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Abstract

Pooling biospecimens prior to performing laboratory assays is a useful tool to reduce costs, 

achieve minimum volume requirements, and mitigate assay measurement error. When estimating 

the risk of a continuous, pooled exposure on a binary outcome, specialized statistical techniques 

are required. Current methods include a regression calibration approach, where the expectation of 

the individual-level exposure is calculated by adjusting the observed pooled measurement with 

additional covariate data. While this method employs a linear regression calibration model, we 

propose an alternative model that can accommodate log-linear relationships between the exposure 

and predictive covariates. The proposed model permits direct estimation of the relative risk 

associated with a log-transformation of an exposure measured in pools.
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1. Introduction

In epidemiological studies, pooling biospecimens prior to performing laboratory assays can 

help reduce lab costs, lessens assay measurement error in the observations, and achieve 

minimum volume requirements by combining only a small portion of each sample into a 

larger pool [1–5]. Pooling is currently used to screen blood for diseases such as HIV [6–10], 

biomonitor prevalence of environmental exposures [11, 12], and reduce measurement error 

in genetic microarray studies [13].

When analyzing pooled specimens in a regression setting, specialized statistical techniques 

are often needed. If the pooled samples are to be included as a predictor of a binary 

outcome, a set-based logistic regression model yields unbiased estimates when pools are 

matched on case status [5], or in matched survival studies [14]. If pools are not matched on 

the outcome, more complex methods may be required [15, 16]. This scenario could occur, 
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for instance, if pools are formed and assayed before the outcome of interest is observed [15]. 

In such cases, Zhang and Albert [15] proposed a regression calibration (RC) approach to 

perform regression of a binary outcome on a pooled predictor. Regression calibration is 

typically applied in measurement error problems; in the pooling scenario, a pooled 

measurement is treated as a mis-measured value of each of the individual concentrations of 

the specimens comprising that pool. The existing regression calibration approach for pools 

uses ancillary information to adjust the observed measurement of the pooled sample, by 

estimating the linear relationship between the pooled variable and potential predictors. This 

method performs well when the pooled biomarker is approximately normally distributed.

If individual values of the biomarker are available (i.e. no pooling is performed), a 

regression model on a log-transformation of the exposure may be of interest, particularly 

when a biomarker is positive and right-skewed [17, 18]. When measured in pools, a log-

transformation on the pooled measurements can induce computational complexity, due to the 

non-linearity of the log function. In light of recent developments for regression on a log-

transformed, pooled outcome [19, 20], we propose an extension of the pooled regression 

calibration approach that will permit estimation of regression coefficients corresponding to a 

log-transformed biomarker, when only pooled measurements are available.

In Section 2, we set up the regression model and summarize the existing regression 

calibration method for an untransformed biomarker. In the following section we describe our 

proposed methods for extending this regression calibration approach to a log-transformed 

predictor variable that is logarithmically associated with the auxiliary predictive covariates. 

We then use simulation studies to compare the performance of the proposed approaches to 

existing methods in estimating relative risk, and we apply these strategies using data from 

the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial to determine the 

association between prenatal serum leptin levels and the outcome of live birth.

2. Regression Calibration: Untransformed Predictor

In this section, we summarize the methods presented by Zhang and Albert [15] to apply a 

regression calibration approach to an untransformed exposure. While these methods were 

originally developed for a general link function, we specifically focus on the log link, to 

investigate the common scenario when the relative risk is of primary interest. Thus, for all of 

the methods that follow, we assume we are interested in estimating the relative risk 

associated with a biomarker of interest that is measured in pools. When all N specimens are 

measured individually, the relative risk associated with the untransformed exposure is 

commonly estimated under the model:

(1)

for i = 1, …, N, where Yi is the binary outcome, Xi the exposure of interest that is only 

observed after laboratory analysis, Ci a vector of observed covariates, γ a vector of 

regression coefficients, and exp(β) is the relative risk associated with a 1-unit increase in X. 

Model (1) is commonly fit parametrically assuming that Y follows a binomial or Poisson 
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distribution, often employing a sandwich estimator for robust standard error estimation [21, 

22].

When the exposure is measured in pools instead of on individual specimens, the pooled 

measurement  is observed, assumed to be the average of the 

concentrations of specimens comprising that pool [23], where gi is the number of specimens 

in pool i, (i = 1, …, n), n denotes the total number of pools, and .

Zhang and Albert [15] showed that, through application of a first-order Taylor Series 

approximation, X̄
i could be related to the outcome approximately by:

where the ‘ij’ subscript denotes the jth subject in the ith pool.  is the 

expected value of the individual specimen concentration, given the observed measurement of 

pool i as well as additional covariate information { }, which consists of the 

individual-level vector of covariates for each individual in pool i({Cij}), as well as 

potentially additional auxiliary variables. The quality of this Taylor Series approximation 

depends on the higher-order (2nd and higher) centered moments of the distribution 

, where the approximation works best when these values are small [15].

