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Summary

Primary and metastatic brain tumour patients are treated with surgery, radiation therapy and 

chemotherapy. Such treatments often result in short- and long-term symptoms that impact 

cognitive, emotional and physical function. Therefore, understanding the transition of symptom 

burden over time is important for guiding treatment and follow-up of brain tumour patients with 

symptom-specific interventions. We describe the use of a hidden Markov model with person-

specific random effects for the temporal pattern of symptom burden. Clinically relevant covariates 

are also incorporated in the analysis through the use of generalized linear models.
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1. Introduction

This paper studies the temporal pattern of symptom experience in brain tumour patients 

from a multidimensional perspective. The approach that we adopt in this paper differs from 

the two most commonly used statistical methods for analysing longitudinal data—mixed 

linear or nonlinear models, which are based on likelihood methods, and marginal models, 

which are based on generalized estimating equations (Diggle et al., 2002). Although the 

mixed model and generalized estimating equation approaches are distinct with respect to 

their goals and techniques, they are both based on quantitative approaches that are applicable 

to only a single or a few outcome measures, which are often framed in a regression setting. 

The brain tumour symptom data that we shall analyse involved more than a dozen outcome 

measures, each concerning how a particular symptom was bothersome to the patient. Thus, 
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the data seem amenable to neither generalized estimating equation nor mixed model analysis 

unless the symptom experience is summarized by a weighted sum score, which may lead to 

losing information on synergistic effects.

To incorporate full information from the entire set of outcome measures—in this case, brain 

cancer symptoms—we employ a qualitative analysis in which the symptoms are assumed to 

be explained by symptom states. To model the qualitative symptom state variable we shall 

use the multiple-indicator hidden Markov model (HMM) (Baum and Petrie, 1966; Rabiner, 

1989; MacDonald and Zucchini, 1997) as the ‘workhorse’. Under an HMM, a categorical 

latent variable is incorporated to account for qualitatively distinct patterns of manifestation 

of the entire set of symptoms. To capture the serial correlation of symptoms over time, it is 

assumed that the latent (symptom) state of a patient at time t + 1 depends on his or her latent 

state at time t. Physicians are often trained to think and make decisions in terms of discrete 

outcomes that affect decisions on treatment and follow-up of disease states like brain 

tumours. The results from HMMs, which appear in the form of probability tables for disease 

states and transition probabilities between disease states, may be more consistent with the 

physicians’ mental models and thus may help them to think differently about disease states 

that they encounter.

There are many reported applications of HMM or HMM-type models to biomedical data in 

the literature (Bureau et al., 2003; Jackson and Sharples, 2002; Le Strat and Carrat, 1999; 

Smith and Vounatsou, 2003; Dunson and Herring, 2005; Scott et al., 2005). More recently, 

two- and three-state inhomogeneous HMMs were applied for modelling lesion counts in 

multiple-sclerosis patients (Altman and Petkau, 2005). Lesion count is assumed to have a 

Poisson distribution, with the mean being dependent on the patient’s unobserved state. The 

HMM was also used to characterize the trajectory of side effects in a population of 

schizophrenia patients in a randomized control trial (Scott et al., 2005). In both applications, 

no covariate was included in the model. In this paper, we propose to incorporate two 

important groups of covariates into the model: patient characteristics and symptom 

attributes. This way, the model can account for the fact that different patients received 

different treatments on the one hand, and for symptom cluster (domain) information on the 

other hand. Both types of covariates are incorporated through a logistic regression model for 

the conditional probabilities of the responses.

In addition, the model also incorporates random effects to account for possible clustering 

effects of symptoms within specific disease states. The random-effects approach allows the 

relaxation of the assumption that the conditional probabilities of the responses are the same 

for all patients within the same health or disease state. This assumption is likely to be 

violated in the case of brain tumours because, even after taking into account patient 

characteristics, brain tumour patients form quite a heterogeneous group based on factors that 

include tumour type (primary versus metastatic), location and size of the tumour, among 

others. Consequently, individual differences between patients in overall proneness to 

symptoms are to be expected, i.e. a patient who suffers more than other patients in his or her 

disease state from one symptom is expected to have other more severe symptoms as well 

(Gleason et al., 2007). In this paper, we propose to incorporate random effects to account for 

these individual differences in overall proneness to symptoms that are not captured by 
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observed patient profiles, so that the states of the HMM solely reflect qualitatively distinct 

health or disease states.

