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Abstract

Background—Nonalcoholic fatty liver disease (NAFLD) is a complex, multifactorial disease 

affected by diet, lifestyle and genetics. Proinflammatory cytokines like IL-1β and IL-6 have been 

shown to be elevated in nonalcoholic steatohepatitis (NASH). The goal of this study was to 

investigate the relationship between IL1B and IL6 gene polymorphisms and histologic features of 

NAFLD in the NASH CRN cohort.

Methods—604 adult (≥18 yrs) non-Hispanic Caucasians with biopsy-proven NAFLD were 

genotyped for the following SNPs: IL1B, rs16944, rs1143634; IL6, rs1800795, rs10499563. 

Logistic regression was used to examine the relationship between genotype and a definitive 

diagnosis and advanced histological features of NASH after controlling for the following variables 

selected a priori: age, sex, diabetes, obesity and HOMA-IR level.

Results—The IL6 rs10499563 C allele was independently associated with the presence of 

definitive NASH, and increased ballooning and Mallory bodies. The IL1B rs1143634 TT genotype 

was associated with advanced fibrosis and increased Mallory bodies. The IL6 rs1800795 C allele 

was associated with increased risk for severe steatosis, >66% but also decreased risk for advanced 

fibrosis and lobular inflammation and Mallory body formation.
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Conclusions—These results suggest that common variants in the IL6 and IL1B genes may 

increase susceptibility for NASH and confer a higher risk of hepatic parenchymal damage 

including increased ballooning, increased Mallory bodies, and bridging fibrosis or cirrhosis. In 

contrast, the IL6 rs1800795 C allele may confer a higher risk for steatosis, but less parenchymal 

damage. Our findings support the development of therapeutics aimed at IL-1β and IL-6 

suppression.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in most 

Westernized countries; as many as 30% of US adults may be affected [1,2]. Nonalcoholic 

steatohepatitis (NASH), the more severe form of the disease, is associated with hepatic 

inflammation, hepatocellular ballooning and may include varying degrees of fibrosis [3]. 

The majority of NASH patients are obese and comorbidities such as type 2 diabetes mellitus 

and metabolic syndrome are also common in these patients [3]. While lifestyle modifications 

towards a healthy diet and habitual exercise are advisable in NAFLD, as weight loss of at 

least 3–5% improves steatosis and weight loss of up to 10% may improve 

necroinflammation, and are still considered the most effective treatment, however, the 

combined impact of genetics, diet and lifestyle in the etiology of NASH is poorly 

understood [4–7]. An increasing number of potential NASH susceptibility loci have been 

identified in recent years including patatin-like phospholipase 3 gene (PNLPA3) [8–12], 

neurocan (NCAN) [11,12], protein phosphatase 1 regulatory subunit 3B (PPP1R3B) [12], 

apolipoprotein C3 (APOC3) [12], peroxisome proliferator-activated receptors α or γ (PPAR 
α or γ) [13], glucokinase regulator (GCKR) [12, 14], among others. Additionally, several 

recent genome-wide association study (GWAS) identified single nucleotide polymorphisms 

(SNPs) associated with component NAFLD traits including elevated liver enzymes [10,15–

18], steatosis based on computed tomography (CT) [19] or magnetic resonance imaging 

(MRI) [10] or specific biopsy-proven histologic features including steatosis, lobular 

inflammation and fibrosis [18–20]. Together these studies underscore the multifactorial 

etiology of this disease, however most previous genetic studies have focused on SNPs 

associated with lipid metabolism. There is a paucity of studies investigating the association 

of inflammatory gene variants and the phenotype of NAFLD.

Levels of the proinflammatory cytokines IL6 and IL1β are elevated in NASH and obesity 

[21]. These cytokines are important mediators of the inflammatory response, and are both 

expressed in Kupffer cells, macrophages, hepatocytes and adipocytes. In addition to their 

role in inflammation, these cytokines may also contribute to NASH pathogenesis by 

promoting insulin resistance and altering lipid metabolism [21–24]. IL6 is involved in 

initiation of systemic inflammation and acute phase reactions in response to infection or 

other chronic inflammatory states such as obesity [24]. IL1β is thought to be more important 

in innate immune system modulation and localized tissue injury repair and is involved in a 

variety of cellular activities, including cell proliferation, differentiation, and apoptosis [24]. 
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IL1β is mainly produced by cleavage of pro-IL1β by caspase-1 upon activation of the 

inflammasome, the large multi-protein complex which is assembled and activated in 

response to recognition of a variety of ligands including endogenous danger-associated 

molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) [25]. 

