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Abstract

Purpose—To develop a physical, adaptive motion perturbation model to predict tumor motion 

using feedback from dynamic measurement of breathing conditions to compensate for breathing 

irregularities.

Methods and Materials—A novel respiratory motion perturbation (RMP) model was 

developed to predict tumor motion variations caused by breathing irregularities. This model 

contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed 

tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal 

volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-

specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients 

were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 

weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of 

each patient were obtained using deformable image registration. An in-house 4D data processing 

toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion 

was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, 

resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions 

from a published 5-dimensional model were used.

Results—The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the 

average ΔTV ranged from 10 to 248 mm3 (−26% to 61%), and the ΔBP ranged from 0 to 0.2 

(−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 

± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion 

difference was reduced significantly to 1.2 ± 1.8 mm (P = .0018), a 40% improvement, similar to 

the 1.2 ± 1.8 mm (P = .72) predicted with the 5-dimensional model.

Conclusions—A novel physical RMP model was developed with an average accuracy of 1.2 

± 1.8 mm for interfraction motion prediction, similar to that of a published lung motion model. 
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This physical RMP was analytically derived and is able to adapt to breathing irregularities. Further 

improvement of this RMP model is under investigation.

Introduction

Respiratory motion is a major source of uncertainty in external beam radiation therapy for 

lung, liver, and pancreatic cancer (1, 2). Despite the potential advantages of respiratory 

gating and tumor tracking, mobile tumors are often treated using the internal tumor volume 

method to target the trajectory envelope of the clinical tumor volume, with an additional 5- 

to 8-mm margin to cover setup uncertainty in the planning tumor volume. When an organ at 

risk (OAR) is adjacent to or overlapping with the tumor, a part of the OAR will be included 

inside the planning tumor volume and receive the full prescription dose. Therefore, the OAR 

dose tolerance can limit the prescription dose to the tumor, especially in stereotactic body 

radiation therapy (3-5). To spare the OARs, it is essential to improve stereotactic body 

radiation therapy using a high-precision targeting technique with reduced motion margins. 

Tumor tracking promises to minimize motion uncertainty, approaching the precision of the 

motion-free treatment achieved by temporary respiratory suspension (6, 7), beneficial for 

local control of lung tumors (8, 9), liver cancer (10, 11), and pancreatic cancer (12, 13). 

Maximal OAR sparing can enable further dose acceleration to overcome possible 

radioresistant hypoxic cores (14, 15). Currently, one of the obstacles to tumor tracking is the 

lack of a reliable, accurate tumor motion surrogate without implanted markers and/or high-

frame-rate x-ray imaging. Although magnetic resonance (MR)-guided radiation therapy has 

recently been applied in radiation therapy clinics (16, 17), and more applications are 

expected (18, 19), it is associated with a substantial cost increase, additional personnel 

training, and dedicated resources. Furthermore, the MR-guided technology is still under 

intensive development to use its full capabilities (18).

Recently, optical surface imaging (OSI) has been applied to monitor all respiration-induced 

external torso motion (eg, breathing pattern), to provide spirometric measurements (tidal 

volume [TV] and airflow), and to detect body voluntary motion (registration shifts) (20, 21). 

These intrafraction motion parameters can be used to feed an adaptive respiratory motion 

model to accurately predict tumor motion and correct body shift–induced baseline drift and, 

thus, provide an alternative solution for tumor tracking. To date, most clinical motion 

prediction models have been based on the internal–external correlation, which is established 

before treatment but can be degraded during treatment owing to breathing irregularities. To 

confirm the validity of such a model, internal and external surrogates are often combined to 

predict tumor motion with reduced imaging radiation (22-24). However, the correlation 

model often requires model rebuilding multiple times during a treatment to cope with the 

changing breathing behavior.