Under the linear regression calibration approach, a linear relationship between Xij and  is 

assumed, such that

(2)

where the εij’s are assumed to be independent and identically-distributed with E(εij) = 0 and 

Var(εij) = σ2 for all j = 1, …, gi, i = 1, …, n. It follows that:

(3)

where  and .  is a matrix of 

covariates, where each column represents the average across the individual-level covariate 

values within pool i (i.e. ).

By combining equations (2) and (3),  can then be derived as follows:
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(4)

where E(ηij) = E(εij) − E(εi) = 0 and thus

Although the individual X’s are unobserved, ϕ̂ = (ϕ̂0, ϕ̂1) can be estimated by a weighted 

least squares on the pooled measurements [24]. Similar to the traditional regression 

calibration approach for measurement error,  acts as an adjustment on X̄
i, 

the observed ‘mis-measured’ value of Xij, given the information inherent in { }. The 

estimated relative risk, exp(β̂), can then be obtained by substituting 

 for Xij in equation (1) and following with standard 

binomial or Poisson regression.

3. Regression Calibration: Log-transformed predictor

While the linear regression calibration approach described in Section 2 estimates the risk 

associated with an untransformed exposure, it is often of interest to estimate the risk based 

on a log-transformation of the exposure, particularly when that predictor is highly skewed. 

In this scenario, the regression model based on the individual-level data is:

(5)

Here, exp(β) represents the risk associated with a 1-unit increase in log(X). To fit this 

regression model when X is measured in pools, we again employ a Taylor Series expansion, 

where

(6)

To facilitate calibration of the log-transformed individual biomarker values, we propose two 

alternative methods to directly estimate , which are particularly suited 

for capturing logarithmic relationships between the individual-level exposure and the 

covariates. First, we exploit the convenient summation properties of the gamma distribution 

to employ a parametric strategy, which will theoretically obtain maximum precision when 

the distributional assumptions are correctly specified. Next, we consider an alternative 

estimation procedure based on recently-developed quasi-likelihood methods for pooled 

measurements. This method is expected to be more flexible in accommodating alternate 
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distributional assumptions, as it requires specification of the first two moments, as opposed 

to the full distribution, of the exposure conditional on the remaining covariates.

3.1. Parametric Calibration

Similar to the log-normal distribution, the gamma distribution can effectively characterize 

positive, right-skewed random variables. In addition, the convenient summation properties of 

the gamma distribution make it particularly amenable to analyzing biomarker data measured 

in pools [3, 23, 25, 26]. In this section, we exploit these convenient properties to obtain a 

closed form expression for .

Suppose that ( ) follows a gamma distribution with shape kij and scale θ, where 

 and . Letting Si = giX̄
i denote the 

sum of the individual specimens comprising pool i, it follows directly from the summation 

property of the gamma distribution that  and 

. Then (Xij/Si|Si, { }) follows a beta distribution, 

since:

By applying a transformation of variables, we see that 

.

We can then use the properties of the beta distribution to derive the conditional expectation 

of the individual concentrations given the measured average (or equivalently, the measured 

sum) of the pool as well as additional individual-level auxiliary variables:

where ψ is the digamma function [27] and the final step follows from the properties of the 

gamma distribution. Hence, similar to its linear analogue, the regression calibration step 

assuming a gamma distribution on X|C* involves adjusting the observed ‘mis-measured’ 

value log X̄
i with ancillary information based on the relationship between X and C*. To 

obtain the calibrated value of log Xij for each individual specimen,  is 
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estimated for all i, j by optimizing the log-likelihood of the gamma distribution with 

constant scale parameter [20]. Calculation of  is then straightforward. 

Once obtained, this value is plugged into the regression model (6). Example R code to 

obtain the maximum likelihood estimates from this gamma calibration approach is provided 

in the Appendix.

3.2. Quasi-Likelihood Calibration

While the parametric assumption on ( ) will theoretically provide the most precise 

estimates of ϕ̂ when correctly specified, a less restrictive approach may be preferred if 

( ) does not follow a gamma distribution. For this method, we assume a linear 

relationship between log Xij and , such that:

(7)

where E(εij) = 0 and Var(εij) = σ2. Then, similar to the approach outlined in equation (4), we 

can re-write this expression as:

Applying a first-order Taylor Series approximation to the second log function, the 

conditional expectation is then:

which follows directly from the assumption that the εij’s are identically distributed. 

Estimates of ϕ1 are found using an extension of the quasi-likelihood method for pools [19]. 