The remainder of the paper is organized as follows. In the next section, we describe the 

background and the data. It is followed by a discussion of the statistical methodology. Then 

we report the results of the analysis. The final section provides a brief discussion and 

conclusion.

2. Background

Primary and metastatic brain tumours are a significant cause of morbidity and mortality in 

cancer patients world wide. In the USA alone, approximately 20000 primary and 200000 

metastatic brain tumours are diagnosed annually (Jemal et al., 2005; Shaw, 2000). The most 

common primary brain tumour, glioblastoma multiforme, is treated with surgery, radiation 

therapy and chemotherapy and has a median survival time of 9–15 months. Metastatic brain 

tumours, which are usually treated with surgery and radiation therapy, have a median 

survival time of only 2–7 months (Shaw, 2000). Quality of life (QOL) is affected by 

numerous tumour- and treatment-associated symptoms. In general, these symptoms can be 

classified as physical (e.g. fatigue), emotional (e.g. depression and anxiety) and cognitive 

(e.g. decreased attention and concentration, poor short-term memory and expressive 

language problems). Various pharmacologic interventions can be used to improve the QOL 

of brain tumour patients (Shaw and Robbins, 2006).

Several challenges exist for analysing symptom data that are collected from brain tumour 

patients. First, although symptom experience is often measured by summing the presence or 

absence or the frequency of symptom occurrence, this method for measuring symptom 

severity has been criticized for providing only a one-dimensional view of the symptom 

experience that limits our ability to test for possible synergistic effects on patient outcomes 

(Miaskowski et al., 2004). Second, there is a poor understanding of how brain tumour 

symptoms change over time. Thus, any data analysis method that is only applicable to cross-

sectional data may not be representative. Finally, although symptoms tend to be concurrent 

and to occur in combination, much of the symptom literature is focused only on single 

symptoms (Butler et al., 2007; Dodd et al., 2001). The characteristics of symptom 

measurement for brain tumour patients—multidimensionality, temporal pattern, inclusion of 

covariates and the formation of clusters—motivate this HMM analysis. The proper analysis 

of data that are generated from the evolution of symptoms over time can provide valuable 

information for developing strategies for understanding and managing QOL issues for brain 

tumour patients.

3. Description of the data

100 patients with either a primary brain tumour or brain metastases were treated in two 

different studies, A and B. Study A was a prospective randomized double-blind phase III 

trial for patients undergoing a 2–6-week course of partial or whole brain radiation. They 

were randomly assigned to two groups, one receiving the central nervous system stimulant 

d-methylphenidate (d-MPH), and the other receiving a placebo, during and for 12 weeks 
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following radiation. The primary end point of the study was the effect of d-MPH on fatigue 

(Butler et al., 2007). Study B was an open label phase II study of brain tumour survivors 

who had completed a 2–6-week course of brain radiation at least 6 months before entry to 

the study. These patients were treated with a 6-month course of the acetylcholinesterase 

inhibitor donepezil (Aricept). The primary end point of this study was cognitive function 

(Shaw et al., 2006). The d-MPH, placebo and donepezil groups respectively had 32, 34 and 

34 patients, for a total of 100 patients. Eligibility criteria that were in common between the 

studies were inclusion of adult (age ≥ 18 years) primary and metastatic brain tumour 

patients, Karnofsky performance status score (a physician-scored assessment of QOL 

ranging from 100 (asymptomatic) to 0 (dead)) of 70 and over) and absence of significant 

medical comorbidities such as cardiac or psychiatric diseases. A common battery of self-

reported QOL measures in both studies was the functional assessment of cancer therapy 

(FACT) (Cella et al., 1993) and the brain-tumour-specific sub-scale. Both the FACT and its 

brain subscale have been validated in brain tumour patients (Weitzner et al., 1995). An 

example of an FACT brain subscale item is ‘I am bothered by side effects of treatment’. 