Lung motion prediction, including tumors and OARs, has been studied using more advanced 

physical approaches, including biomechanical modeling with the finite element method (25, 

26), motion vector modeling with deformable image registration (DIR) (27, 28), hybrid 

modeling with biomechanics and DIR (29, 30), and statistical modeling with respiratory 

parameters (31-33). Although the prediction accuracy might be clinically acceptable, the 
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major limitations included a lack of real-time performance owing to the complex, iterative 

computation and lack of adaptations to changes of breathing behaviors or irregularities.

In the present study, we report a novel physical respiratory motion perturbation (RMP) 

approach to predict tumor motion based on a physical relationship using a perturbation 

method. Because only motion variation caused by irregularity was calculated, the 

computation workload was significantly reduced (34, 35). Additionally, separating the 

superoinferior (SI) from anteroposterior (AP) motions using breathing patterns (36, 37) 

simplified RMP modeling computation. The baseline tumor motion can be obtained from 4-

dimensional computed tomography (4DCT) at simulation, and the motion perturbation can 

be calculated using the respiratory changes in TV and BP fed by the OSI-based technique 

(20, 21) during treatment. To investigate the feasibility, 2 sets of 4DCT images from 10 

patients were used: both provide motion trajectories and corresponding breathing conditions 

(TV and BP, mimicking the OSI measurements). Beginning with motion trajectory from one 

4DCT, we calculated the respiratory condition variations in TV and BP by comparing it with 

the second 4DCT. Next, we predicted the motion trajectory in the second 4DCT and then 

evaluated the prediction accuracy using the second motion trajectory as the ground truth. 

The predicted tumor motion trajectory is the sum of the baseline motion and motion 

perturbation. The prediction in reverse direction was also performed. For each patient, 40 

bifurcation points were identified, tracked, and aligned in both 4DCT scans, leading to 800 

predictions. We also compared the RMP predictions with the noncorrected (NC) motion 

difference and the results from a 5-dimensional (5D) model (31).

Methods and Materials

Patient data and prediction strategy

To predict patient breathing motion from simulation to treatment, 2 sets of 4DCT images for 

each of the 10 patients were acquired, the first at simulation and the second at treatment, 

approximately 2 weeks later, using an 8-slice LightSpeed scanner (GE Healthcare, 

Waukesha, WI) under an institutional review board–approved protocol. One 4DCT scan 

served as the starting data set, and the other was used as the ground truth for testing, and 

vice versa. Forty bifurcation points (5 for each of the anterior left and right lungs, 10 for 

each in the posterior left and right lungs, and 10 others randomly selected) in the bronchial 

tree were identified and tracked using an Insight Toolkits-based (38) in-house automatic 

bronchial bifurcation array (ABBA) segmentation tool. Independently, these points were 

tracked using DIR (39) throughout the breathing cycle and visually verified in both 4DCT 

images. Forty motion trajectories were produced by ABBA and DIR; however, only the DIR 

results were used, because they were less negatively affected by motion artifacts on the 

4DCT scans (40). The native difference of the average displacement with NC was calculated 

for all corresponding trajectories between each 4DCT pair to serve as controls. We then 

applied the RMP model to predict a trajectory from one 4DCT to the other, and vice versa, 

and assess the accuracy using our 4D clinical multimodal image processing toolbox (41). 

The results were compared with an established 5D model (31). In total, 800 trajectory 

predictions were assessed.

Yuan et al. Page 3

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RMP model

Because the AP and SI volume distributions were orthogonal and controlled by the 

intercostal muscles and diaphragm (sources of respiratory motion), respectively, the TV (TV 
= ΔVtorso = ΔVthx + ΔVabd) was attributed to the thoracic (ΔVthx responsible for AP motion) 

and abdominal (ΔVabd responsible for SI motion) motions. The BP (BP = ΔVthx/TV), 

defined as the lung volume expansion change (AP) divided by the TV change, was used to 

quantify the involvement of the thorax (36, 37) and abdomen (1 – BP) in respiration. 