Under equation (7), , where 

, and , where ν = 

Var{exp(ε11)}/E{exp(ε11)}2. Then the following quasi-score function is solved:
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where  and . Note that ν is 

omitted from the function Vi since it does not affect estimation of the parameters of interest, 

ϕ. Normally, ν would be absorbed into the estimate of the dispersion parameter. However, 

since we only seek to identify a point estimate for , a function of ϕ1, 

estimation of the dispersion parameter is unnecessary for our purposes. Furthermore, since 

 is a function of E{exp(ε11)}, its estimator will not be an unbiased estimate of ϕ0. 

However, since the main value of interest does not depend on ϕ0, it is also treated as a 

nuisance parameter. After obtaining estimates of ϕ̂1 from the quasi-score function, 

 is substituted into (6). Since  and 

, we can write:

(8)

where α* = −log E(eε11). Thus, similar to the regression calibration goal of adjusting a mis-

measured value based on auxiliary information, this approximation adjusts the ‘mis-

measured’ value of X̄
i multiplicatively based on the additional information of the expected 

value of the individual-level biomarker concentration (Xij) given the individual-level 

observed covariates ( ). Furthermore, adding a constant (e.g. α*) to the approximation of 

 will not change the estimate of β or γ in (6), since this constant will be 

absorbed into the intercept term. Thus, it is unnecessary to estimate the value of log E(eε11), 

and this term can also be treated as a nuisance parameter. Example code for each of these 

methods is provided in the Appendix.

4. Simulation Study

In this section we perform simulations to test the performance of each of these methods in 

estimating the relative risk of a log-transformed, pooled predictor on a binary outcome. 5000 

simulations of 1000 observations were performed for various pool sizes to mimic the 

motivating study from the EAGeR trial, described in more detail in Section 6. Two 

confounders, C1 and C2, were generated to resemble Age and BMI, respectively. C1 was 

generated from a truncated normal distribution with a mean of 28 and standard deviation of 

3.5, and with lower and upper limits of 18 and 42, to reflect the age distribution of the 

population of women in the EAGeR trial, specifically, pre-menopausal women attempting 

pregnancy. C2 was generated from a log-normal distribution with a geometric mean of E(log 

C2|C1) = 3.2 + 0.002(C1) and geometric variance of 0.05. To test these methods under 

various distributions of X|C, separate simulation studies were run, with X|C generated under 

a gamma distribution, a log-normal distribution, and a normal distribution.

For the first set of simulations, the exposure of interest was generated under a gamma 

distribution with scale parameter θ = 300 and:

Mitchell et al. Page 7

Stat Med. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These parameters were chosen to mimic the distribution of leptin in the EAGeR study, as 

described in more detail in Section 6. Under this simulation, the parametric approach from 

Section 3.1 is correctly specified. Furthermore, the assumptions on the first and second 

moments of E(X|C1, C2) that are needed for the quasi-likelihood approach in (8) are satisfied 

when X|C is generated under a gamma distribution. Thus, the quasi-likelihood calibration 

procedure is also correctly-specified in this scenario.

For the second set of simulations, X was generated under a log-normal distribution with 

geometric standard deviation of 0.25 such that:

This distribution corresponds to the assumption of a linear association between log X and C, 

as in Section 3.2. Thus, the multiplicative adjustment to the pooled measurement using 

quasi-likelihood estimates of ϕ are correctly-specified in this scenario, while the assumption 

of the conditional gamma distribution needed for the parametric calibration method is 

misspecified. Results from this model will help illuminate potential consequences of 

misspecification of the distribution of X|C under the parametric regression calibration 

approach.

A skewed exposure distribution does not necessarily imply that a log-linear or gamma 

regression calibration model will provide the best predicted values of the individual-level 

X’s. Rather, the aptness of a log-linear or gamma model to predict individual-level exposure 

values depends more on the underlying link function than the skewness of the distribution 

[28]. For instance, if a covariate C is highly skewed, while X|C is normally-distributed, the 

marginal distribution of X may be skewed, even though a linear link function would more 

accurately capture the relationship between X and C. The advantage of the proposed 

regression calibration models is the ability to capture a logarithmic relationship between the 

exposure and some predictive covariates. Since the goal in fitting the calibration model is to 

‘adjust’ the pooled values of the exposure back to the individual-level values, the model that 

most appropriately characterizes the relationship between X and C is preferred. Thus, we 

also conducted simulations where X|C is normally-distributed, in which case the linear 

regression calibration described in Section 2 would provide the best predictions of the 

individual-level X’s; expected values are incorporated into the outcome model as in 

Equation (8). In this scenario, X is generated with mean:

and a standard deviation of 40. This model differs from the previous simulations since X is 

dependent on , rather than log C2, to generate a skewed marginal distribution for X while 

retaining an underlying linear link function.
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After simulating the exposure of interest, the outcome Y for each simulation study was then 

generated under a binomial distribution with log link such that:

where  is a binary variable designed to mimic an indication of whether a 

participant is overweight, where C2 represents BMI. The regression coefficients were chosen 

to emulate those observed in the EAGeR data analysis, where Y represents the outcome of 

live birth. Note that C2 and  are highly correlated, and C2 can be considered an auxiliary 

variable useful in helping predict the individual-level values of X. After generating the 

simulated data, pools with an equal number of specimens were artificially formed to have 

size 2, 4, and 8, to assess the potential impact of higher pool sizes on parameter estimation.