Patients rated each item on a five-point Likert scale (0, not at all, and 4, very much).

Because some items exhibited flooring or ceiling effects and some cells were sparse, we 

dichotomized the responses (0, ‘not at all’, ‘a little bit’ and ‘somewhat’, and 1, ‘quite a bit’ 

and ‘very much’). Although patients in the two studies completed their FACT brain subscale 

assessment at different time points following initiation of their study intervention with 

donepezil, d-MPH or the placebo (study A at the end of radiation, then 4, 8 and 12 weeks 

following onset of d-MPH or placebo, and study B at 6, 12, 24 and 30 weeks following onset 

of donepezil), the symptoms that were experienced by patients in both studies were similar 

(Gleason et al., 2007). Furthermore, we inspected the patterns of change in symptoms over 

time within each study and did not find detectable differences. After weighing issues 

regarding sample size and possible bias from combining studies A and B, we decided to pool 

them and to align their time points, labelling them 1–5. Table 1 shows how the time points 

were aligned for the two studies. Because of patient dropout from brain tumour progression, 

mortality and other factors, not every patient had complete data at all five time points. For 

study A, the d-MPH and placebo groups had 17 complete cases, and for study B, in the 

donepezil group, there were 21. However, for time points at which patients had observations, 

the amount of partially missing data was less than 3%.

We focused on FACT brain subscale items that described symptoms that were directly linked 

to brain tumour. Items that are related to consequences or concerns that arise from the 

disease but are not necessary symptoms were excluded. For example, items such as ‘I am 

(not) able to work’ (a consequence of disease) or ‘I am afraid of having a seizure’ (a concern 

arising from disease) were not included. Items that exhibited a high level of flooring or 

ceiling effect were also excluded. As a result, 13 items from the FACT brain subscale were 

included in the final analysis. A factor analysis unambiguously separates the items into three 

domains (Gleason et al., 2007), which we labelled cognition problems (six items), emotional 

problems (four items) and physical and functional problems (three items). We provided a 

representative item for each domain: ‘I am losing hope in the fight against my illness’ 

(emotional domain), ‘I have difficulty expressing my thoughts’ (cognitive domain) and ‘I 

have a lack of energy’ (physical domain).
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The result of the factor analysis suggested that the symptom domains may be consistent with 

the location of the tumour. For example, a site in the frontal lobe may affect the emotions of 

the patient, and a site in the left temporal lobe may cause problems with memory.

Fig. 1 shows the trend lines for the domain scores. For the three domains that have been 

measured, only symptoms that were related to the emotional domain tend to decline slightly 

over time. Symptom stresses arising from both the cognitive and the physical domains 

remain almost constant on average. However, as we shall see later, the averaged effect may 

be misleading. Patients do move from one type of symptom experience to another over time, 

even though the population effect appears to remain relatively constant.

4. Statistical model and estimation

4.1. Model

The multiple-indicator HMM is defined as follows. Let yitj denote the discrete response of 

patient i at occasion t on item j, i=1,…, n, j =1,…, J, t = 1,…,T. The corresponding random 

variables are denoted by capitals. Specifically, yit = (yit1,…, yitj,…, yitJ)′ denotes the 

response vector of person i at occasion t, and yi =(y′i1,…, y′it, …, y′iT)′ represents the 

complete response pattern of patient i. zit, zit = 1,…,s,…,S, is the categorical latent state of 

patient i at occasion t, and thus zi = (zi1,…,zit,…,ziT)′ is the trajectory of patient i through 

the latent space over time. Assuming a first-order Markov chain for the latent variable, the 

latent state at occasion t + 1 depends on the past latent states through the latent state at 

occasion t only, Pr(zit+1|zi1,…,zit) = Pr(zit+1|zit). The latent Markov model contains three 

basic sets of parameters, as follows:

a. τ = (τrs), the matrix of time homogeneous transition probabilities between 

latent states, Pr(Zit = s|Zit−1 = r) = τrs for t = 2,…,T;

b. α1 = (α11,…, α1S)′, the vector of marginal state probabilities at occasion 

1 (initial state probabilities); marginal state probabilities at occasion t =2,

…,T are given by the recursive formula ;

c. Π=(πjs), the matrix of state conditional response probabilities, πjs=Pr(Yitj 

=1|Zit =s).