Therefore, the BP is a critical parameter that introduces directional information into the 

scalar spirometric TV data.

Previously, we defined the static BP ( ) between full-exhalation and 

full-inhalation (36) and applied the dynamic BP(t) concept in the expandable piston 

respiration (EPR) model to predict the mean diaphragm motion (37). The dynamic BP was 

defined as a function of phase (t):

(1)

(2)

The BP-related motion was estimated using our EPR model. The perturbation terms ΔyPert 

(AP) and ΔzPert (SI) were functions of the initial tumor position, BP, TV, and phase (t).

(3)

(4)

where the superscript “sim” and “txt” stand for simulation and treatment, respectively. These 

terms describe the motion perturbations (ΔMT) of the RMP model as a function of TV and 

BP: ΔMT(t) = f[TVsim(t), BPsim(t); TVtxt(t), BPtxt(t)], as shown in Eqs. 3 and 4. To avoid BP 

fluctuation, we used the median static BP = Median(ΔVthx/TV) when TV was <25% of the 

maximum tidal volume.  is the tumor AP position. Δy(ΔzPert(t), φ) is the result from 

ΔzPert(t) motion, due to the curved rib cage (angle φ), which forces the SI displacement to 

move along the curved chest wall, resulting in an AP motion. Given a curvature of φ ≤ 15°, 

Δz′ = cosφ · Δz = 0:97 Δz ≈ Δz; thus, the effect is generally negligible in the SI direction. 
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Detailed equation derivation is provided in Appendix E1 (available online at 

www.redjournal.org).

4DCT data extraction and analysis

The patient 4DCT images were reconstructed using amplitude binning (42, 43) and 

processed using an in-house treatment planning system. The bronchial tree was segmented 

using an adaptive threshold algorithm, and the centerline was thinned to 1-voxel skeleton 

(44) to determine the bifurcation point using the in-house ABBA program. DIR was 

performed using full-exhalation CT as the reference, and the displacement vector field was 

used to generate the motion trajectories of 40 bifurcation points per 4DCT image. The point 

correspondence between the 2 4DCTs of the same patient was achieved by a rigid 

registration of first global and then local regions of interest (a 15-mm cubic box containing 

the bifurcation point and associated bronchial tree image). The selected points were visually 

verified (Fig. 1). Therefore, for each patient, 40-paired motion trajectories were generated in 

the middle-inferior lungs, serving as either the starting motion baseline for motion 

predictions or the ground truth for evaluation of the prediction accuracy.

An in-house 4D clinical multimodal image processing toolbox (41) was developed in 

MATLAB to facilitate 4DCT image processing and automated calculations of TV, BP, and 

breathing period. Automatic lung segmentation was performed, and both TV and BP were 

evaluated, based on Eqs. 1 and 2. The RMP model program took these calculated 

parameters, smoothed the motion trajectory baseline, evaluated the motion perturbation 

based on Eqs. 3 and 4, and compared the prediction results with the ground truth. Statistical 

analysis of the results was performed to demonstrate the accuracy of the RMP model 

prediction. The 2-tailed Student t test was used to assess the statistical significance between 

methods.

5D motion model and training

The 5D lung motion model is a function of 5 independent variables, including the initial 

tumor position P⃗(x0, y0, z0), TV, and airflow (TV′) (31). When 2D motions in the AP (y) 

and SI (z) directions were considered, ignoring the negligible lateral motion, the tumor 

motion model relative to its initial position can be expressed as follows:

(5)

where α⃗ (αy, αz) and β⃗ (βy, βz) are the unit vectors for TV and TV′ and can be expressed as 

a function of Y⃗ and Z⃗ (unit vectors). The 4 unknown coefficients were estimated by fitting 

the model as dictated by Eq. 5 to the actual tumor motion trajectory using a linear regression 

procedure based on Euclidean (L2) error norm. The 5D model does not consider the BP 

variable. The TV and TV′ values were extracted from the 4DCT scan and the associated 
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breathing waveforms (36, 37). One 4DCT data set was used for training and the other for 

prediction.