Models were fit under the complete data (“Full”), the naive model (“Naive”), the existing 

linear regression calibration approach (“Linear RC”), a regression calibration assuming a 

gamma distribution on X|C (“Gamma RC”), and a regression calibration approach assuming 

a log-linear relationship between X and C and estimating the corresponding parameters 

using quasi-likelihood (“Log-linear RC”). All models were fit assuming a linear relationship 

between Y and the log-transformed individual-level X’s. Poisson models with robust 

variance were fit according to (6), where the calibrated value for  differed 

according to the assumptions underlying the relationship between X and C.

The full model, fit on the complete data, is considered the gold standard, since this is the 

model that would be available if all individual specimen concentrations were measured, 

assuming no measurement error. The naive model simply substitutes the pooled values for 

the individual X’s in (5), which is essentially equivalent to a linear regression calibration 

approach with no covariates (i.e. an intercept-only model). The linear regression calibration 

model assumes a linear relationship between X and C to obtain an estimate of the expected 

value of the individual level concentrations, given the observed covariates and pooled values, 

. To fit this model, this calibrated value was substituted for X in 

(5).While this ad hoc substitution and log-transformation does not conform to the original 

proposed methods of Zhang and Albert [15], our goal in fitting this model was to determine 

the extent to which an inappropriate application of the regression calibration approach may 

result in invalid inference. Correct application of the regression calibration approach as 

described in Section 2 has been shown to provide unbiased and efficient estimates of β when 

only pooled measurements are available, and the goal is to estimate the risk associated with 

an untransformed exposure [15]. In addition, we demonstrate the utility of this method when 

X|C is normally-distributed in the third simulation scenario. Furthermore, while Zhang and 

Albert [15] tested several versions of the regression calibration approach, including 

imputation vs. augmentation, and a plug-in vs. normal distribution assumption, we only 

apply regression calibration under the imputation approach (as described in Section 2) and 

normal distribution assumption on X|C, since this method performed best, in general, in the 

simulation scenarios presented by Zhang and Albert [15]. In addition, while the Yij’s 

corresponding to the same pool are generally correlated with each other given X̄
i, we fit 
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regression models under the correlation structure of working independence, since additional 

testing of alternate structures did not noticeably improve estimation of the parameters of 

interest or their standard errors [15].

In addition to fitting the full, naive, and linear regression calibration models, we also apply 

the regression calibration approach assuming a gamma distribution for X|C. Under the first 

simulation scenario, this model is correctly specified, so estimates of β should be consistent. 

While this approach is not correctly-specified under the second simulation study when X|C 
is generated from a log-normal distribution, the gamma distribution can adequately 

characterize skewed distributions in epidemiological studies [29–31].

Estimation of the maximum likelihood estimates ϕ̂ under the gamma assumption was 

conducted using the optim function in R. To improve convergence, several starting values 

were tested. Finally, the regression calibration assuming a linear relationship between log X 
and C was fit, where R’s nleqslv function was applied to solve the non-linear system of 

quasi-likelihood estimating equations (see Appendix for details).

5. Simulation Results

Tables 1 and 2 provide the percent bias, empirical standard deviation, average estimated 

standard error, and 95% confidence interval coverage for β when X|C is generated under a 

gamma and lognormal distribution, respectively. Based on these simulation results, both the 

gamma and log-linear RC models give approximately unbiased estimates of the β 
coefficients with nominal 95% confidence interval coverage, when the true conditional 

exposure distribution is log-normal or gamma. These results hold regardless of pool size. 

Furthermore, the precision of these estimates under these proposed models is close to the 

full precision under the complete model, even for pools of size 8, when the total number of 

lab assays is reduced from 1000 to 125. This precision is likely a reflection of the predictive 

capacity of the model due to the high correlation between the simulated covariates and the 

exposure of interest.

On the other hand, regression coefficient estimates from the naive and linear regression 

calibration models (‘Linear RC’) are biased under the first two simulation scenarios. 

Although this bias is not excessive (~5 to 10% bias), the artificially low precision of these 

estimates results in sub-nominal 95% confidence interval coverage, despite accurate 

estimation of standard errors. These coverage rates, which drop below 70% for the linear 

regression calibration model and under 41% for the naive model, make these methods 

particularly susceptible to inflated Type I Error rates due to misspecification of the 

calibration model.

