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Abstract

One of the principal mechanisms by which cells differentiate and respond to changes in external 

signals or conditions is by changing the activity levels of transcription factors (TFs). This changes 

the transcription rates of target genes via the cell’s TF network, which ultimately contributes to 

reconfiguring cellular state. Since microarrays provided our first window into global cellular state, 

computational biologists have eagerly attacked the problem of mapping TF networks, a key part of 

the cell’s control circuitry. In retrospect, however, steady-state mRNA abundance levels were a 

poor substitute for TF activity levels and gene transcription rates. Likewise, mapping TF binding 

through chromatin immunoprecipitation proved less predictive of functional regulation and less 

amenable to systematic elucidation of complete networks than originally hoped. This review 

explains these roadblocks and the current, unprecedented blossoming of new experimental 

techniques built on second generation sequencing, which hold out the promise of rapid progress in 

TF network mapping.
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NETWORK MAPPING AS ROBUST AND SCALABLE AS SEQUENCING

The development of genome sequencing technologies is the paradigm for the broader group 

of technologies related to genomics and systems biology. Researchers first set their sights on 

sequencing a viral genome, then a bacterium, yeast, invertebrate models, and human. 

Despite much talk of the “post-genomic” era, the publication of the human genome now 

appears to be a taking-off point in the demand for genome sequencing, starting with other 

yeasts, invertebrates, and mammals for comparative genomics. This was followed by the 

sequencing many individuals to sample population diversity. Now that genome sequencing is 
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a reliable, low-cost procedure that can be easily out-sourced, a logical next step is to focus 

on improving technologies for the elucidation of gene regulation.

In this review, we focus on emerging technologies for mapping transcription factor (TF) 

networks. A cell’s TF network is the collection of all interactions between its sequence-

specific DNA-binding proteins (TFs) and the target genes they bind and regulate – i.e. their 

direct, functional targets. A full transcriptional regulatory network also includes signaling 

pathways that activate and inactivate TFs as well as regulatory processes that act on RNA, 

but for purposes of clarity and focus we define TF networks to include only proteins that act 

in complex with DNA (Box 2). Because some of the genes regulated by TFs also encode 

TFs, these interactions form a complex network containing numerous feedback and feed 

forward loops. A TF network map is a graphical representation, or model, of a cell’s TF 

network. Such a map consists of nodes, which represent genes and the proteins they encode, 

and directed edges, which connect TFs to their direct, functional targets. Edges are labeled 

as either activating (increasing TF activity increases target gene transcription) or repressing 

(increasing TF activity decreases target gene transcription).

Box 2

Semantics and evaluation of correctness

Network maps consist of nodes, representing genes and their protein products, and 

directed edges, linking nodes that represent TFs to nodes that represent their direct 

targets. Such an edge is correct if, and only if, the following three conditions hold:

1. Binding The TF interacts physically with the target gene by forming a 

complex with its promoter or an enhancer that interacts with it.

2. Regulation The TF functionally regulates the target, meaning that 

changes in the activity of the TF can change the transcription rate of the 

target.

3. Direct causation The physical interaction of the TF with the target 

plays a causal role in its functional regulation of the target. This implies 

that eliminating the physical interaction with the target gene would 

change the transcriptional rate of the target. An interaction can pass the 

binding and the regulation criteria while failing the direct causation 

criterion if it regulates the target indirectly, via a pathway that does not 

depend on the physical interaction.

A more detailed network can be created by adding nodes between each TF and each of its 

targets to represent the genomic sequences the TF must bind in order to regulate the 

target [79].

Various types of high-throughput data can be used to check these correctness criteria (see 

Table 1 for available data sets).

1. Binding locations ChIP-chip and ChIP-seq with antibodies against TFs 

(alternatively, transposon calling cards [65, 66]) can be used to 

determine where in a genome each TF binds. Note that biochemical 
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binding events are not necessarily functional or sequence-specific [70, 

71, 82].

2. Binding potential Models of TF binding specificity obtained from in 
vitro experiments complement in vivo location methods like ChIP-seq 

and can provide additional information about whether a physical 

interaction is sequence-specific.

3. Functional regulation Transcript abundance data on cells in which a 

single TF has been perturbed can be used to determine whether the TF 

functionally regulates each target gene. Note that functional regulation 

does not imply binding.

4. Functional binding. If a TF regulates a target by binding to a 

particular site or sites, TF perturbation should affect the target in wild-

type cells, but not in cells where the site(s) have been removed. Such 

experiments have never been done on a genome-wide scale. A more 

feasible, if somewhat less definitive experiment is to synthesize pairs of 

promoters/enhancers, one of which matches a WT genomic sequence 

and the other of which has a predicted TF binding site disabled. 

Thousands of pairs can be synthesized in parallel. If these sequences 

are fused to a minimal promoter driving a reporter gene and the two 

members of a pair express the reporter at different levels, that supports 

the hypothesis that the disabled TF binding site is functional (see [83] 

for a review of related methods).

