due to the genetic architecture but also to the
ratio of M/N. As observed, when M/No0.5, ĥ

2

LMM overestimated the
true heritability under the repulsion genetic architecture, and under-
estimated the true heritability under the coupling genetic architecture.
It seemed that ĥ

2

LMM was not influenced by the genetic architecture
when M=N ¼ 0:5. Nevertheless, ĥ

2

LMM changed its response to the
genetic architecture when M/N40.5. However, the number of
markers increased and the performance of h2LMM converged with
Eðh2HEÞ. No known theory can explain the performance of h2LMM. The
heritability estimated by h2LMM:e was more precise than that of both
h2LMM and Eðh2HEÞ when Mo500. When the number of markers was
greater than 500, its performance also converged with h2HE.
In addition, weights were introduced to generate genetic related-

ness,13 but a nearly identical patterns for both ĥ
2

LMM and ĥ
2

HE were
observed with weights as without weights (Supplementary Figure S1).
The scenarios for more QTLs were also considered, but the general

pattern remained the same for HE and LMM as observed for the two-
QTL scenarios (Supplementary Figure S2).

Simulation II: scenarios for case–control data
In previous works by Chen10 and Golan et al,5 it was demonstrated
that HE (or PCGC) was unbiased in estimating heritability for case-
control data. However, that conclusion was incomplete. When the
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base population from which the cases and controls were sampled was
characterized by either the coupling or repulsion genetic architecture,
HE could also be biased. To demonstrate this phenomenon, 1000
cases and 1000 controls were simulated, M= {100, 500, 750, 1000},
and equally frequent biallelic QTLs were simulated. To introduce the
repulsion and coupling genetic architectures, the effects of the
QTLs were sampled from the standard normal distribution, and
furthermore, from the first QTL to the last QTL, the effect assumed a
quantity of F�1ðPÞ. F�1ðPÞ generated a quantity from the normal
distribution, given a p-value of P. Here P ¼ j

M for the jth QTL. The LD
between two consecutive QTLs was rj;jþ1 ¼ �0:9;�0:8;�0:7;yf
0:7; 0:8; 0:9g. The total heritability on the liability scale was con-
strained to 0.5.
As illustrated in Figure 2, after transformation to the liability scale,4

a pattern was observed that was similar for quantitative traits: when
the base population was under the repulsion genetic architecture, ĥ

2

HE

underestimated the heritability, and when it was under the coupling
genetic architecture, ĥ

2

HE overestimated the heritability. When the base
population was under the neutral genetic architecture, ĥ

2

HE produced
an unbiased estimate of the heritability. In contrast, ĥ

2

LMM depended
on both the number of markers and the genetic architecture.

As observed, when M= 100 and K= 0.1, ĥ
2

LMM overestimated the
heritability when it was under the repulsion genetic architecture, and
underestimated the heritability when it was under the coupling genetic
architecture. However, the pattern depended upon the number of
markers: when the number of markers increased to 1000, ĥ

2

LMM always
underestimated the heritability. ĥ

2

LMM:e was not as precise in this
situation as it was for quantitative traits.
Of note, the crossover between ĥ

2

HE and ĥ
2

LMM did not occur at the
point where there was neutral genetic architecture, but slightly under
the repulsion genetic architecture. This was likely because ascertain-
ment would introduce genetic architecture that resembled the
coupling genetic architecture, which is known as Bulmer’s effect in
selection studies.16

Weights were also introduced to the genetic relatedness between
individuals,13 and the results were nearly identical to those without
weighting (Supplementary Figure S3).