When the exposure is linearly related to the covariates, however, the linear regression 

calibration model performs best, with approximately unbiased coefficients, nominal 95% 

confidence interval coverage, and the lowest standard errors among the calibrated models 

(Table 3). Although the log-linear and gamma regression calibration models are 

misspecified, they continue to provide approximately unbiased coefficient estimates with 

close to nominal confidence interval coverage, demonstrating robustness to misspecification 
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of the link function. Estimates under the naive model, on the other hand, remain biased, 

similar to those from the previous simulation scenarios, which subsequently corresponds to 

sub-nominal confidence interval coverage rates.

As mentioned previously and demonstrated in the simulation studies, the choice of 

calibration model is not dictated by the skewness of the marginal distribution of X. While 

the gamma and log-linear calibration models demonstrated robustness to misspecification in 

the final simulation study, the ability to choose the best model could improve estimate 

efficiency. While several methods exist for comparing model fit, the difficulty arises in the 

flexibility of these models to accommodate pooled, i.e. averaged, X values. Thus, in this 

scenario, we choose to use the root mean squared error (RMSE) to compare relative 

goodness of fit of the calibration models, due to its flexibility in assessing pooled values as 

well as its non-parametric underpinnings, which facilitate comparison across distributional 

assumptions. When applied to pooled values of X, the RMSE is defined as: 

 and  is the predicted pooled 

value based on the predicted individual-level values from the calibration model. While not a 

formal test of goodness of fit, comparing RMSE values across the calibration models can 

guide selection of the preferred model, where a lower RMSE value suggests a better fit. To 

demonstrate this, we provide average RMSE values for the calibration models under each 

simulation scenario in Table 4.

When X|C is generated under the gamma or log-normal models, the average RMSE for the 

gamma and log-linear calibration models are quite similar, but both are considerably lower 

than the linear calibration model, indicating that both the gamma or log-linear calibration 

models fit the data better than the linear model. When X|C is generated under a normal 

model, however, a comparison of the RMSE values clearly indicates that a linear regression 

calibration model provides the best fit. In addition, the RMSE values from the naive model, 

which is equivalent to a linear calibration model with no covariates (the intercept-only 

model), has the highest RMSE in all scenarios. While the naive model is not a real contender 

for a calibration model in this scenario, RMSE values under this model can illustrate how 

much the other calibration models may be improving the predicted values of the X’s. If the 

RMSE for each calibration model were close to that from the naive model, the calibration 

step would be of little benefit to improving the fit of the final outcome model. Thus, 

comparing RMSE values can guide selection of the best calibration model, as well as 

provide an indication of the extent of improvement available over the naive model.

Due to the strong similarity in performance between gamma and log-linear regression 

calibration models, choice of which to fit could depend on the researcher’s preference 

concerning the assumptions and tools required to produce maximum likelihood or quasi-

likelihood estimates, especially when the RMSE values fit under these models are similar. 

For instance, the gamma assumption requires full specification of the parametric distribution 

and involves maximization of the log-likelihood. The quasi-likelihood approach, while only 

requiring assumptions on the mean and variance of log X|C, relies on the performance of the 

Taylor Series approximation. If both procedures are employed but provide contradictory 
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results, the discrepancy might indicate a more serious violation of the underlying model 

assumptions on the individual-level data.

6. Data Analysis

The Effects of Aspirin in Gestation and Reproduction (EAGeR) Trial was a prospective, 

multi-site, double-blinded randomized controlled trial, designed to evaluate the effects of 

preconception low-dose aspirin on gestation among women with a prior history of 

pregnancy loss. Women in the study were 18–40 years old, had reported 1 or 2 prior 

pregnancy losses and were actively attempting to conceive. These women had no prior 

gynecologic disease and had not been diagnosed with infertility. Baseline characteristics 

were recorded and blood draws were taken at randomization. Participants were followed for 

up to 6 cycles of attempting pregnancy; if they became pregnant, they were followed until 

the end of pregnancy [32].

Leptin is a hormone that plays a significant role in human physiology and reproduction, and 

recent studies have demonstrated an association between leptin in menstrual function and 

pregnancy-related conditions [34–37]. The goal of this data analysis was to determine 

whether higher levels of leptin were associated with adverse pregnancy outcomes in the 

EAGeR trial after adjusting for potential confounders, where the outcome of interest is live 

birth. Due to the strong correlation between BMI and leptin [33], overweight status is 

considered a potential confounder of the relationship between leptin and pregnancy 

outcome. In this dataset, the median leptin concentration among normal weight women 

(BMI < 25) was 9.0 ng/mL, while the median concentration among overweight women was 

34.3 ng/mL. Age was also considered as a potential confounder.

1052 observations with complete data on live birth outcome, leptin measurements, age, and 

BMI were available for analysis. Leptin concentration was measured for women at baseline 

using the Quantikine ELISA assay (R&D Systems, Minneapolis, MN), and BMI and age 

were assessed from the baseline questionnaire. The distribution of leptin concentration in the 

study sample was positive and right-skewed, with a median of 16.96 ng/mL and a mean of 

23.42 ng/mL. A histogram of the individual-level concentrations as well as a normal Q-Q 

plot of log(leptin) are provided in Figure 1.