This review focuses on systematic procedures (“algorithms”) for mapping TF networks, 

which comprise both data generation and data analysis. We are currently in the midst of an 

explosion of experimental methods, each of which generates a new type of data. These new 

data types demand new computational approaches that can effectively analyze and integrate 

them for network mapping. If the field succeeds in developing TF network mapping 

algorithms that are as robust and scalable as genome sequencing, we can expect demand for 

network maps to follow the same trajectory as demand for genome sequences.

APPLICATIONS OF NETWORK MAPS

TF network maps encode basic knowledge about the biochemical functions of molecules, 

much like metabolic pathway maps. As such, they are a key component of the encyclopedia 

of molecular cell biology that enables research and development. This knowledge will 

doubtless have many applications that we cannot foresee, but a few applications have already 

begun to emerge.

Transcriptome engineering

The problem of transcriptome engineering is this: Given the expression profile of cells of a 

particular type growing in a particular context, and given a desired expression profile, find a 

set of TF perturbations (deletions, knockdowns, or over expressions) that will result in the 

cells having the desired expression profile. Recently, transcriptome engineering has been 
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used to change the expression profile of yeast cells growing in xylose toward that of cells 

growing in glucose, with the aim of making them produce large quantities of ethanol, like 

cells growing in glucose do (Michael et. al, unpublished data). Transcriptome engineering 

has also been applied to regenerative medicine, where the goal is to convert mammalian cells 

of one type into cells of another type [1–3]. In all these cases, the algorithms used for 

selecting TF perturbations rely on TF network maps. To date, transcriptome engineering 

algorithms have not made use of quantitative predictions about the expression levels of 

genes after a combination of TF perturbations. There have been a few attempts to make such 

quantitative predictions [4, 5], but this is very much an open research problem.

Quantitative models of TF activity and gene expression

In a quantitative model, the expression level of each target gene is modeled by a function of 

the expression or activity levels of the TFs that regulate it. In this context, activity refers to 

the collective effectiveness of all molecules of a TF in activating or repressing its targets. 

Changes in activity may be caused by changes in the abundance of the TF protein, its 

localization, its association with other proteins, or its post translational modifications. 

Typical genome scale models are trained to predict the steady-state mRNA levels of target 

genes from the expression or activity levels of TFs in the same mRNA sample. This is not 

the same as predicting target gene levels in a new sample in which the expression of the TF 

has been artificially perturbed. These models can predict the effects of a TF perturbation on 

the direct targets of the TF, but not the indirect effects that result from changes in the 

expression of the direct targets.

Some of these methods also infer changes in the activity level of each TF by analyzing 

changes in the levels of its target genes. For example, if a TF functions primarily as a 

repressor and the average expression level of its target genes rises after some treatment, it 

can be inferred that the activity level of the TF has decreased as a result of the treatment [6]. 

In principle, such analyses of TF activity can provide powerful insights into the underlying 

causes of expression differences between samples (Box 1). In practice, such analyses are 

surprisingly difficult to carry out because many TFs have a very small number of high 

confidence targets and the targets that are known often give conflicting signals. In addition, 

multiple TFs often regulate identical or nearly identical sets of target genes, which makes it 

impossible to determine which TF is responsible for changes in the expression of the target 

genes [7, 8]. Nonetheless, understanding why a treatment changes the expression profile of a 

culture in terms of the treatment’s effects on TF activity remains a fundamental problem in 

computational genomics.

Box 1

Universal maps, condition-specific maps, and TF activity

In a condition-specific map, an edge from a TF to a target indicates that the TF is actively 

binding and affecting transcription of the target in the given condition. In a universal 

map, an edge indicates that the TF would bind and regulate the target gene under some 

conditions. Network mapping methods that combine gene expression data from many 

growth conditions (correlation/regression methods) implicitly attempt to construct 
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universal maps. Using other approaches and data sources, it is possible to build 

condition-specific maps.

It is also possible to view condition-specific maps as special cases that can be derived 

from a quantitative universal map by specifying the activity levels of the TFs (Fig. I). TF 

activity levels are not directly observable, but several methods can infer condition-

specific TF activity levels from condition-specific expression data (reviewed in [9]). 

Some methods focus on linking TF binding motifs to the genes that are regulated through 

them. Each motif is linked to each gene in whose promoter it appears and the link is 

quantified in terms of the strength of the match. Using this universal quantitative map, 

parameters representing the “activity level” of each binding motif in a given condition are 

fit to condition-specific expression data. Motifs are considered “active” to the extent that 

TFs are exerting regulatory influence by binding to them. The activity of each TF is 

inferred by the activities of the motifs it binds [11, 75, 76]. A limitation is that each motif 

may be bound by multiple TFs and each TF may bind multiple motifs. Other methods 

start with a universal, qualitative map and attempt to simultaneously learn both TF 

activity levels and the quantitative “influence” strength of each TF on each target [8, 77]. 