Assuming conditional independence between responses, given the latent state, the marginal 

probability of a response pattern yi is then

(1)

where the summation is over ST terms,
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and

The multiple-indicator HMM was extended in two ways in this paper. First, observed patient 

characteristics and symptom attributes were incorporated through a logistic regression model 

for the conditional response probabilities (Vermunt et al., 1999):

(2)

where βs indicates the vector of fixed symptom effects within state s, and γ represents the 

vector of fixed patient effects. The vectors xj and wit contain respectively the values of 

symptom j on the symptom attributes (e.g. symptom domain) and the values of patient i on 

the patient characteristics. The latter are allowed to be varying over time. Note that πit js has 

an index for patients and time as well, since incorporation of (time varying) patient 

characteristics results in patient- (and time-)specific conditional response probabilities.

A second extension consisted of the incorporation of random effects for patients to capture 

the heterogeneity between patients in overall proneness to symptoms that are not accounted 

for by the patient covariates:

(3)

Including patient effects (fixed and/or random) has the conceptual advantage that two 

sources of heterogeneity between patients are distinguished. The first source of 

heterogeneity arises from between-patient variation in overall proneness to symptoms. Part 

of this may be explained by observed patient characteristics ( ), whereas the remaining 

part is taken into account by the random patient effect (θi). A second source of heterogeneity 

is variation in symptom patterns: one group of patients may suffer more from emotional 

distress, whereas another group may show more cognitive deficits. The second source of 

heterogeneity is of a qualitative nature and is modelled through the state-specific effects of 

the symptom attributes ( ). This extension of the multiple-indicator HMM was proposed 

in a psychometric context by Rijmen et al. (2005).

The assumption of missingness at random is generally applied for handling missing values. 

Specifically, missing values do not enter the likelihood equation. The missingness at random 

assumption allows patients with partially recorded data to be included.

4.2. Estimation

The extended HMM model is estimated by using the EM algorithm (Dempster et al., 1977), 

implemented in MATLAB. The E- (expectation) step can be carried out by making use of 
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graphical model theory (Lauritzen, 1995). In brief, we first create a directed acyclic graph 

for the associated statistical model. The directed graph, which consists of nodes (variables) 

and arcs (Hunter et al., 1986), is a pictorial representation of the conditional dependence 

relations of the statistical model. The directed acyclic graph is then transformed into a so-

called junction tree, which is the basis of efficient computational schemes (Jensen et al., 
1990). Fig. 2 provides a schematic illustration of the directed acyclic graph that was used in 

this study.

To construct the directed acyclic graph, and to transform the graph into a junction tree, we 

used the Bayes net toolbox (Murphy, 2001), which can be downloaded from http://

www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html.

The EM algorithm was implemented through a second set of modular MATLAB functions 

that we developed. Detailed technical description of these implementations can be found in 

Rijmen et al. (2008). These functions model the conditional probabilities through a 

multinomial logistic regression model, allowing for the inclusion of covariates (for the 

patient and/or the symptoms, time constant as well as time varying). In the E-step, the 

posterior probabilities of the latent variables are computed through a propagation scheme 

that was defined on the junction tree. In the M-step, parameters are updated by using Fisher 

scoring. For models with normally distributed, continuous latent variables (e.g. individual-

specific θi), the method of Gaussian quadrature was used in integration. The second set of 

MATLAB functions is available as a toolbox and can be obtained from a MATLAB 

exchange server, which is described in Rijmen (2006). We have also built an easy-to-use 

graphical interface and added regression features. The version is described in Ip et al. (2007) 

and the program can be obtained from the contact author.

5. Results

The issue of how many states must be included in the model is an important and actively 

researched area in HMMs (Scott, 2002) and in finite mixture models in general (McLachlan 

and Peel, 2000). The strategy that we used was to examine models with a varying number of 

states within the same level of model complexity and to select the number of states 

according to the Bayesian information criterion BIC (Schwarz, 1978). Then we compared 

models with different levels of complexity (e.g. with and without covariates). Our approach 

is similar to that used in the literature for latent class models (Bandeen-Roche et al., 1997), 

in which the number of latent states was selected on the basis of a model without any 

covariate.