Since previous research has assessed the association between log-transformed leptin levels 

and health outcomes [38–45], we apply a log-transformation to leptin to estimate the relative 

risk associated with a 1-unit increase of leptin on the log scale. Specifically, we seek to 

estimate the association between leptin and birth outcome after controlling for overweight 

status and age, based on the following regression model:

(9)

where ‘Live birth’ is the binary outcome indicating whether a participant had a live birth, 

‘Age’ is measured in years, and ‘Overweight’ is a binary variable indicating a woman 

categorized as overweight or obese based on pre-pregnancy BMI (BMI ≥ 25). Since leptin 

concentrations were measured on individual specimens, we can directly compare results 
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from analyses on artificially pooled samples to the gold standard based on individual-level 

measurements. To illustrate the proposed methods, pools were artificially formed first of size 

2 (n = 526), then of size 4 (n = 263). For all models, Poisson distributions with log link and 

robust variance were fit to directly estimate β. Continuous BMI values were applied as 

ancillary information to help calibrate values of log-transformed leptin for analyses when 

only the pooled measurements are available.

Table 5 gives parameter estimates and standard errors under the full data as well as for each 

of the models discussed in Sections 2 and 3 for pool sizes of 2 and 4. In addition, RMSE 

values for the calibration models are provided as a relative goodness of fit criterion. Under 

the full data based on individual measurements of leptin, log(leptin) tris significantly 

negatively associated with live birth at a significance level of 0.05 (Relative Risk = 0.9). 

Consistent with previous knowledge, age was also negatively associated with live birth, an 

association that was preserved under all scenarios. When leptin is measured in pools, the 

naive and linear regression calibration (‘Linear RC’) models underestimate the magnitude of 

the association detected under the full data, and are unable to detect this significant 

association. Of note, the linear regression calibration model suffered from additional missing 

data (32 observations) due to a log-transformation on negative expected values in the 

regression calibration step.

On the other hand, the regression calibration approaches assuming a gamma distribution or 

log-linear relationship give point estimates that are close to those under the full data. 

Furthermore, the standard errors of these estimates are precise enough to detect the 

significant association between log(leptin) and live birth with only 526 (as opposed to 1052) 

assays required. When pools are formed of size 4, none of the methods retain sufficient 

power to detect the significant association between log(leptin) and live birth. However, the 

gamma and log-linear RC models continue to calculate coefficient estimates that are similar 

to those under the full data.

The RMSE values provide a guide to choose the best calibration model in this analysis. 

When pool size is 2, the RMSE suggests that the gamma regression calibration model 

provides the best fit, with the log-linear calibration model performing similarly. In fact, these 

two models provide regression coefficient estimates similar to those from the full model, 

with the gamma model giving the closest estimates. When pool size is 4, the RMSE values 

suggest that the log-linear model is preferred and in fact, this model does slightly outperform 

the gamma and linear calibration models with respect to approximating estimates from the 

full data for log(leptin) and age. In real-world scenarios, when the full data is unavailable, 

the RMSE values can help select the best calibration model from among a set of pre-

specified candidates.

This data analysis illustrates the potential benefits of applying a gamma or log-linear 

regression calibration approach to pooled data when the association between a log-

transformed exposure and a binary outcome is of primary interest. Importantly, this analysis 

is for illustration purposes only and should not be interpreted as a complete and robust 

estimate of the association between leptin levels and live birth outcome, as this inference 
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would require appropriate handling of additional statistical issues such as missing data, 

selection bias, measurement error, and other potential confounders.

7. Discussion

Pooling biospecimens prior to performing lab assays has been gaining traction as a cost-

saving strategy in epidemiological studies in recent years with the development of statistical 

tools necessary for analysis. In this study, we have contributed to the toolkit of available 

analytical methods for pooled specimens by developing two new approaches to estimate 

relative risk when an exposure is measured in pools and the risk associated with the log-

transformation of this exposure is of primary interest. We chose to focus on the logarithmic 

transformation of an exposure due to the popularity of this strategy in epidemiological 

studies. While it may be possible to extend these methods to additional monotonic 

transformations (e.g. square root), a thorough exploration of this topic is beyond the scope of 

this paper. In addition, while we only expounded upon a log link in the outcome model to 

specifically investigate the performance of these methods when estimating a relative risk, 

these methods could also be applied to general link functions, by combining the proposed 

calibration models for the expectation of a log-transformed exposure, with the original 

methodology for untransformed exposures as described in Zhang and Albert [15].