Still others start with only expression data and attempt to learn both the TF activities and 

the strength with which each TF influences each of its targets [4, 78], but it is not clear 

whether this is scalable to networks with many TFs. Activity of entire promoters and 

enhancers has also been inferred from adjacent transcription and linked to TFs through 

binding specificity models [79].

TF activity inference provides significant insights into unobserved biological processes, 

including drug target identification (Fig. I), the cell cycle [77], changes that occur during 

dynamic processes such as immune cell differentiation [80, 81], and differences between 

cell types. Comparison of TF activities to TF mRNA levels can also generate hypotheses 

about post-transcriptional regulation and upstream signaling networks.

Fig. I. 
TF activity inference from universal, quantitative influence maps and condition-specific 

expression profiles. Large circles: TFs. Small circles: target genes. Line thickness: 
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strength of regulatory influence. Arrow head: Activation. T head: Repression. Blue: Low 

observed expression level (targets) or inferred activity level (TFs). Yellow: High observed 

expression level (targets) or inferred activity level (TFs).

Quantitative models contain parameters that are initially unknown and must be fit to data 

(Fig. 1). If model fitting is undertaken with no prior knowledge then every TF must be 

considered a possible regulator of every gene, resulting in millions of unknown parameters. 

Obtaining good estimates under these conditions without over-fitting the model to noise in 

the data is extremely challenging. However, if a qualitative TF network map is available, 

only a handful of TFs must be considered as potential regulators of each target, reducing the 

number of unknown parameters by two orders of magnitude (Fig. 1; [7–10]). Many methods 

rely on network maps inferred from binding specificity models of each TF [11, 12] or from 

genome-wide TF location data (described below) [13–15], but maps derived from any source 

can be used.

MAPPING ALGORITHMS: DATA GENERATION AND DATA ANALYSIS

Computational methods are often tested by using pre-existing genomic data sets without 

consideration for the difficulty of generating comparable data for other growth conditions, 

cell types, or species. These studies contribute to the understanding of specific cell types in 

specific growth conditions. On the other hand, a generally applicable algorithm for mapping 

TF networks in any cell type or growth environment must consider the cost, scalability, and 

reliability of methods for generating the required data. For that reason, the following 

sections are organized around data types, the experiments required to generate the data, and 

the computational methods that use the data to map TF networks.

Gene expression profiles

If a TF network is viewed as a control circuit, the transcription rate of each gene is its 

output. By transcription rate, I mean the number of transcripts per minute that enter 

productive elongation. Transcription is an intricate process with many steps and the way in 

which bound TFs affect each step is not fully understood. Given current knowledge, 

however, transcription rate defined in this way is an appropriate abstraction for TF network 

mapping. Transcript abundance has traditionally been used as a proxy for the network’s 

output because it can be measured easily and reproducibly by using spotted arrays, 

oligonucleotide arrays, or RNA-seq. All these methods can produce good data, but the larger 

dynamic range and rapidly falling costs of RNA-seq make it increasingly attractive. Newer 

technologies enable direct measurement of transcription rates (specifically, the density of 

actively transcribing RNA polymerase molecules in the gene body), but are currently more 

labor-intensive [16–18]. Measuring transcription rates is important because that is what TFs 

regulate (Fig. 1); RNA abundances are also affected by RNA degradation rates, which can be 

specifically regulated by other mechanisms.

The two fundamental approaches to TF network mapping from expression data can be 

described as co-expression analysis and differential expression analysis. Both approaches 

require genome-wide mRNA measurements under a range of conditions that differ in the 
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activities of one or more TFs. Changes in TF activity can be experimentally induced by 

changing growth conditions (e.g. nutrients, temperature, toxins, or drugs) or by single-TF 

perturbations (e.g. gene deletion, over expression, or RNAi knockdown). When growth 

conditions are changed, gene expression is most often measured after enough time has 

elapsed that mRNA levels are thought to have returned to steady state. In principle, 

measuring gene expression over a series of short intervals during which they are still 

equilibrating can be useful for learning dynamic models (reviewed in [19]) and for 

disentangling cause and effect, but this is very difficult to do accurately on a genomic scale. 

The disadvantage of time series is that measurements at nearby time points tend to be very 

similar, leading to less information gained per measurement. When growth conditions are 

varied the effects on the activity of each TF are unknown. Single-TF perturbations are 

particularly useful because all changes in expression are caused by the perturbation, either 

directly or indirectly [20, 21]. Perturbation by gene deletion has the additional advantage 

that the activity of the deleted TF is known to be exactly zero.