DAMPs, include dsDNA and CpG-rich DNA fragments and mitochondrial components like 

cytochrome c and adenosine triphosphate (ATP) which are generated during tissue injury. 

PAMPs are generally microbial in nature such as gram negative bacterial cell wall 

components, including lipopolysaccharides, and various bacterial toxins.

Several common SNPs in the IL1B and IL6 genes were previously associated with increased 

cytokine levels; IL6-174G>C (rs1800795) [26, 27], IL6 -6331T>C (rs10499563) [28], IL1B 
+3954 C>T (rs1143634) [29, 30]. Moreover, IL1B and IL6 SNPs have also been associated 

with various NASH-related phenotypes including the presence of diabetes mellitus or insulin 

resistance; IL6 rs1800795 [31], IL1B -511C>T (rs16944) [32] and adiposity; IL6 rs1800795 

[33], IL1B rs1143634 [34]. The IL6 rs1800795 C allele and the IL1B rs16944 T allele were 

recently associated with the presence of NASH in smaller Italian [35] and Japanese cohorts 

[36], respectively. Therefore, the aim of this study was to investigate if these 4 common 

SNPs in the IL1B and IL6 genes, previously reported to be associated with one or more 

NASH-related traits, could be associated with susceptibility for NASH or histologic features 

of advanced disease.

Patients and methods

Patients

A total of 604 adult (>18 yrs) non-Hispanic Caucasian subjects enrolled into the NASH 

CRN Database and Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic 

Patients With Nonalcoholic Steatohepatitis (PIVENS) therapeutic trial with biopsy-proven 

NAFLD and available DNA who had previously consented to genetic analysis were 

evaluated in the present study. Demographic information such as age, sex, ethnicity, race and 

medical history to identify co-morbidities and medication usage were obtained from patient 

interviews during screening. A physical exam including body weight and height measures 

was performed. Laboratory data including hepatic, hematologic, metabolic and lipid 

measurements were collected within 6 months of the liver biopsy. Alcohol consumption was 

determined from the AUDIT-C questionnaires completed during study visits closest to the 

time of biopsy [37]. The prevalence of metabolic syndrome in this cohort was defined using 

the World Health Organization criteria. All subjects gave written informed consent and the 

study was approved by the institutional review board at each local site of the NASH CRN.

Plasma cytokine levels

Serum tumor necrosis factor α (TNFα), IL6 and IL1β levels, determined using Luminex 

technology and the human cytokine LINCOplex kit (Catalog number HCYTO-60K, 

Millipore, St. Charles, MO), were available in 63%, 57% and 39% of non-Hispanic 

Caucasian subjects, respectively. The lower limit of detection for these assays was 0.66, 0.79 

and 0.19 pg/mL, respectively. Serum soluble IL1 receptor 1 (sIL1R) and soluble IL6 

receptor (sIL6R) were each available in 63% of non-Hispanic Caucasian subjects (Catalog 
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number HSCR-32K, Millipore, St. Charles, MO). The lower limit of detection for these 

assays was 7.9 and 5.8 pg/mL, respectively.

Genotyping

Genotyping for the following SNPs in the IL1B and IL6 genes was performed using a real 

time PCR genotyping assay: IL1B rs16944, IL1B rs1143634, IL6 rs1800795, IL6 
rs10499563. Briefly, 10 ng of genomic DNA was plated into 384 well plates using a 

Beckman Coulter Biomek FX robotic workstation. Each 5 μl reaction containing DNA, 

fluorescently labeled MGB-Eclipse probes and primers (Epoch Bioscience, Bothell WA) and 

0.3 u JumpStart Taq (Sigma-Aldrich, St. Louis, MO, USA) were analyzed on an ABI 

HT7900. Primer/probe sequences are shown in Supplemental Table 1. The percentage of 

missing genotypes for each SNP was ≤ 0.38%. Details of the SNPs including type, location, 

genetic model used and rare allele frequency (RAF; also known as minor allele frequency) 

were analyzed in the current work and compared to publicly available allele frequency 

estimates.