We started with the simple multiple-indicator model without any covariate. Table 2 (top part) 

shows the deviance at the maximum likelihood solution, the number of parameters and BIC 

for the basic model for S = 2,…,5. The model with four classes had the lowest value of BIC. 

From a reviewer’s suggestion, we also used the log-marginal-likelihood (Kass and Raftery, 

1995) for validating the selection. The log-marginal-likelihood involves an integral, which 

can be evaluated through a Laplace approximation, over a prior distribution. Following the 

specification in Scott et al. (2005), we used the Dirichlet distribution with count vector μ, for 

the HMM parameters, such that the value of each element in μ was set to 1.0. This 
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specification represents a uniform prior over the probabilities for a multinomial distribution. 

The log-marginal-likelihood criterion also had the lowest value, at S = 4 (Table 2). The 

evidence based on various model selection criteria tended to converge, and therefore we 

selected S =4 as the basic model.

A second model was obtained by including symptom attributes as covariates for the 

conditional responses of the symptoms. Specifically, the differences between states in the 

logit of the conditional response probabilities were restricted to be the same for all items 

pertaining to the same domain:

(4)

where βj is a parameter to be interpreted as the general proneness of a symptom j, and 

βdomain s is a state-specific effect that is common to all items belonging to the same domain. 

We set βdomain 1 =0 for all three domains such that the model can be identified. In the 

restricted model, the JS conditional item–response probabilities are modelled as a function 

of J +3(S −1) model parameters. Again, models with S = 2,…,5 were estimated. The model 

with four states also had the lowest BIC (Table 2, second part).

In a third model, random patient effects were incorporated to capture patient effects:

(5)

Once again, the model with four states emerged as the model with the best fit (Table 2, third 

part).

The final family of models was obtained by adding treatment as a patient covariate. Because 

treatment only started after the first time point, it was included as a time varying patient 

characteristic in that its effect was not incorporated for the first time point:

(6)

where γtreatment d is the effect of treatment d, d = 1, 2, 3. To identify the model, the effect of 

the placebo treatment was set to 0. The model with four states showed the lowest BIC (Table 

2, bottom part), but its value (3580.2) was slightly higher than that of the random-intercept 

model that did not include the treatment effects (BIC = 3576). Nevertheless, a Wald test 

revealed a significant difference between the d-MPH group and the placebo group (d-MPH 

coefficient, 0.49, SE = 0:21; z = 2:30; p = 0:02). The direction of the effects was such that d-

MPH patients had suffered more from symptoms than the placebo group. No significant 

effect was found between the donezepil group and the placebo group (donepezil coefficient, 

−0.08; SE = 0:26; z = −0.29; p = 0:77). Because it was important, from a clinical 

perspective, to include the treatment effect in the model, the four-state random patient with 
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treatment effect HMM was selected as our final model, despite its slightly inferior BIC-

value.

The patient-specific random effects play an important role in the final selected model. The 

variance of the distribution of the random effects had an estimated value of 1.25. This 

implies that for a specific symptom, if the conditional probability of having the symptom of 

a patient i with a random effect that is equal to the mean (θi = 0) is 0.5, a patient k within the 

same state who has a random effect that is 1 standard deviation above the mean (θi =1.12) 

has a probability of having that symptom of 0.75. This represents a rather substantial change 

in the response probability. Note that the value of θi for patient i remains constant when he 

or she transitions from one state to another.

To assess the normality assumption of θ, the final model was also estimated by using a 

nonparametric approach in which the distribution of the random effects was approximated 

with a discrete distribution for which the mass points and proportions were estimated from 

the data (Aitkin, 1999). The model was estimated with 3–5 categories. The deviances for θ 
were slightly lower than for the model with a normal distribution, with values of 3391, 3387 

and 3387 respectively. However, the BIC-values were higher owing to the introduction of 

additional parameters, with values of 3589, 3595 and 3604. These results suggest that the 

assumption of a normally distributed θ was reasonable.