Co-expression approaches include pairwise statistical association, regression, and machine 

learning. Some co-expression methods attempt to detect pairwise statistical associations 

between the mRNA abundance of each TF (a proxy for TF activity) and the mRNA 

abundance of each gene (a proxy for its transcription rate). Intuitively, either positive or 

negative correlation between the mRNA levels of a TF and another gene might be evidence 

that the TF regulates the gene. Various measures of statistical association have been used, 

including correlation, mutual information, and variants like context likelihood relatedness 

[22–25]. All of these approaches share one great weakness – their logic is that the activity of 

a TF should be correlated with the transcription rates of its target genes, but they rely on the 

mRNA levels of TFs as proxies for their activity levels. It is well known that a TF’s mRNA 

level is not a reliable proxy for its activity. For example, it has been estimated that only 

about 40% of the variation in protein abundance can be explained by mRNA abundance 

[26]. Beyond their protein levels, the activities of many TFs are regulated by binding to other 

proteins (e.g. yeast Gal80p binds TF Gal4p and prevents it from interacting with the 

transcriptional machinery [27]), covalent modification (e.g. yeast Snf1p activates TF Cat8p 

and inactivates TF Mig1p by phosphorylation), relocalization in response to small ligands 

(e.g. nuclear hormone receptors), and other mechanisms too numerous to list.

The same basic approach can also be pursued in the framework of linear regression [28–30] 

(Fig. 1). The expression level of each gene is a dependent variable to be explained as a 

weighted sum of the expression levels of the TFs, which are the independent predictor 

variables. The weights, which can be interpreted as abstract representations of the strength 

with which each TF regulates the target, are initially unknown parameters that are estimated 

by choosing values that minimize the difference between predicted and observed expression 

levels. Since the structure of the network is not known in advance, sparse or regularized 

regression methods such as least angle regression are used to reduce the number of TFs 

predicted to regulate each target. Although the models and fitting procedures are similar to 

those used in quantitative modeling, the goal here is not to make accurate predictions of 

expression levels but to determine which TFs are the best predictors for each target gene 

(Fig. 1). These TFs are taken to be the direct regulators of the target. Various measures of 

predictor quality have been used, including the linear regression coefficient – the amount of 
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predicted change in the target per unit change in the TF [28], the regression coefficient 

weighted by the fraction variance in the target gene that the expression level of the TF can 

explain [10], and the frequency with which the TF is selected to explain the target in 

regressions using randomly sampled subsets of the training data [30]. Co-expression analysis 

has also been pursued in the framework of non-parametric machine-learning algorithms (e.g. 

[31]).

Differential expression (DE) analysis compares the expression profiles of cells in which a 

single TF’s activity has been perturbed to the expression profiles of wild type cells grown in 

the same conditions. Intuitively, a gene whose expression level changes when a TF is 

perturbed is a candidate direct target of the TF. Because all comparisons are between 

expression profiles of cells in the same growth conditions, this approach does not require the 

assumption that TF transcript abundance is a good proxy for activity across growth 

conditions. Since gene expression data are noisy, DE analysis uses replicate assays to 

calculate the strength of evidence for a true change in the mean expression level of each 

gene [32]. Traditionally, these calculations have been used in statistical hypothesis testing to 

determine which genes show significant evidence of DE and which do not. However, most 

of the genes showing statistically significant evidence of DE when a TF is deleted do not 

show evidence of being bound by the TF (reviewed in [33]), so predicting that all DE genes 

are direct targets would be highly inaccurate. A more recent approach is to use the strength 

of evidence for DE as a measure of confidence that the TF directly regulates the target. 

Empirically, the genes that show the strongest evidence of differential expression are highly 

enriched for direct targets, relative to those with weaker (but still significant) evidence for 

differential expression [21]. Thus, the effect of deleting a TF on the expression levels of 

other genes seems to dissipate quickly in the network (also see [34]).

Using the evaluation criteria described in Boxes 2 and 3, co-expression methods have 

produced reasonable results on both simulated data and real data from bacteria [20] and 

archaea [28], but they are much less accurate on data from S. cerevisiae [20, 21], one of the 

simplest eukaryotic organisms. Combining the outputs of multiple co-expression-based 

algorithms, sometimes called a “wisdom of crowds” approach, improves accuracy and 

reduces variance on bacterial data, but it is not clear that the same is true for eukaryotes [20]. 

Methods that score TF-target edges by the strength of evidence that the target is 

differentially expressed when the TF is deleted do much better on yeast [21] and fruit fly 

(Kang et al., unpublished data). This may be because co-expression methods, but not DE 

methods, rely on the mRNA levels of TFs as proxies for their activity levels and the mRNA 

levels of target genes as proxies for their transcription rates (Fig. 1). In the future, it may be 

possible to replace these proxies by protein mass spectrometry for TFs [35, 36] and direct 

transcription rate measurements for targets. Another significant factor hindering the co-

expression approach may be the use of mRNA levels from populations of cells rather than 

individual cells. Averaging artifacts can mask the relationship between mRNA abundance of 

a TF and that of its targets in individual cells. The recent development of low cost, highly 

parallel, single-cell RNA-seq (drop-seq, [37]) may eliminate averaging artifacts, but it is not 

clear that it can be made compatible with protocols for direct measurement of transcription 

rates.
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Box 3

Comparative evaluation of network mapping algorithms

Progress depends on the ability to determine when a new computational algorithm or a 

change to an existing algorithm improves accuracy. For several years, community 

evaluations of algorithms using only gene expression data were held in association with 

an annual meeting called Dialog on Reverse Engineering and Assessment and Methods 

(DREAM) [20]. Some evaluations used simulated expression data generated from known 

network maps (in silico networks [84, 85]), which were used as “gold standards”. 