The proposed approaches were developed as an extension of an existing regression 

calibration method for pooled exposures, which was based on a linear adjustment to the 

pooled measurements, applying the measurement error approach of regression calibration to 

correct for the pools acting as ‘mis-measured’ values of the individual-level concentrations 

[15]. Since this method was not developed for a log-transformed exposure, our methods 

were proposed with the goal of direct calibration of the log-transformed individual-level 

biomarker values, particularly when the log-transformed exposure is linearly associated with 

the predictive covariates.

The first of the proposed methods exploited the convenient summation properties of the 

gamma distribution to derive a closed-form expression for the conditional expectation of the 

individual-level log-transformed exposures given the measured pooled values and 

supplementary auxiliary information. In contrast, the second approach assumes a linear 

relationship between the log-transformed exposure and the auxiliary variables. While the 

parametric methods assuming a gamma distribution should theoretically provide the most 

precise estimates when correctly-specified, our empirical simulations demonstrated 

negligible differences between the two methods. Implementation of each of these methods, 

however, does require different computational methods (e.g. maximizing the log-likelihood 

vs. solving a system of nonlinear equations), as demonstrated in the example code in the 

Appendix.

Since the regression calibration methods rely on a Taylor Series approximation, at least 

some amount of bias may be unavoidable. These methods, however, will often provide 

considerable improvement over the naive model with respect to estimating the regression 

coefficients, in which the pooled measurements are included as predictors in the regression 

model without any adjustment. The success of the regression calibration approach depends 
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on the amount of relevant auxiliary variable information available, and the predictive value 

of these variables on the pooled exposure. If the biomarker of interest is uncorrelated with 

all of the auxiliary covariates, the regression calibration approach is indistinguishable from 

the naive method, which, as evidenced in the simulation studies, can result in bias and sub-

nominal confidence interval coverage. On the other hand, a covariate that is perfectly 

predictive of the individual-level exposure concentrations will produce risk estimates that are 

equivalent to the full model. Thus, the goal of regression calibration is to shift estimates 

away from the biased estimates produced by the naive model, towards those from the full 

model. It may be difficult, however, to determine how close the adjusted estimates come to 

the gold standard of the individual-level data. While RMSE provides a useful tool to 

compare candidate calibration models, it does not provide an absolute measure of predictive 

capacity. Additional validation data containing measurements on individual-level exposure 

values may be required to assess the absolute fit of the calibration model.

Since the regression calibration approach can essentially be viewed as a single imputation 

approach, where observed relationships in the data are leveraged to predict expected values 

of the unobserved (individual-level) concentrations of the biomarker, a multiple imputation 

framework may improve this approach. This strategy could incorporate outcome information 

into the imputation procedure, and could be generalized to calibrate additional missing 

covariate information in the dataset. We are currently testing the feasibility of this method 

applied to pooled specimens.

As evidenced in the data analysis, pooling can impact the power to detect a significant 

association. Strategic pooling techniques, where pools are formed to be homogeneous with 

respect to important covariates, can help improve power when pooling is performed [4, 24]. 

In the data example, for instance, pooling specimens from subjects with similar BMI values 

could enhance prediction of the individual-level leptin values, subsequently improving 

precision of the regression coefficients in the outcome model. Similar methods to those 

presented here will still be applicable. Pooling on the outcome, however, creates additional 

complexities in the analysis, similar to those associated with outcome-dependent sampling 

[46, 47]. In a non-pooled scenario, logistic regression can accommodate outcome-dependent 

sampling (i.e. case-control sampling) directly, while log-linear regression requires additional 

adjustments such as propensity score weighting to mitigate selection bias. Similarly, when 

pools are formed to be homogeneous on the outcome, a set-based logistic regression model 

will provide unbiased regression coefficient estimates. However, it is unclear how to extend 

this model to accommodate a log-transformation on a pooled exposure [5]. Under log-linear 

regression with a pooled, log-transformed exposure, adjustments similar to propensity 

weighting may be necessary to counteract the bias induced by pooling on the outcome, as in 

the non-pooled scenario. While recent research has explored this topic in a slightly different 

scenario [46], additional efforts are needed to determine how a similar method could be 

extended to a log-transformed exposure. In summary, careful consideration of pooling 

design can help reduce cost, attain minimum volume requirements for lab assays, and reduce 

the number of measurements below the limit of detection. When appropriate analytical 

techniques are applied to these pooled measurements, reliable and efficient inference can be 

obtained.
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Appendix

Example R Code: Table A1 gives the first 12 observations from the example dataset on 

which subsequent code is based. Example code calculates estimates for ϕ̂, then E(log X|C*), 

and applies this value to the original log-linear regression model.