Results

Bifurcation points and motion trajectories

Figure 1 shows an example of visual verification of a bifurcation point in sagittal, coronal, 

and transverse slices, and the distribution of 30 points in 1 patient. The trajectories generated 

by bifurcation point tracking and DIR methods are similar, with a mean vector difference of 

1.2 ± 0.9 mm across all 400 points in all phases and patients. Motion artifacts present in 

4DCT scans can cause the difference between the 2 methods, and the DIR results are less 

susceptible to motion artifacts than those of the bifurcation tracking method.

Patient breathing variation between simulation and treatment

The basic respiratory characterization for the 10 patients, including TV, BP, and breathing 

period (T), are summarized in Table 1. The variations from CT1 to CT2 were −26% to 61% 

in TV, −71% to 333% in BP, and −62% to 90% in T (used for airflow calculation for the 5D 

model). The average range of SI motion was 9.4 ± 4.4 mm, and the AP motion range was far 

less at 2.7 ±1.4 mm (Fig. 2A). Therefore, the present study focused on SI motion prediction. 

Figure 2B illustrates the location-dependent range variation of SI motion for 40 bifurcation 

points tracked in a representative patient between 4DCT1 and 4DCT2.

Prediction from RMP and comparison with 5D model

Figure 3 provides 4 typical prediction results where the full-exhalation phase was set as the 

reference. Figure 4 illustrates the error reductions using the RMP and 5D model predictions 

from NC errors and absolute error distributions. The mean errors and standard deviations for 

RMP prediction results between 4DCT1 and 4DCT2 are summarized in Table 2, and the t 
test showed that the RMP and 5D predictions were similar, significantly better than the NC 

predictions (P = .002). The reduced mean error (from 2.0 to 1.2 mm) and reduced standard 

deviation (from 2.8 to 1.8 mm) represent approximate 40% improvements in both measures 

(Fig. 4 and Table 2). Statistically, the predictions from the RMP and 5D models were similar 

(P = .72).

Discussion

Advantages of the RMP prediction model

Because the RMP model is derived from the physical relationship between lung motion 

variation (ΔMT) and respiratory conditions (TV and BP), it is capable of adapting to the 

changes in breathing conditions and, therefore, promises to be adjustable to breathing 

irregularities during the radiation treatment course. In contrast, most existing respiratory 

models were built based on pre-treatment data of a patient's breathing behavior, and the 

model contains fixed coefficients to the breathing behavior associated with the training data 

set (22, 45), although dynamic update can be performed. Therefore, changes in a patient's 

breathing behavior during treatment sessions may require model rebuilding (46). The RMP 

approach circumvents the fundamental limitation to the robustness of a correlation-based 
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model. The 5D model, although it performs best with fresh-data training, provides a 

reasonable prediction using the 4DCT data and time-dependent internal parameters (TV and 

TV′) for updates, although the long-term prediction from the 5D model might not be as 

accurate as the short-term prediction (31). The RMP prediction result is similar to the 5D 

result and can be improved by introducing an airflow term.

The RMP prediction model requires updates from online respiratory measurements using an 

OSI-based technique (20, 21), which provides dynamic TV, TV′, and BP in various BPs, 

including free breathing, belly breathing, and chest breathing. Because the OSI-based 

technique captures all external torso motion induced by respiration (at 10 Hz), it has promise 

to be the most comprehensive external respiratory surrogate. In fact, no local external 

surrogates measure the BP values. By combining the RMP model and OSI measurements, 

this physics-based approach is potentially of great use in tumor motion prediction during 

radiation treatment. The RMP model is concise, efficient, and suitable for real-time 

prediction (the computation involved requires approximately 1 ms).