Summary: reconciliation of missing heritability in both theory and
practice
Table 2 summarizes the theoretical and simulation results presented.
The genetic architecture can be classified into coupling, repulsion, and
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Figure 1 The influence of the genetic architecture on the estimation of heritability from the Haseman–Elston Regression (HE) and the linear mixed model
(LMM) – 2 QTLs. The x axis indicates the genetic architecture as quantified by h2

A:w . h
2
A:w o0 refers to the repulsion genetic architecture, h2

A:w > 0 refers to
the coupling genetic architecture; and h2

A:w ¼ 0 refers to the neutral genetic architecture. Eðh2
A:w Þ can be derived by Equation 5. The SD of each estimate

was calculated from 100 replications of the simulations.
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neutral genetic architectures. They reflect the physical features of QTLs
along the genome, and heritability is a commonly used statistic to
summarize this. Depending upon the genetic architecture, multiple
regression ðh2RÞ – the standard definition for heritability, LMM
(h2LMM), and HE (h2HE) estimate heritability differently. As heritability
is defined under the context of multiple regression, which leads to h2R,
it may or may not agree with an alternative heritability estimation,
such as h2LMM and h2HE.
Under the neutral genetic architecture, these three statistics may be

closely related. In particular, h2R and h2HE are identical, but via different
statistical mechanisms, as described in Equation 6. However, under
the coupling or repulsion genetic architecture, h2HE may under- or
overestimate h2R. However, it is not easy to predict the performance of
h2LMM; under the neutral genetic architecture, its performance should
resemble HE, and very likely converges with the performance of h2HE

under a wide range of genetic architectures.
In application, the difference between h2HE and h2LMM, if observed for

a trait, may reflect the underlying genetic architecture of that trait. As
demonstrated in Simulation I, given the increasing ratio between M/N,
h2LMM converges with h2HE. When these values are close, it does not
mean that the estimated heritability is correct; however, this may
reflect a condition in which one can presume that the estimated

heritability was likely unbiased. It is unclear whether the convergence
is also the case in real data analyses. Further investigation is required
to examine how often h2LMM converges with h2HE, otherwise many
reported heritability from LMM remains to be ad hoc because of its
unwarranted outcomes.

DISCUSSION

As acknowledging the genetic architecture is important for the
estimation of heritability, three possible forms of genetic architecture
were introduced. Under these three forms, the performance of LMM
and HE could be classified. In previous studies, it was suspected that
LMM may underestimate the heritability in case-control data,5,10 and
this study showed that the bias could even occur for quantitative traits.
Furthermore, under the coupling genetic architecture, HE over-
estimated the heritability; under the repulsion genetic architecture,
HE underestimated heritability. Under the neutral genetic architecture,
HE gave an unbiased estimate. LMM depended on factors other than
the genetic architecture, such as the ratio between M and N. Although
there was uncertainty in h2LMM, an approximation of h2LMM could be
archived under the neutral genetic architecture. However, as the
density of markers can fluctuate the estimation of h2LMM, an increased
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Figure 2 The simulation results for case-control data with varying prevalence (K) and number of QTLs. The x axis quantifies the genetic architecture for the
base population, in which the cases and the controls are sampled. The y axis represents the heritability on the liability scale. The x axis reflects the genetic
architecture: negative/positive LD indicates the repulsion/coupling genetic architecture; LD=0 indicates the neutral genetic architecture. Of note, when
ĥ
2
LMM ¼ ĥ

2
HE, it was under the repulsion genetic architecture.
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estimate of heritability may reflect better tagging of QTLs, which may
be a good thing, or an overestimation, which is not expected.
These three classes of genetic architecture can be naturally translated

into a biological question: how do QTLs emerge on a regional scale
and do those nearby QTLs resemble each other or not? A GWAS hit is
often an aggregation of much smaller signals, such as those observed
in the GIANT height study.17 In the future, it should be possible to
determine whether a region that harbors a GWAS hit actually has
more than one signal. The local clustering of QTLs will lead to the
repulsion or coupling genetic architecture on the whole-genome scale,
but large sample size is required to observe it.
As argued by Bulmer,16 selection could drive the departure of s2A:w

from zero, and consequently lead to the coupling or repulsion genetic
architecture. This raises the question of how likely the repulsion or
coupling genetic architecture in real data. A departure from the neutral
genetic architecture is indicated when a trait’s ĥ