For the final model, the profiles for the four states are graphically displayed in Fig. 3. We 

noted that the profiles of the three separate groups—d-MPH, donepezil and placebo—are 

similar across the identified states, with the profile for the donepezil group almost identical 

to that of the placebo group. This is somewhat comforting because of our initial concerns 

about combining data across studies to boost sample size. For ease of reading, the profile of 

the donepezil group is not shown in Fig. 3.

In Fig. 3, each bar represents the conditional probability given the latent state. The random 

effects were integrated out when computing the conditional probabilities, and the treatment 

effect was only included in the model from the second time point on. We have tested models 

that include other covariates such as gender, but none of the covariate effects appeared 

significant, and results from these models are not reported here.

Patients in state 3 are characterized by general suffering from almost all symptoms—

cognitive, emotional and physical. Patients in state 4 had only minor symptom experience 

across all three domains. Both state 1 and state 2 are interesting in their divergence among 

the manifestation of symptom groups. State 1 patients were almost unaffected in their 

cognitive functioning but complained about lack of energy and other side effects. They also 

experienced some emotional symptoms. In contrast, state 2 patients are characterized by 

severe cognitive symptoms, but they had only mild emotional symptoms. Among the four 

states, state 2 and state 4 patients form the most emotionally stable group. State 2 seems to 

consist of optimists who maintain a positive view even when they suffer from cognitive 

dysfunction.

The transition probability matrix in Table 3 reveals that state 4 is the most stable state. The 

probability of remaining within state 4 between consecutive time points is 0.86. This is in 
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accordance with the clinical observation that if a patient does not have severe symptoms at 

time t − 1 he or she would have a good chance of staying that way at time t. State 3 patients 

had symptoms across the three domains, but most of them over time tended to improve and 

move out of this state. Indeed, the probability of remaining in state 3 between consecutive 

time points is only 0.18, but the probability of transitioning from state 3 to state 4 is 0.65. 

Being in state 2, the optimistic state, a patient would have the highest chance (0.51) of 

staying within the same state but also a good chance (0.43) of transitioning to the almost-

symptom-free state, which is state 4. State 1 patients are most likely to stay within the same 

state (0.65). Note that the transition probabilities between the two states with the most 

divergent profiles (states 1 and 2) are quite low (for state 1 to 2 and state 2 to 1 respectively 

they are 0.05 and 0.00).

Fig. 4 shows the evolution of states over time. The most salient feature in Fig. 4 is the rapid 

growth of state 4 patients, which indicates that this state may be the state in which most 

patients end up in the long run. The growth of state 4 comes mostly at the expense of state 3, 

which reflects the general trend that there is a reduction of symptoms over time. The benefits 

also seem to come early in the process (time 2). In contrast, the growth of state 1 (high 

physical domain symptoms) indicates that, over time, there is an increasing subgroup of 

patients with severe physical limitations. Hence, most patients start with general symptoms 

in all domains, but over time most of them improve in all domains, except for a subgroup 

that only improves in the cognitive domain and has to face more severe physical limitations.

We also note that the proportion of patients in state 2 remains quite stable. These optimistic 

patients tend to remain rather robust in maintaining their positive emotional status over time 

because they either remain within this state or, if they do transition, they tend to transition to 

state 4, which also has low emotional symptoms. Furthermore, because of the relative small 

size of this group (about 10% of the population), receiving the rather small amounts from the 

other states (see Table 3) is sufficient to balance and maintain the size of this state over time. 

The transition matrix reveals this interesting dynamic regarding state 2 patients: although the 

transition out into state 4 (0.43) is high, the low transition rates (0.02 and 0.06 respectively) 

from two relatively large groups—state 3 and state 4 (respectively 0.52% and 0.34% of the 

population at baseline)—offset the loss.

Fig. 4 also suggests that it is quite likely that different states have reached an equilibrium 

status at around time point 3. The proportions of the states in equilibrium are approximately 

0.10, 0.10, 0.07 and 0.73 respectively for states 1, 2, 3 and 4. The trend lines that are shown 

in the time plots in Fig. 4 show that the extended HMM model effectively captures the drop 

between time points 1 and 2 for symptoms in the emotional domain (see Fig. 1)—a sudden 

increase of state 4, which is characterized by low emotional symptoms, and a sudden 

decrease of state 3, which is characterized by high emotional symptoms.