Histological assessment

All liver biopsies were centrally read by the NASH CRN Pathology Committee according to 

the NASH CRN scoring system [38]. H&E and Masson’s Trichrome stains were evaluated 

for each case. Steatosis, lobular inflammation, fibrosis, ballooning, portal inflammation, 

acidophil bodies, megamitochondria, and Mallory-Denk bodies were assessed by a semi-

quantitative method according to the NASH CRN scoring system [38]. The presence of 

definite steatohepatitis was determined by consensus upon central review by the study 

pathologists based on pattern recognition. We observed that of the patients that had definite 

NASH, all had >5% steatosis and lobular inflammation and all but two biopsies had 

ballooning (99.6%). Many ballooning hepatocytes were defined as more than just few or rare 

ballooning hepatocytes, as defined by the NASH-CRN pathology committee and the 

biopsies were reviewed at the consensus of the NASH-CRN pathology committee. Likewise, 

many Mallory-Denk bodies were defined as more than just few or rare Mallory-Denk 

bodies, as defined by the NASH-CRN pathology committee and the biopsies were reviewed 

at the consensus of the NASH-CRN pathology committee.

Statistical analysis

Demographic, clinical, and laboratory characteristics and NASH diagnosis were recorded as 

number and percentage for categorical data and means and standard deviation for continuous 

data. Categorical data was analyzed using Fisher’s exact test or Chi square, where 

appropriate. Continuous variables including laboratory measures were not normally 

distributed and were analyzed using the Wilcoxon rank sum test. For association of SNPs 

with parameters of histological scores or a definitive diagnosis of NASH, three genetic 

models were assessed for each SNP: additive, dominant, and recessive. The model which 

best fit the data by maximizing the significance of the test statistic for the majority of 

variables was chosen. Multivariable forward stepwise logistic regression (cutoff p<0.20) was 

used to investigate the independent association of each genetic model to individual advanced 

histological features including: grade 3 steatosis, stage 3–4 fibrosis, grade 2–3 lobular 

inflammation and increased ballooning, portal inflammation, acidophil bodies, Mallory 
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bodies and megamitochondria. The effect of each SNP was simultaneously modeled and 

adjusted for potential confounding variables defined a priori including sex, age, obesity, 

HOMA-IR level and presence of type 2 diabetes mellitus. Because our candidate genotyping 

approach targeted just 4 SNPs, each with a high posterior probability of being true positives 

given a prior association to NAFLD or a related phenotype, a two-sided p-value <0.05 was 

used as the threshold for statistical significance. All analyses were performed using STATA 

(version 12, College Station, TX, USA).

Results

Candidate IL6 and IL1B genotyping

Details of the SNPs including type, location, genetic model used and rare allele frequency 

(RAF; also known as minor allele frequency) from this study compared to publically 

available allele frequency estimates (i.e., HapMap-CEU) are shown in Table 1. IL1B 
rs1143634 was a coding region synonymous substitution located in exon 5, while the other 3 

SNPs were present in the promoter regions of each gene. The RAFs of the 4 candidate SNPs 

in white non-Hispanics were similar to the HapMap-CEU. Each of the SNP allele 

frequencies were in Hardy–Weinberg equilibrium.

Patient characteristics

Characteristics of the study cohort are shown in Table 2. The mean age of the study cohort 

was 46.2 ± 12 yrs. The majority of subjects were female (65%) and obese (75%). The mean 

BMI was 34.7 ± 6.4. Nearly a third of the cohort had a history of diabetes mellitus (28%) 

and 72% met the criteria for metabolic syndrome. Two thirds of the cohort had a definitive 

diagnosis of NASH and one third had advanced (stage 3 or 4) fibrosis. Thirteen and five 

percent of the cohort was homozygous for the IL1B rs16944 and IL1B rs1143634 rare T 

alleles, respectively (Table 3). The combined homozygous and heterozygous genotypes for 

the dominant model IL6 SNPs, IL6 rs1800795 and IL6 rs10499563, comprised 58% and 

38% of the cohort, respectively. Subjects homozygous for the IL1B rs16944 T allele were 

significantly younger than the other combined IL1B rs16944 genotypes (Table 3; p=0.025). 