2

LMM may differ from
its ĥ

2

HE. As HE has been under reported in the literature, assessing
which genetic architecture is more likely among the three proposed
genetic architectures is not possible now. As h2HE is easy to implement,
testing for genetic architecture forms in various species should be
possible,5,10,18 particularly among beef cattle or chickens, which are
often under strong directional selection and whose traits are also likely
under strong selection.
This study used very simple scenarios to demonstrate the genetic

architecture and its impact on estimating heritability. Other factors,
such as quality control and population structure, may lead to different
estimates of heritability using LMM and HE. After all, the current

paradigm used to search for missing heritability favors a higher
estimate of heritability; however, one should be careful because a
much higher estimate may be an overestimation due to methodolo-
gical limitations rather than approach the missing heritability.19
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Table 2 Summary for LMM and HE in the estimation of heritability for

genome-wide association data

Genetic

architecturea Estimator

h2
R h2

HE
b h2

LMM
c

Neutral h2
A:w Lh2

A:w h2
LMMEh2

HE ¼ Lh2
A:w

Positive coupling h2
A:w þ h2

A:w
PM

k¼1

PL

l1¼1

PL

l2¼1
rkl1 rkl2 bl1 bl2 =MPM

k1¼1

PM

k2¼1
r2k1k2

=M2

h2
LMMEh2

HE

Negative coupling

Abbreviations: HE, modified Haseman–Elston regresson; LMM, linear mixed model.
The conclusion was largely based on quantitative traits.
aNeutral/positive/negative coupling genetic architecture lead to h2

A:w equal/greater/smaller
than zero.
bThe HE regression always has an analytical result regardless of genetic architecture. Under the

neutral genetic architecture, it is easy to interpret that L ¼ r2Q:m

r2m:m

(Equation 7), a value between 0

and 1, indicates how well causal variant has been tagged. Under the either positive or negative
coupling genetic architecture, the interpretation of the estimate is available in a high-dimension space
(Supplementary Note II).
cLMM does not have close-form result for the estimate. However, when the number of markers
was getting larger, its performance was approaching HE.
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APPENDIX

Numerical example of a two-QTL scenario
Given p1= p2= 0.5 for both QTLs, which had the same effect size,

r1;2A �1; 1½ �, and the real heritability is h2R ¼ 2p1q1b
2
1 þ 2p2q2b

2
2 þ

2r1;2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p1q12p2q2

p
b1b2: For this case, we set b1 ¼ b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2R

1þr1;2ð Þ
r

.

The numerator of the HE regression coefficient was calculated as
S2
k¼1S

2
l1¼1S

2
l2¼1rkl1 rkl2bl1 bl2
2 ¼ 1

2 b1b2½ � 1 r1;2
r1;2 r21;2

� �
b1
b2

� �
þ b1b2½ � r21;2 r1;2

r1;2 1

� �
b1
b2

� �� �
¼ b2 1þ r1;2

� �2
:

The denominator was calculated as r2M:M ¼ S2
k1¼1S

2
k2¼1r

2
k1k2

4 ¼
1
4 1; 1½ � 1 r21;2

r21;2 1

� �
1; 1½ �T ¼ 1

2ð1þ r21;2Þ.

Therefore, b ¼ � 1þr1;2ð Þ
1
2ð1þr21;2Þ

h2R ¼ �2
1þr1;2
1þr21;2

h2R. If taking the heritability

as the negative half of the regression coefficient, consequently,

E h2HE

� � ¼ b
�2 ¼

1þr1;2
1þr21;2ð Þh

2
R, which is represented in Figure 1. It means

that the statistic estimated from HE may or may not be the heritability.
When ρ1,2= 0, indicating neutral genetic architecture, HE can provide
unbiased estimate of heritability.
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