Compared with the 5D prediction model (31), the current RMP model predicts lung motion 

with similar accuracy (Fig. 4 and Table 2). Both RMP and 5D models reduced both mean 

and standard deviation of errors by about 40% compared with uncorrected data. As Eqs. 4 

and 5 show, both models account for TV variation (−26% to 61%; Table 1), although the 5D 

model uses TV′ (T variation −61% to 90%) and the RMP model uses the BP variation 

(−71% to 333%). However, the RMP model can be further improved with introduction of the 

airflow and lung elasticity parameters.

The present study focused on motion prediction from different days, because the 2 sets of 

4DCT scans were acquired 2 weeks apart. It was thus quite challenging and the prediction 

errors were greater than those with intra-imaging session prediction (0.75 ± 0.25 mm) as 

previously reported (31). Motion trajectories and breathing conditions extracted from 4DCT 

can only represent an average within the period of the 4DCT scan. Therefore, the results 

shown in the present study reflect day-to-day breathing irregularities, not intrasession 

irregularities.

Definition of BP and assumptions for RMP model

The quantitative definition of the BP concept (Eq. 1) is important to predict internal organ 

motion (36, 37). Physiologically, the BP usually refers to chest and belly breathing, which 

originate from 2 different driving forces: the intercostal muscles and the diaphragm. 

Therefore, the definition of BP quantifies the thoracic contribution volumetrically, and 1 – 

BP is a measure of the abdominal involvement. Physically, the definition of BP separates 2 

orthogonal motions by quantifying the volumetric AP and SI motions. Thus, the BP 

definition is critical to RMP model prediction, because it reflects a major physiologic 

variation of the respiratory process.

The RMP model is established based on several assumptions that closely approximate the 

complex patient anatomy and respiratory motion, including the independence of SI and AP 

motions and the nondelayed motion response to TV and BP changes. The assumption of SI 

and AP motion independence was tested for its validity in predicting the mean diaphragm 
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motion using an EPR model in a previous study (37). In that study, 11 of 14 patients 

followed this assumption and 3 patients had a conical rib cage at the diaphragm level. 

However, the volumetric difference was merely about 3%, which can be corrected in z-

motion prediction by measuring the area within the rib cage across the motion range of the 

diaphragm. Owing to curvature of the rib cage, AP motion can depend on SI motion, and an 

anatomic correction term is needed (Eq. 3).

The implicit assumption of a negligible time difference between external motion and internal 

motion for the present model might only work for about 80% to 90% of patient populations, 

because 10% to 20% of patients were found to have phase shifts (≥0.5 second, or 1 phase) 

(47). Introducing the airflow (TV′) parameter into the RMP model is currently under 

investigation to account for the elasticity of the lung tissue, the primary cause of the phase 

shift.

Future directions

It is encouraging that the current RMP model, solely based on the physical relationship, is 

able to match the results of the established 5D model. The spirometric variation range is 

−26% to 61% in TV, −71% to 333% in BP, and −62% to 90% in breathing period (T, used 

for estimating airflow). With these large breathing variations, only 1 patient prediction will 

not reduce the NC error (already small); however, for the rest (9 of 10), the RMP reduces the 

NC error substantially or mildly (Fig. 4). In practice, if a base tumor motion trajectory is 

acquired at setup, smaller variations occurring the same day would be expected, and the 

prediction should be greatly improved (31) (Fig. 3D).

In addition, the inconsistency in the 2 sets of ground truths obtained from DIR and the 

bifurcation calculation mostly results from the binning artifacts, 2-mm slice thickness, and 

the intrinsic uncertainties of these 2 methods. Furthermore, using 2 sets of 4DCT images to 

evaluate the validity of the RMP model might only assess the long-term breathing variations, 

because the 2 4DCT scans were acquired in a 2-week interval. We suggest a further 

evaluation of the RMP model using dynamic magnetic resonance imaging (MRI) to serve 

the ground truth (48-50).