Type 2 diabetes was significantly more prevalent among subjects with the IL1B rs1143634 

TT genotype, compared to the combined CC and CT IL1B rs1143634 genotypes (Table 3; 

p=0.016). There were no significant differences in sex, waist/hip ratio, BMI, or presence of 

the metabolic syndrome between these genotypes.

Relationship between IL1B and IL6 genotype, serum cytokine levels and laboratory data

As shown in Table 3, non-Hispanic Caucasian subjects with an IL6 rs1800795 dominant C 

allele had significantly lower serum aminotransferase and fasting insulin levels (p<0.03). 

Except for gamma-glutamyl transferase (GGT) levels among different IL6 rs10499563 

genotypes and percent of glycated hemoglobin (HbA1c) among the different IL6 rs1143634 

genotypes, no other differences in laboratory tests between alleles at any loci were found. 

Plasma levels of IL1β, IL6, TNFα and sIL1R and sIL6R were available in 39–64% of non-

Hispanic Caucasian subjects. There were no significant differences in cytokine plasma levels 

between alleles at any loci among non-Hispanic Caucasians, although several significant 

differences did exist in non-Caucasians (data not shown).
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Increased risk of nonalcoholic steatohepatitis among carriers of IL6 rs10499563 C allele

Non-Hispanic Caucasian carriers of the IL6 rs10499563 C allele were more likely to have a 

definitive diagnosis of NASH compared to IL6 rs10499563 TT genotype patients (65% vs 

57%; Chi2 4.1, p=0.042). Moreover, the IL6 rs10499563 C allele independently predicted 

the presence of definitive NASH, after adjusting for sex, age, presence of diabetes, obesity 

and HOMA-IR (Homeostatic model assessment-Insulin resistance) levels (Fig. 1A, OR 1.43, 

95% CI 1.01–2.04, p=0.046). No other genotype was associated with the presence of 

definitive NASH in this cohort, however increased HOMA-IR level and presence of diabetes 

were each associated with a definitive diagnosis of NASH (p<0.05).

IL1B and IL6 SNPs are associated with advanced histological disease features

To investigate if each IL1B and IL6 polymorphism could independently confer susceptibility 

to histologically severe disease such as advanced fibrosis among non-Hispanic Caucasians, 

we performed stepwise multivariable logistic regression analysis, which included each SNP 

model and the following possible contributory variables chosen apriori: sex, age, presence of 

diabetes, obesity and HOMA-IR levels (Fig. 1). The combined IL6 rs1800795 GC and CC 

genotypes showed an increased risk for severe steatosis, >66% (Fig 1B; OR 1.65, 95%CI 

1.08, 2.51, p=0.020), but was associated with less advanced lobular inflammation (Fig 1C; 

OR 0.71, 95%CI 0.51, 0.99, p=0.048), fewer Mallory bodies (Fig 1E; OR 0.60, 95%CI 0.41, 

0.89, p=0.012) and less advanced fibrosis (Fig 1F; OR 0.61, 95%CI 0.41, 0.90, p=0.014). 

Interestingly, while older age was associated with parenchymal damage, younger age was 

associated with the highest grade of steatosis (>66%), which could reflect an earlier 

temporal pattern of onset for steatosis, relative to hepatic damage which may require 

addition insults (i.e., inflammation, oxidative stress, mitochondrial dysfunction etc). The 

presence of diabetes as well as older age were both associated with the three histological 

features indicative of parenchymal damage; increased ballooning hepatocytes, increased 

Mallory bodies and advanced fibrosis (stage 3 or 4) (Fig. 1D–F). The IL6 rs10499563 C 

allele and female sex were both strongly associated with increased ballooning and Mallory 

bodies (Fig. 1D–E). The IL1B rs1143634 TT genotype had the highest increased risk of 

Mallory bodies (Fig. 1E; OR 3.52, 95%CI 1.76–7.07, p<0.001) and advanced fibrosis (Fig. 