Typically, mapping software outputs a list of all possible (TF, target) edges, each 

associated with a confidence score (Fig. II). Binary networks can be generated by 

including all edges with scores above some threshold. (Allowing the user to set the 

inclusion threshold makes sense, as some applications require a small number of high 

confidence edges while others benefit from a larger number of predicted edges, even at 

the cost of lower average accuracy.) Binary networks corresponding to many different 

thresholds were evaluated against the gold standard, producing two numbers for each 

threshold: precision (the fraction of all included edges that are present in the gold 

standard) and recall (the fraction of all gold standard edges that are included). For each 

threshold, a point was plotted on a precision-recall scatterplot, producing a precision 

recall curve (PRC; Fig. II). The area under the precision recall curve (AUPRC) was used 

a single figure of merit. DREAM also used data from E. coli and, in the end, from S. 
cerevisiae, together with “bronze standard” networks assembled from literature, TF 

binding specificity, and TF location data.

While DREAM was a great motivator and community builder, in retrospect the in silico 
data were crucially flawed because the activities of TFs were always modeled as being 

proportional to their mRNA levels. A correlation between activity and mRNA was also 

seen in E. coli data, but not in the data from yeast, a eukaryote. On yeast data, all 

algorithms performed poorly and the AUPRC was too small to effectively distinguish 

algorithms [20]. Furthermore, AUPRC is heavily influenced by the accuracy of very low 

confidence edges, whereas most users are interested in the highest confidence edges. 

Finally, absolute precision and recall cannot be accurately estimated because the bronze 

standard contains false positive edges and is missing many true edges. Nonetheless, the 

fraction of edges supported by a particular form of evidence, such as ChIP, is a reliable 

indicator of relative accuracy. We have found it informative to plot the fraction of edges 

supported (y-axis) versus the number of edges included (x-axis). This plot is useful for 

estimating the experimental confirmation rate when testing a given number of predicted 

edges. When plotted this way, the accuracy of different algorithms on yeast expression 

data can be clearly distinguished [21]. Furthermore, different forms of evidence, such as 

ChIP and TF binding potential, can be compared to one another in the same way.
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Fig II. 
Illustration of mapping algorithm output with scores, various inclusion thresholds 

(colored lines), and corresponding points in a precision-recall plot.

Currently, the most accurate approach seems to be combining sparse regression with the 

strength of DE evidence while giving greater weight to the DE evidence [21] (see [38] for a 

similar idea). The regression makes it possible to infer targets for TFs for which DE data are 

not available, albeit less accurately, and to make use of expression profiles from WT strains 

subjected to environmental perturbations. For yeast, this combined method seems to identify 

direct targets with promoter sequences that have binding sites for TFs better than existing 

ChIP data [21].

For the moment, the application of DE methods is limited by the availability of expression 

profiles in which a single TF’s activity has been perturbed. There are several large 

expression data sets in which all non-essential yeast TFs have been deleted, but for animal 

cells the largest data sets include perturbations of fewer than 10% of TFs (Table 1). 

Recently, Cas9/CRISPR technology has made it much easier to disable genes in animal 

genomes [39]. However, the costs and challenges of constructing more than 1,000 individual 

TF deletion lines still pose a barrier.

DNA-binding specificities of TFs and location of functional binding sites

If the DNA binding specificity of a TF is known it can be used to identify sites in the 

genome where the TF has the potential to directly bind DNA. If such a site lies within a 

promoter or enhancer – collectively known as transcriptional regulatory elements (TREs), 

and if the gene or genes regulated by that TRE can be identified, then the TF can be linked 

to the target in a network map. Methods for each of these steps are considered below. 

Methods for TRE identification and target identification are reviewed in more detail in [40].