Because our RMP model is derived from a physical relationship (volume conservation and 

distribution) and other physical relationships are present that were not used, including 

biomechanics. Major efforts will be made to expand the RMP model to account for lung 

tissue elasticity. Although the complexity and heterogeneity of lung tissue portend 

challenges to deriving a physical model, we have demonstrated a promising physical 

approach to circumvent the breathing irregularity problem. We are currently pursuing 

improvements by accounting for additional physical parameters and further validation of the 

RMP model using dynamic MRI scanning. With further validation using time-resolved 

4DMRI scanning, the potential of this RMP modeling approach with real-time volumetric 

updates would be to establish reliable and accurate respiratory gating or even tumor tracking 

in the presence of inter- and intrafraction breathing irregularities.
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In summary, a novel RMP model has been developed and validated using 2 4DCT images. In 

practice, the RMP model can be integrated with the OSI-based technique to provide dynamic 

motion prediction in the presence of breathing irregularities. The clinical implication of this 

development is potentially to improve the accuracy and reliability of respiratory gating or 

even motion tracking in radiation therapy delivery, and therefore a tumor margin reduction 

can be expected in treatment planning.

Conclusions

The present study has demonstrated the feasibility of a novel physics-based, RMP model 

that can predict tumor motion between 2 different 4DCT scanning data sets. The strength of 

the RMP model is that it can adapt to breathing irregularities and overcome the limitation of 

correlation-based models when a patient's breathing behavior alters substantially. 

Investigations are ongoing for further improvement and validation of the RMP model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

A novel physics law—based respiratory motion perturbation model was developed to 

predict tumor motion during breathing irregularities. This adaptive model predicts motion 

variations using tidal volume (TV) and breathing pattern (BP) updates and was validated 

using 2 4-dimensional computed tomography (4DCT) sets from 10 patients. Forty motion 

trajectories of 40 bifurcation points per 4DCT were tracked, and 800 4DCT1 ↔ 4DCT2 

predictions were evaluated with known ground truth. An average accuracy (1.2 ± 1.8 

mm) was achieved, similar to an established model and significantly improved from raw 

motion differences.
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Fig. 1. 
Visual determination and verification of a bifurcation point in axial (A), coronal (B), and 

sagittal (C) views. The coordinates of the point were tracked through 10 breathing phases. 

The distribution of 30 bifurcation points (black dots) was detected using the automatic 

bronchial bifurcation array program (D-F). The points are displayed on a heat map of the 

lung mean motion (red) and the standard deviation (green) in centimeters for each pixel in 

the projection image. Note that the points are selected based on the image features and 

spread in the middle-inferior lungs (right [R] and left [L]).
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Fig. 2. 
(A) Plot of motion range distribution in the superoinferior (SI) and anteroposterior (AP) 

directions of 800 trajectories (40 points for each patient, 2 sets of 4-dimensional computed 

tomography [4DCT] scans per patient; 10 patients). The mean motion was 9.4 ± 4.4 mm in 

the SI direction and 2.7 ± 1.4 mm in the AP direction. (B) Illustration of motion range 

variation between 4DCT1 and 4DCT2 in patient 5 for 40 points in the SI direction. 

Significant motion variation is shown across points at different anatomic locations.
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Fig. 3. 
Illustration of respiratory motion perturbation (diamonds) and 5-dimensional (triangles) 

predictions from the initial motion (dot line) in 1 4-dimensional computed tomography 

(4DCT) scan to the actual motion (solid line) in another 4DCT scan in 4 patients (A-D).
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Fig. 4. 
Consistent error reduction (A, mean; B, standard deviation; and C, absolute error 

distribution) using respiratory motion perturbation (RMP) model predictions compared with 

noncorrected (NC) motions and 5-dimensional (5D) model predictions. (C) Distribution of 

absolute superoinferior (SI) errors of the RMP and 5D model predictions based on 800 

trajectories (8000 points). The similarity between the RMP and 5D model predictions are 

shown, with improvement seen from the NC predictions between 4-dimensional computed 

tomography scan 1 and 2.
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