6. Discussion

The application of the HMM that was described in this paper has helped to provide a concise 

and qualitative summary of the evolution of symptoms due either to disease or to its 

treatment in brain tumour patients. Clinicians are used to working with discrete health states. 
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The qualitative approach in this paper thus has the appeal of providing a meaningful 

interpretation of different psychosocial profiles of symptom stress and the evolution of such 

experience over time. Our findings should also add to the existing literature that concerns 

QOL issues for brain tumour patients. Historically, the literature on symptom management 

and QOL issues for the brain tumour population is quite sparse. Fox and Lantz (1998) noted 

that fewer than 20 references reflecting QOL in the adult brain tumour population were 

published in the period 1978–1998. Although more attention is now given to QOL issues in 

this population, the evolution of the patients’ experience is still not very well understood. 

Some recent work suggests that depressive symptoms are prevalent among brain tumour 

patients, with 38% scoring in the clinically depressed range (Pelletier et al., 2004). Pelletier 

et al. (2004) also reported that in their sample (n=60) depression is the single most important 

predictor of QOL. This is consistent with findings in Mainio et al. (2006), which has a 

sample size of 77. The finding in this work suggests that brain tumour patients as a group 

tend to improve emotionally over time, even though in our study a significant proportion 

remained depressed over the course of treatment. Emotional burdens, we found, also tend to 

correlate with physical limitations (Fig. 3). In contrast, cognitive symptoms tend to affect 

patients differentially—more severely for some but less for others. The implication is that 

different strategies need to be developed for handling patients with different symptom 

profiles.

In terms of analytic methodology, our work in this paper is related to prior work on applying 

HMMs to biomedical data, which has focused on using the data to delineate the structure of 

homogeneous classes for the purpose of classification and prediction (Jackson and Sharples, 

2002; Altman and Petkau, 2005). Other recent work has used hierarchical models and 

structural equation modelling (Daniels and Normand, 2006) for examining profiles and 

trajectories. In contrast with the aforementioned work, the method that is proposed in this 

paper focuses on the interpretation of latent states and the modelling of possible sources of 

heterogeneity that affect the trajectory of the latent states. The method also enables us to 

incorporate covariates at both the item and the person levels. Random effects were also 

incorporated in the model to accommodate individual differences. In terms of model 

structure, our approach is closely related to the concomitant latent class models (Bandeen-

Roche et al., 1997), latent transition analysis (Lanza et al., 2003) and latent trajectory 

analysis (Jones et al., 2001). Each of these approaches aims to serve a different purpose and 

does not necessarily contain all of the functionalities that are featured in the HMM proposed.

Our application of the method to this specific data set has several limitations. First, not 

unlike many studies of brain tumour patients, the sample size may limit the generalizability 

of our findings. The limitation due to the small number of cases that are available at later 

time points in this work is somewhat alleviated by the model assumption that latent state 

profiles and the transition matrix are invariant over time. Information is shared across time 

points for defining the latent structure and the transition mechanism. A second limitation is 

the rather artefactual alignment of time points across the two studies. Fortunately, as Table 1 

suggests, the alignment does have some face validity, and empirical evidence also suggests 

that the distribution of latent states remains relatively stable after time point 2, which means 

that results after this time point are not likely to be affected by potential time matching bias. 

An alternative approach would have been to arrange chronologically the time points of the 
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two studies and to treat values from some time points as missing by design. However, when 

the number of latent classes is more than 3 this approach would have given unstable results 

for our available data set. As a result, we did not implement this approach in the current 

paper. A third limitation of this application is that covariates can only affect either the person 

or the item but not the temporal structure of the Markov model. The transition probabilities 

are not affected; nor are the starting probabilities of the states. Creating a separate transition 

matrix at each time point might create too many parameters. One possibility would be to 

apply a Bayesian approach that allows deviation from a mean transition probability matrix at 

each time point (Scott et al., 2005). Other inhomogeneous Markov models and the 

associated issues have also been considered in the literature (Altman and Petkau, 2005). 