DNA binding specificity can be determined in vitro, predicted by homology, or predicted 

from the amino sequence of the DNA binding domain (DBD) by using machine learning 

methods. In vitro methods have become relatively robust and scalable, although they are 

significantly more labor intensive than expression profiling. The bacterial one-hybrid assay 

[41] may be the simplest to scale up because it takes place in E. coli and does not require 
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protein handling, but it comes with the caveat of potential interactions with native E. coli 
molecules. Protein binding microarrays [42] and HT-SELEX [43] do require purified TF 

protein but have been successfully scaled up by groups specializing in these techniques [44, 

45]. TFs with sufficiently similar DNA-binding domains bind similar DNA sequences, and 

this has been used to infer specificities for roughly one-third of all known eukaryotic TFs by 

using existing experimental data on fewer than 3,000 TFs [44]. For any given species, the 

fraction of TFs whose motifs can be inferred depends on how similar the species is to a well-

studied model organism, but this fraction can be expected to grow as more diverse sets of 

TFs are studied in vitro. An up-to-date collection of both inferred and experimentally 

determined motifs can be obtained from the Cis-BP database [44] or others reviewed in [46]. 

One large collection of motifs for human TFs was recently generated by selecting known 

and novel motifs that are enriched in TF binding locations defined by ENCODE ChIP-seq 

data (Table 1) [47]. Recently, machine-learning methods have been developed for predicting 

TF specificities from the amino acid sequences of TFs in the C2H2 zinc finger family [48] 

[49] and the homeodomain family [50–52]. Ultimately, a single software package may be 

developed for predicting specificities of families comprising a large fraction of eukaryotic 

TFs. At present, however, a majority of TFs are not associated with high confidence 

sequence specificity models.

The next step in using TF specificities to build network maps is to identify the TREs in a 

genome and scan their sequences for potential to bind each TF. In yeast and other highly 

compact eukaryotic genomes the primary TREs are thought to be promoters that extend just 

a few hundred bases upstream of the transcription start sites TSS. In mammalian genomes, 

which are roughly 100 times larger, promoter regions are thought to be larger and TFs also 

regulate genes by binding in distal enhancer regions. The locations of potential enhancers 

can be narrowed down by using several types of high-throughput data. Enhancers that are 

active in a given condition are generally in open chromatin, which can be identified by 

DNase-seq [53, 54]. A great deal of DNase-seq data is now available through the ENCODE 

and modENCODE projects, but carrying out DNase-seq experiments reliably and at scale 

requires specialized expertise. Newer transposon-based methods such as ATAC-seq [55] and 

THS-seq [56] are reportedly simpler and more robust. However, many of these open regions 

are not thought to have TRE function. An exciting new development is the discovery that 

active enhancers are often sites of bidirectional transcription of unstable RNAs, termed 

eRNAs. From the transcriptional perspective, the primary difference between enhancers and 

promoters is the stability and directionality of the transcripts originating from them [18]. 

eRNAs can be affinity-captured and sequenced by GRO-seq [18, 57] or PRO-seq [16], which 

simultaneously measure the rate of stable RNA transcription from promoters. CAGE-seq, in 

which 5′-capped RNAs are affinity-captured and sequenced, also detects transcription from 

enhancers [58]. Another method, GRO-cap, combines GRO-seq with 5′ cap selection to 

pinpoint the transcription start sites for both enhancers and promoters [18]. However, since 

GRO-cap is a more complex procedure, computational methods have been developed for 

identifying TREs from the simpler PRO-seq protocol [59], the latest versions of which do 

not require isolation of intact nuclei (supplement to [60] and Charles Danko, p.c.). Thus, it 

appears that a large fraction of TREs can be detected by RNA-sequencing using affinity-
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purification protocols which, although more involved than ordinary RNA-seq, are still robust 

and scalable.

Once active TREs have been located for a given cell type and growth condition, each one 

must be linked to both the TFs that bind to it and the genes they regulate by binding to it. 

Even when the DNA-binding specificity of a TF in vitro is known, predicting which TRE 

sites it will bind to can be challenging due to competition among TFs that bind the same 

sites and cooperativity among TFs each of which binds only weakly on its own. A more 

direct way to link a TF to the enhancers through which it acts is to perturb its expression 

(e.g. via gene deletion or RNAi) and carry out genome wide assays for changes in TRE 

activity. A good candidate for this approach is to measure changes in the expression of 

eRNAs from TREs upon TF perturbation, which can potentially be done in the same 

experiment in which changes in target gene expression are assayed.

The final piece needed for building a TF-TRE-target gene network is to identify the gene or 

genes regulated by each TRE. In many analyses, TREs are assigned to the nearest 

transcription start site (TSS) of a stable RNA, but this is probably too simple [61]. Another 

approach is to assign them based on correlation between their DNA accessibility and that of 

nearby TSSs across many cell lines [62]. In a similar approach, enhancers have been 

assigned to all TSSs whose transcript levels correlate with the eRNA transcript level of the 

enhancer, within a fixed distance. This is reported to result in assignment of 40% of 

enhancers to the nearest TSS and 64% to a TSS within 500 Kb [58]. The same study [58] 

reported that assigning enhancers to TSSs based on correlation of DNA accessibility resulted 

in assignments of which only 4.3% were supported by physical contacts between the 

enhancer and the TSS in a particular ChIA-PET experiment {Li, 2012 #4661}. Assignment 