1F; OR 3.58, 95%CI 1.63, 7.87, p=0.001) of all variables and thus may have the greatest 

impact on disease progression of all the genotypes in this study. No loci were associated 

with increased portal inflammation, acidophil bodies or megamitochondria.

Discussion

Proinflammatory cytokines are important mediators of NASH pathology, however, there is a 

paucity of studies investigating the potential of cytokine gene polymorphisms as NASH 

susceptibility loci, despite the fact that several common SNPs in these genes have been 

associated with several NASH-related traits such as diabetes, insulin resistance and 

adiposity. Though the pathogenesis of disease progression from NAFLD to NASH has not 

been fully understood, immunological mechanism like defects in innate immunity, adaptive 

immunity, Toll-like receptor (TLR) signaling and gut-liver axis have been increasingly 

recognized to be involved in the disease progression [39]. It is thought that proinflammatory 

mediators such as lipopolysaccharides (LPS) or interferon-γ (INFγ) induce M1 polarized 
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macrophages and inhibit M2 polarized macrophages leading to increased secretion of 

proinflammatory cytokines like TNFα, IL-6, IL-23, IL-17 and decreased secretion of anti-

inflammatory cytokines like IL-10, resulting in progression of NAFLD to NASH [40,41]. 

Activation of Kupffer cells and neutrophils in acute or chronic liver diseases, lipotoxicity 

and increased reactive oxygen species (ROS) production may induce production of 

proinflammatory cytokines leading to activation of T cells, oxidative damage to hepatic cells 

and hepatocyte apoptosis resulting in progression to NASH [42]. It has been shown that 

reduction of NK cell activity, which has an anti-fibrotic effect in the liver, may increase 

susceptibility to liver cirrhosis in obese subjects postulating the role of NK cells in 

development of NASH [42]. Few studies on experimental models have shown that TNFα, 

IL-6, IL-1α, IL-1β, IL-17 could have a role in the progression to NASH. TNFα produced by 

kupffer cells may suppress apoptotic activity of hepatic stellate cells by inducing expression 

of tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA resulting in liver fibrosis [43]. In 

hepatocytes, it may induce sterol regulatory element binding protein-1c (SREBP-1c) and 

inhibitors of cytokine signaling (SOCS), aggravate ROS formation resulting in liver 

steatosis, decreased insulin signaling and hepatic cell death. IL-18 could be involved in the 

development of insulin resistance-mediated NAFLD [43]. It has been recently demonstrated 

that NLRP3 inflammasome, an intracellular multiprotein complex involved in the production 

of mature IL-1β could play a crucial role in progression of NASH [44].

Association between IL-1β and type 2 diabetes in obese patients has been demonstrated in 

various studies [32, 34]. Recently, it has been recognized that type 2 diabetes is due to 

chronic inflammation resulting in dysfunction of pancreatic islets. IL-1β production and 

secretion has been reported from pancreatic islets; insulin producing β-cells are specifically 

prone to IL-1β-induced destruction and loss of function [45]. There is increased evidence 

that an imbalance between IL-1β and its naturally occurring antagonist, IL-1R antagonist 

results in recruitment and activation of IL-1β producing macrophages. This is known to 

mediate pancreatic islet inflammation and lead to insulitis. A randomized study done on 34 

patients by de Mello et al. demonstrated a decrease in IL-1 receptor antagonist expression 

after weight loss and a strong correlation between the decrease in IL-1β expression and the 

increase in insulin sensitivity suggesting their contribution to insulin resistance in obesity 

and metabolic syndrome [46]. In addition, use of anakinra, a recombinant IL-1 receptor 

antagonist, in individuals with type 2 diabetes resulted in decreased blood glucose 

concentrations, improved pancreatic β cell function, and reduced circulating inflammatory 

markers [47]. We also found that type 2 diabetes was significantly more prevalent among 

subjects with the IL1B rs1143634 TT genotype, indicating an association between this IL-1β 
SNP and type 2 diabetes.

In the present study we found that SNPs in the IL6 and IL1B genes were independently 

associated with advanced histologic features of NASH among non-Hispanic Caucasians, 

including advanced fibrosis, severe steatosis, and increased ballooning and Mallory bodies. 