## Data set-up:

# Calculate poolwise averages of additional covariates

     Pooled_C1 = ave(C1,Pool_Number)

     Pooled_C2 = ave(C2,Pool_Number)

# Calculate pool weights (i.e. pool size) for weighted least squares

     Pool_wts = tabulate(Pool_Number)[Pool_Number]

## Regression Calibration Step:

  # 1. Weighted Least Squares (Zhang and Albert, 2011)

         rc.ZA = glm(Pooled_X ∼ Pooled_C1+Pooled_C2,weights=Pool_wts)

         E.X = cbind(1,C1,C2)%*%rc.ZA$coef

         E.XP = ave(E.X,Pool_Number)

         ZA.Xhat = Pooled_X + E.X - E.XP

Mitchell et al. Page 18

Stat Med. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



  # 2. Parametric Gamma assumption on X|C

       # Define log-likelihood for Gamma distribution:

          gamma.ll = 

function(theta,Pooled_X,C,pool=1:length(Pooled_X),pool.size){

              scale = theta[length(theta)] # scale parameter

              phi = theta[-length(theta)]

              mu.ij = exp(as.matrix(cbind(1,C))%*%phi)

              mu.i = ave(mu.ij,pool,FUN=sum)

              ll = sum(dgamma(Pooled_X,shape=mu.i/scale,

                            scale=scale/pool.size,log=T))

              return(-ll)

          }

          xfit.GA = optim(c(1,0,0,1),gamma.ll,Pooled_X=Pooled_X,

                                     # can try different starting values to 

improve convergence

                                     

C=cbind(C1,C2),pool=Pool_Number,pool.size=Pool_wts)

          EX.GA = exp(cbind(1,C1,C2)%*%xfit.GA$par[1:3])

          ES.GA = ave(EX.GA,Pool_Number,FUN=sum)

          logGA.Xhat = log(Pooled_X*Pool_wts) + digamma(EX.GA) - 

digamma(ES.GA)

  # 3. Quasi-likelihood regression calibration

       # Define quasi-likelihood for alternate version:

          library(nleqslv)

          QL.htro = 

function(phi,Pooled_X,C,pool=1:length(Pooled_X),pool.size){

               mu.ij = exp(as.matrix(cbind(1,C))%*%phi)

               V.ij = mu.ijˆ2

               mu.i = ave(mu.ij,pool,FUN=mean)[!duplicated(pool)]

               V.i = (ave(V.ij,pool,FUN=sum)/pool.sizeˆ2)[!duplicated(pool)]

               dmu = apply(as.matrix(cbind(1,C))*c(mu.ij),2,ave,pool)[!

duplicated(pool),]

               Q = t(dmu)%*%as.matrix((Pooled_X-mu.i)/V.i)

               return(Q)

          }

          xfit.QL = nleqslv(c(0,0,0),QL.htro, Pooled_X = Pooled_X[!

duplicated(Pool_Number)],

                                       

C=cbind(C1,C2),pool=Pool_Number,pool.size=Pool_wts)

          EX.QL = exp(cbind(1,C1,C2)%*%xfit.QL$x)

          EXP.QL = ave(EX.QL,Pool_Number)

          logQL.Xhat = log(Pooled_X)+log(EX.QL)-log(EXP.QL)

## Fit original regression model on calibrated X values

# Zhang and Albert (2011) version on log-transformed X:
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   glm(Y∼C1+C2+log(ZA.Xhat),family=quasibinomial(link=log))

# Parametric Gamma Reg. Cal. on log(X):

   glm(Y∼C1+C2+logGA.Xhat,family=quasibinomial(link=log))

# Quasi-Likelihood Reg. Cal. on log(X):

   glm(Y∼C1+C2+logQL.Xhat,family=quasibinomial(link=log))
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Figure 1. 
Histogram and normal Q-Q plot of leptin and log(leptin) concentrations, respectively, 

measured on individual specimens obtained from participants in the EAGeR trial.
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Table 4

Average root mean squared error (RMSE) for the calibration models under each simulation scenario.

Pool Size Method

Distribution of X|C

Gamma Log-normal Normal

2 Naive 5380 3546 793

Linear RC 2665 1992 28

Gamma RC 1161 1304 163

Log-linear RC 1167 1311 53

4 Naive 3799 2504 560

Linear RC 1876 1402 19

Gamma RC 817 916 107

Log-linear RC 821 922 31

8 Naive 2679 1765 394

Linear RC 1314 983 13

Gamma RC 571 645 61

Log-linear RC 575 646 20
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Table A1

Example dataset of a binary outcome (Y), covariates (C1 and C2), and an exposure measured in pools 

(Pooled_X).

Y C1 C2 Pooled_X Pool_Number

1 0 1.818 0.549 1

0 0 2.865 0.549 1

1 0 1.319 0.549 1

1 0 2.458 0.549 1

0 0 1.538 0.575 2

0 1 2.209 0.575 2

0 0 1.757 0.575 2

0 1 1.817 0.575 2

0 0 2.359 1.096 3

0 0 1.765 1.096 3

1 1 1.750 1.096 3

0 0 1.623 1.096 3
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