based on correlation of eRNA and stable RNA expression resulted in assignments that of 

which 20.6% were supported by the ChIA-PET data. These correlation approaches are 

feasible for the human genome because of the very large number of cell and tissue types that 

have been subjected to DNAse-seq and CAGE-seq, but it may not be easily reproducible for 

less studied organisms. Rather than using a 500 Kb window, it would be possible to use 

interaction domains defined by contacts between different parts of the genome ([63], 

reviewed in [40]). Another approach that enables assignment of some enhancers is the 

presence in the enhancer of a genomic variant that is associated with variation in the 

expression of a target gene (cis eQTL). However, the identification of such eQTLs requires 

paired genotype and expression data from a large number of individuals with diverse 

genomes [64], so it is not easily scalable to new organisms. The development of truly robust, 

scalable, accurate experiments for assigning enhancers to their regulatory targets is an 

important area for future research.

In vivo binding locations

Complementary to computation of sequence-specific TF binding potential in TREs is 

measurement of in vivo TF binding locations in TREs. Whereas binding potential is 

condition-independent, location assays take place in a particular cell type and growth 

condition (Box 1). In either case, binding does not imply regulatory function, but it does 

contribute valuable evidence of regulatory potential. However, methods for measuring TF 
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binding locations in vivo are less reliable and scalable than methods that measure TF 

specificity in vitro.

There are several methods of determining where in the genome of a cell population a TF is 

bound, including Calling Cards [65, 66] and DAM-ID [67] (reviewed in [68]). By far the 

most widely used method, though, is chromatin immunoprecipitation followed by 

microarray hybridization (ChIP-chip) or sequencing (ChIP-seq). This involves crossing-

linking physically interacting proteins and DNA with formaldehyde, which fixes and kills 

the cells, followed by DNA fragmentation, affinity purification of a particular protein 

together with the DNA it is bound to, and identification of the DNA fragments (by 

hybridization or sequencing). The primary determinant of the quality of ChIP-seq data is 

affinity and specificity of the antibody [69]. ChIP-seq often requires significant optimization 

and may not work or may not work well for certain TFs. Besides yeast, the only organism in 

which > 100 TFs have been studied by ChIP is human (Table 1), but this required a 

monumental effort by the ENCODE consortium and still leaves roughly 90% of human TFs 

unstudied. This effort cannot be easily replicated for other species at this time. Furthermore, 

many of the binding events identified by ChIP are non-specific [70, 71] and many of those 

that are specific are non-functional [72, 73].

Although ChIP-chip and ChIP-seq are not robust, easily scalable methods, the data they 

produce is valuable for network mapping, especially in conjunction with other data sources 

as described in the next section.

Mapping by integration of multiple data types

We have described methods of linking TFs to the target genes they regulate based on gene 

expression profiles, TF binding specificities, and in vivo TF location data. It is tempting to 

think that integrating all available data types will produce the best possible map for a given 

species. That may be true, but it is very difficult to demonstrate empirically when no 

significant data type is held out for validation (Box 2). Moreover, the success of these 

integrative methods depends very much on the mix of data that happen to be available for a 

given species. Many such methods rely heavily on TF ChIP-seq data, which cannot be easily 

obtained for a new species, or even for most TFs in well-studied metazoan species. Thus, 

even when one can show that an integrative mapping method is accurate for one species, it is 

not clear how well it will generalize to others. The best approach may be to construct maps 

by integrating only data from the most robust and scalable methods, such as gene expression 

and TF binding specificity, while validating methods in well-studied organisms by holding 

out the data that are harder to get.

Concluding remarks

For nearly 20 years, the rising tide of data from high-throughput genomics has inspired 

many computational methods for mapping and modeling TF networks. There has been no 

shortage of great ideas. In retrospect, although the data has been copious, it has not been the 

right data. mRNA abundance is simply not a good proxy for either TF activity or 

transcription rate in eukaryotes [74]. This is an exciting moment because rapid advances in 

experimental methods are providing many new or improved data types on a genomic scale 
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(Outstanding Questions box). These include methods for measuring transcription rates 

(rather than transcript abundances) and measuring gene expression in single cells (rather 

than population averages), both of which take the data a step closer to the biochemical 

processes we are trying to model. Improved methods for measuring TF binding specificity 

have recently been scaled up and new methods for assessing DNA accessibility have been 

developed. Nascent RNA sequencing is enabling precise identification of enhancers and 

promoters and helping link enhancers to their target genes. It remains to be seen which of 

these methods will prove most scalable and robust. Figuring out how best to deploy these 

methods and the data they produce in a way that makes network mapping as routine as 

genome sequencing will provide a challenge for years to come.

OUTSTANDING QUESTIONS BOX

• How can we replace mRNA levels of TFs with measurements that more 

closely approximate total TF activity? Quantitative mass spectrometry 

using selected reaction monitoring assays can monitor protein levels of 

hundreds of TFs in a single sample. In principle, it can also quantify 

each posttranslational modification of each TF. How robust and 

scalable will these techniques prove?