Specifically, this is the first report we are aware of that the IL1B rs1143634 and IL6 
rs10499563 are associated with features of hepatic parenchymal damage in liver disease of 

any kind. In addition, the IL6 rs10499563 C allele was associated with a definitive diagnosis 

of NASH. Although 3 of the 4 SNPs we investigated were located in promoter regions, we 

did not find significant differences in plasma cytokine levels between different genotypes. 
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We speculate that in this patient population, potential polymorphic effects may be too subtle 

to reflect significant differences in plasma cytokine levels, given the high obesity rate and 

chronic inflammatory nature of NAFLD which would increase baseline cytokine values 

regardless of genotype. We also cannot rule out the effects of localized differences in tissue 

cytokine levels within the liver.

In this study the IL6 rs10499563 C allele was associated with definitive NASH and 

increased ballooning and Mallory bodies. In contrast to the other three SNPs we 

investigated, which have been widely studied in numerous diseases, very little is known 

regarding the potential pathologic effects of IL6 rs10499563. Smith et al., have shown that 

the IL6 rs10499563 CC genotype had lower levels of IL6 compared to the TT genotype, in 

response to an acute inflammatory state in separate cohorts, 6–24 hours after coronary 

bypass grafting surgery or intensive periodontal treatment [28]. This effect was mediated by 

increased binding of the transcription factor Oct-1 to the T allele [28]. However, it is unclear 

how the acutely increased IL6 levels (levels were normalized by 7 days) seen in the TT 

genotype in the study by Smith et al., would relate to the chronic inflammatory state of the 

obese NAFLD patients our study. Additional studies are warranted to define a potential 

mechanism for the association of the IL6 rs10499563 C allele and worsened NAFLD 

disease, and to determine if this SNP may play a pathogenic role in other diseases.

Homozygosity for the IL1B rs1143634 T allele was independently associated with advanced 

fibrosis and Mallory bodies after controlling for sex, age, obesity, HOMA-IR and presence 

of diabetes in multivariable analyses. Subjects with this risk genotype were more likely to be 

diabetic. Although IL1β is known to contribute to the pathogenesis of diabetes through 

glucose and fatty acid stimulated IL1β production in pancreatic β-cells, resulting in 

subsequent β-cell loss 17, a review of the literature failed to identify an association between 

this polymorphism and Type 2 diabetes. Neither were there any reports for this SNP 

identifying the type of tissue damage we observed (i.e., advanced fibrosis, ballooning, and 

increased Mallory bodies) in other liver diseases. In one large Swedish study of 18–20 year 

old men the IL1B rs1143634 rare allele T was associated with decreased fat mass based on 

dual-energy x-ray absorptiometry (DEXA) scan measurements [34]. In another study of 

coronary heart disease patients from Western Australia the IL1B rs1143634 TT genotype 

was associated with increased waist circumference [48]. We did not observe an association 

to any measure of adiposity in our study for this polymorphism.

The effect of IL6 rs1800795 in the etiology of numerous diseases, including several liver 

diseases, has been widely studied for many years. Most of the studies of liver disease are in 

agreement with our results that the IL6 rs1800795 C variant is associated with a less severe 

disease phenotype when compared to the G variant, including among patients with chronic 

hepatitis C virus infection and patients with hepatocellular carcinoma [49]. One notable 

exception is a study of 59 biopsy-proven Italian NAFLD subjects, which found that the C 

allele was more prevalent among subjects with NASH compared to those without NASH 30. 

This study showed that this allele was an independent predictor of both NAFLD and NASH, 

when 79 additional healthy blood donors with normal liver transaminase levels were 

included as controls, but also failed to find an association between genotype and any 

histological disease features. The lack of healthy controls in our study and the fact that our 
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regression models included both IL1B and IL6 SNPs, could explain the differences in these 

studies. In agreement with our study this group also did not find differences in plasma IL6 

levels between genotypes.