Efforts to incorporate covariates that can affect transition probabilities through the Bayesian 

model are currently on going.
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Fig. 1. 
Trend lines for the emotional, cognition and physical domains by treatment group: ■, d-

MPH arm; , donepezil; , placebo
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Fig. 2. 
Simplified directed acyclic graph for the HMM with random effects (fixed effects covariates 

are not shown)
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Fig. 3. 
Profiles for the four latent states, as identified by the model (E1–E4 are items from the 

emotion domain, C1–C6 are from the cognition domain and P1–P3 are from the physical 

domain):■, d-MPH arm;□, placebo arm
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Fig. 4. 
Evolution of the four states over time

Rijmen et al. Page 18

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rijmen et al. Page 19

Table 1

Time alignment for studies A and B

Time point Value for study A (d-MPH) (weeks)† Value for study B (donepezil) (weeks)‡

t1§ Baseline Baseline

t2   8–12   6

t3 12–16 12

t4 16–20 24

t5 20–24 30

†
Study A participants completed radiation therapy during the first 8 weeks after baseline.

‡
Study B participants completed radiation therapy before baseline and within a short window of about 2–4 weeks.

§
Both study A and study B participants started the drug right after baseline.

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 November 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rijmen et al. Page 20

Ta
b

le
 2

N
um

be
r 

of
 p

ar
am

et
er

s,
 d

ev
ia

nc
e,

 B
IC

 a
nd

 lo
g-

m
ar

gi
na

l-
lik

el
ih

oo
d 

fo
r 

th
e 

es
tim

at
ed

 m
od

el

N
um

be
r 

of
 s

ta
te

s
N

um
be

r 
of

 p
ar

am
et

er
s

D
ev

ia
nc

e
B

IC
L

og
-m

ar
gi

na
l l

ik
el

ih
oo

d

Pl
ai

n 
H

M
M

2
29

36
50

.6
37

84
.2

37
67

.0

3
47

35
02

.8
37

19
.2

36
84

.7

4
67

33
99

.3
37

07
.9

36
69

.1

5
89

33
21

.2
37

31
.0

37
12

.2

D
om

ai
n 

ef
fe

ct
s

2
19

36
76

.5
37

64
.0

—

3
27

35
58

.0
36

82
.4

—

4
37

34
71

.3
36

41
.7

—

5
49

34
33

.0
36

58
.6

—

D
om

ai
n 

ef
fe

ct
s,

 c
on

tin
uo

us
 la

te
nt

 v
ar

ia
bl

e
2

20
35

26
.3

36
18

.4
—

3
28

34
54

.8
35

83
.7

—

4
38

34
01

.0
35

76
.0

—

5
50

33
71

.9
36

02
.1

—

D
om

ai
n 

ef
fe

ct
s,

 c
on

tin
uo

us
 la

te
nt

 v
ar

ia
bl

e,
 tr

ea
tm

en
t e

ff
ec

ts
 a

ft
er

 f
ir

st
 ti

m
e 

po
in

t
2

22
35

11
.7

36
13

.0
—

3
30

34
47

.2
35

85
.3

—

4
40

33
95

.9
35

80
.2

—

5
52

33
62

.0
36

01
.5

—

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 November 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rijmen et al. Page 21

Table 3

Estimated marginal state probabilities and state transition probabilities for the model incorporating domain 

effects, treatment and random patient effects

Probability Results for the following states:

State 1 State 2 State 3 State 4

Initial state probabilities α1 0.03 0.11 0.52 0.34

State probabilities at time point 2, α2 0.11 0.09 0.12 0.68

State probabilities at time point 3, α3 0.11 0.10 0.08 0.72

State probabilities at time point 4, α4 0.10 0.10 0.07 0.73

State probabilities at time point 5, α5 0.10 0.10 0.07 0.73

State transition probabilities τ† 0.65 0.05 0.15 0.16

0.00 0.51 0.06 0.43

0.15 0.02 0.18 0.65

0.03 0.06 0.05 0.86

†
Rows, state at time point t−1; columns, state at time point t.
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