• What are the best mathematical methods for accurately estimating total 

TF activity from gene expression profiles? Will TF activity inference 

enable accurate predictions about post-transcriptional regulation that 

can be tested by mass spectrometry or other methods? To what extent 

will this enable us to infer the activity levels of specific TF activity 

modifiers, such as kinases and phosphatases?

• How can we best incorporate data from multiplexed single-cell RNA-

seq (drop-seq) into network mapping algorithms? What are the 

fundamental differences between single-cell expression data and 

population average data in terms of their utility for network mapping?

• How robust, scalable, and precise will transposon-based methods of 

measuring DNA accessibility be? Will the reduced accessibility of 

DNA bound to TFs (TF “footprints”) radically reduce the genomic 

space within which we must search for TF binding potential?

• How robust and scalable will methods for nascent RNA sequencing be? 

How sensitively and specifically will they identify active enhancers and 

link them to the TSSs they regulate?
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GLOSSARY

Transcription rate
The number of transcripts per minute that enter productive elongation. Transcription rate can 

be estimated from the density of actively transcribing RNA polymerase complexes on the 

gene, assuming that productive elongation occurs at an approximately constant rate. The 

number of transcripts completed per minute depends on the transcription rate and the 

fraction of productively elongating polymerase complexes that produce complete transcripts.

Dynamic range
The difference between the lowest and highest measurements that can be returned by a given 

assay. Microarray spots tend to have minimum and maximum fluorescence levels; for RNA-

seq, the dynamic range is determined by the sequencing depth.

Co-expression analysis
Methods in which a TF is predicted to regulate a target based on statistical association 

between their expression levels (e.g. correlation) across many expression profiles in which 

TF activity levels differ.

Differential expression (DE) analysis
Methods in which a TF is predicted to regulate targets based on changes in the expression 

level of the target when the activity of the TF is specifically perturbed (e.g. via single gene 

deletion).

Pairwise statistical association
Measures of statistical association that compare only two variables, such as the expression 

levels of a TF and a potential target gene, without considering alternative explanations such 

as the expression level of another TF.

Regression
The process of fitting a quantitative model to data by finding parameter values that minimize 

the difference between predicted and observed values in a training data set.

Machine learning
A large body of techniques for finding structure in data. Regression can be considered a 

form of machine learning, but the term machine learning is more typically used to describe 

non-parametric methods in which the number of unknowns used to explain the data is not 

limited in advance of the learning procedure.

Sparse regression or regularized regression
Methods of fitting unknown parameters to data in which parameters are chosen to minimize 

both the predictive error and the complexity of the model. Complexity is typically measured 

by the sum of absolute values of the parameters (L1 regression, including least angle 

regression) or the sum of the squares of the parameters (L2 regression).

Transcriptional regulatory element (TRE)
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A segment of genomic DNA within which TFs bind and thereby regulate gene expression. 

TREs include regions traditionally referred to as promoters (TREs near the transcription 

start site of the regulated gene) and enhancers (TREs that regulate genes at a distance).

DNA binding domain (DBD)
The portion of a protein that confers sequence-specific DNA binding capacity. These well-

defined domains fall into large families and can be identified from the full sequence of a 

protein by using hidden Markov models with software like HMMR.
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TRENDS BOX

• TF network maps are now being used for transcriptome engineering 

applications including directed differentiation of stem cells.

• TF network maps are increasingly viewed as dynamic entities in which 

differences between conditions can be understood in terms of inferred, 

quantitative TF activity levels.

• The specificities of many TFs are now being assayed in vitro and the 

specificities of many others inferred from in vitro assays of 

homologous TFs.

• Nascent RNA sequence (GRO-seq or PRO-seq) enables simultaneous, 

direct measurement of mRNA transcription rates from promoters and 

eRNA transcription rates from enhancers.

• Correlations between the activity states of enhancers and nearby 

promoters, as measured by DNA accessibility or transcription rates, are 

now being used to link enhancers to the genes they regulate.
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Fig. 1. 
Schematic relationship between the true TF network in each cell (black), the experiment 

typically used to assay the state of the cell (green), a typical linear regression model (red) in 

which the mRNA abundance of gene j in experiment i (mi
j) is modeled as a weighted sum of 

the mRNA abundances of the TFs that regulate it (mi
1, mi

2, mi
3), and a qualitative network 

map (blue). mRNA abundances serve as proxies for both TF activities and target gene 

transcription rates. When the goal is to learn the network map, the regression considers all 

TFs as possible regulators of each gene. After model fitting, the TFs whose mRNA 

abundances are most predictive of the target gene’s expression level are selected as likely 

regulators in the qualitative map. When the goal is quantitative modeling and a qualitative 

map is known in advance, variable selection can feed into model fitting by limiting the 

potential regulators of each target.
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