An interesting finding of our study was that IL6 rs1800795 C allele carriers had lower serum 

transaminases and fasting insulin levels and were less likely to have advanced lobular 

inflammation, advanced fibrosis and Mallory bodies, but conversely were at an increased 

risk for developing severe steatosis. Increased hepatic IL6 gene expression is associated with 

NASH in humans and positively correlates with degree of inflammation and stage of fibrosis 

[50]. Additionally, luciferase reporter constructs containing the IL6 rs1800795 C allele show 

reduced expression compared to the G allele when transiently transfected into HeLa cells 

[26]. Thus, our findings of decreased risk of lobular inflammation, advanced fibrosis and 

Mallory bodies among IL6 rs1800795 C allele carriers agree with the concept that this allele 

may lead to less IL6 expression in the liver. Furthermore, several studies have shown that 

IL6-dependant activation of signal transducer and activator of transcription 3 (STAT3) 

reduces steatosis via inhibition of SREBP-1c mediated lipogenic gene activation as well as 

upregulation of fatty acid β oxidation genes [51–53]. Together these studies suggest that 

lower levels of IL6 could be associated with less inflammation and fibrosis but also more 

steatosis via depression of STAT3-mediated SREBP-1c inhibition. However, the pathogenic 

effects of IL6 induced STAT3 activation appears to be cell type specific and could vary 

depending on the degree and type of inflammatory infiltrate [51].

Recently, MR 16-1, an IL-6 receptor antibody, was effective in reducing hepatic steatosis in 

a mouse model of NAFLD [54]. Further, the utilization of IL-1 Receptor antagonist: IL-IRa 

(which binds to the IL-1 receptor and prevents IL-1 signal transduction); and the IL-1 

receptor knockout mice showed a reduction in steatosis in a diet-induced model of NAFLD 

41. A large study, CANTOS, is underway to determine if IL-1 neutralization is effective 

against cardiovascular diseases [55]. Favorable outcomes from such a study might pave the 

way for the use of IL-1 suppression in NASH [55].

In conclusion, we have made a novel observation that SNPs IL6 rs10499563 and IL1B 
rs1143634 may have a significant impact on the development of parenchymal cell damage, 

such as ballooning, Mallory bodies, bridging fibrosis and cirrhosis, in non-Hispanic 

Caucasian patients with NAFLD. The IL6 rs10499563 C allele, present in 38% of cohort, 

was independently associated with the presence of definitive NASH. The IL6 rs1800795 C 

allele could contribute to the development of steatosis but was also associated with a 

decreased risk of having increased Mallory bodies or an advanced disease grade or stage. 

Further studies are necessary to define the mechanisms for the effects of these 

polymorphisms in NAFLD and to determine the role of these SNPs in other liver diseases.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Multivariable logistic regression analysis for advanced histologic features of NASH in 
white non-Hispanic patients
Stepwise multivariable logistic regression analysis (cutoff p<0.2) was used to model the 

independent risk of the presence (yes versus no) of a definitive diagnosis of nonalcoholic 

steatohepatitis (NASH) (Panel A) and advanced histological disease features such as 

presence of grade 3 steatosis (66%) (Panel B), advanced lobular inflammation-grade 2 or 3 

(Panel C), presence of many ballooning hepatocytes (Panel D), presence of many Mallory 

Denk bodies (Panel E) and presence of advanced fibrosis (stage 3–4) (Panel F) for IL1β and 

IL-6 single nucleotide polymorphisms (SNPs) simultaneously and including potential 

confounding variables such as age, sex, diabetes, obesity and Homeostatic model 

assessment-Insulin resistance (HOMA-IR) level.
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Table 2

Patient Characteristics.

Characteristic Total Cohort

Number, n(%) 604(100)

Age, (yrs) 46.2±12.0

BMI, (kg/m2) 34.7±6.4

Waist-hip ratio 0.94±0.07

Female, n(%) 392(65)

Obese, (≥30 BMI) 453(75)

Diabetes mellitus, n(%) 170(28)

Metabolic syndrome, n(%) 429(72)

Current smoker, n(%) 57(9.5)

NSAID usage, n(%) 475(79)

Antihyperlipidemic medication usage, n(%) 231(39)

Definitive NASH diagnosis 360(60)

Advanced fibrosis (stage 3–4) 182(30)

Values are mean±SD or n(%)

NASH- nonalcoholic steatohepatitis

NSAID-nonsteroidal anti inflammatory drugs

BMI- body mass index
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