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Conclusions  In accordance with our hypothesis, the results 
propose at least three different mechanisms that influence 
force production after exercise: (1) a transiently recovering 
process followed by (2) a prolonged force depression after 
metabolically demanding exercise, and (3) a stable force 
depression after mechanically demanding contractions.
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Abbreviations
ANOVA	� Analysis of variance
[Ca2+]i	� Free myoplasmic Ca2+ concentration
DJ	� Drop jumps
HRT	� Twitch half-relaxation time
MVC	� Maximum voluntary contraction
P20	� Peak force with 20 Hz stimulation
P100	� Peak force with 100 Hz stimulation
PLFFD	� Prolonged low-frequency force depression
Pt	� Peak twitch force
SR	� Sarcoplasmic reticulum
ROS	� Reactive oxygen/nitrogen species
RyR1	� Ryanodine receptor 1
Win	� Wingate cycling

Introduction

Our ability to perform precise movements depends on the 
fine-tuned activation of skeletal muscles. The force out-
put of skeletal muscle in vivo is controlled by the number 
of activated motor units and their discharge frequency. In 
addition, the force output at a given activation level can be 
modified by alterations within the muscle fibers. Intense 

Abstract 
Purpose  Force production frequently remains depressed 
for several hours or even days after various types of strenu-
ous physical exercise. We hypothesized that the pattern 
of force changes during the first hour after exercise can 
be used to reveal muscular mechanisms likely to underlie 
the decline in muscle performance during exercise as well 
as factors involved in the triggering the prolonged force 
depression after exercise.
Methods  Nine groups of recreationally active male vol-
unteers performed one of the following types of exercise: 
single prolonged or repeated short maximum voluntary 
contractions (MVCs); single or repeated all-out cycling 
bouts; repeated drop jumps. The isometric force of the right 
quadriceps muscle was measured during stimulation with 
brief 20 and 100 Hz trains of electrical pulses given before 
and at regular intervals for 60 min after exercise.
Results  All exercises resulted in a prolonged force depres-
sion, which was more marked at 20  Hz than at 100  Hz. 
Short-lasting (≤2 min) MVC and all-out cycling exercises 
showed an initial force recovery (peak after ~ 5 min) fol-
lowed by a secondary force depression. The repeated drop 
jumps, which involve eccentric contractions, resulted in a 
stable force depression with the 20 Hz force being mark-
edly more decreased after 100 than 10 jumps.
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physical activity generally induces intramuscular altera-
tions that tend to decrease force production (Allen et  al. 
2008). However, there are also situations where force is 
potentiated, for instance, a phenomenon known as post-
activation potentiation where twitch force and rate of force 
development are increased following a brief tetanic con-
traction (Sweeney et al. 1993). Moreover, processes caus-
ing force reduction and potentiation can coexist, which 
makes it difficult to assess the relative importance of differ-
ent processes (Fowles and Green 2003; Rassier and Macin-
tosh 2000; Skurvydas and Zachovajevas 1998).

Factors causing changes in muscle fiber force produc-
tion can act dynamically and alter force within seconds, or 
they can be more long-lasting and require hour(s) or even 
days to be reversed. A long-lasting force depression fre-
quently observed after various types of physical exercise 
is more marked at low than at high stimulation frequen-
cies and hence referred to as “prolonged low-frequency 
force depression” (PLFFD) (Allen et  al. 2008). Edwards 
et  al. (1977) originally referred to this long-lasting force 
decrease as low-frequency fatigue, but this term has since 
been used to describe numerous different conditions and, 
therefore, lost its precision. The force-frequency rela-
tionship is non-linear with an initial steep part at low fre-
quencies (~10–30 Hz in human muscle) and saturation at 
higher frequencies (>50 Hz) (Edwards et al. 1977; Merton 
1954). During human voluntary contractions individual 
motor units usually fire at frequencies on the steep part 
of the force-frequency relationship (Grimby and Hannerz 
1977; Marsden et al. 1971). Thus, PLFFD will have a large 
impact on the neuronal programming of contractions and 
increase subjects’ perceived effort to achieve a given force 
output (Carson et al. 2002).

PLFFD was first described by Edwards and co-work-
ers (1977), who studied the recovery after severe fatigue 
induced by repeated voluntary contraction of human adduc-
tor pollicis muscles under ischemic conditions. Subse-
quently PLFFD has been observed after various types of 
metabolically demanding contractions both in  vivo and 
in  vitro (Allen et  al. 2008; Keeton and Binder-Macleod 
2006; Place et  al. 2010). A decreased force production in 
muscle fibers can, in principle, be due to (1) reduced free 
myoplasmic Ca2+ concentration ([Ca2+]i) during contrac-
tion, (2) decreased myofibrillar Ca2+ sensitivity, and (3) 
reduced ability of contractile machinery to produce force 
(Westerblad and Allen 1996). On a simplified model, fac-
tors (1) and (2) would result in a larger force depression at 
low than at high stimulation frequencies due to the sigmoi-
dal shape of the force-[Ca2+]i relationship, whereas factor 
(3) would give a similar force decrease at all stimulation 
frequencies (Allen et al. 2008; Bruton et al. 2008).

A particularly prominent type of PLFFD is observed 
after unaccustomed eccentric contractions, which impose 

large mechanical stress on muscle (Dargeviciute et  al. 
2013; Davies and White 1981; Newham et al. 1987). This 
force depression is accompanied by signs of general mus-
cle damage, such as, delayed muscle soreness, swelling, 
protein leakage and inflammation (Clarkson and Hubal 
2002), as well as specific myofibrillar disorganization and 
disrupted sarcomeres (Fridén et al. 1983; Proske and Mor-
gan 2001; Yu et al. 2004). Thus, myofibrillar disturbances 
induced by mechanically demanding eccentric contractions 
is another factor that can cause a larger force depression at 
low than at high stimulation frequencies.

In the present study, nine groups of recreationally active 
young men each performed one type of physical exercise 
that previously has been shown to induce PLFFD: repeated 
or prolonged isometric contractions continued until exhaus-
tion or a severe force reduction (Edwards et al. 1977; Jones 
et  al. 1982); repeated concentric contractions including 
repeated bouts of all-out Wingate cycling (Hill et al. 2001; 
Place et al. 2015); repeated eccentric contractions including 
repeated drop jumps (Dargeviciute et al. 2013; Davies and 
White 1981; Newham et al. 1987; Skurvydas et  al. 2011). 
We used the following general exercise protocols: (1) pro-
longed or repeated isometric maximum voluntary contrac-
tions (MVCs), which may involve gradually developing 
activation failure and require anaerobic metabolism since 
blood flow is occluded; (2) brief bouts of metabolically 
demanding all-out cycling; (3) repeated drop jumps, which 
involve eccentric contractions and impose large mechanical 
but little metabolic stress on muscles. The isometric force 
induced by brief 20 and 100 Hz trains of electrical pulses 
given to the right quadriceps muscle was measured before 
and after exercise. The rationale behind using electrical 
stimulation is that it allowed us to assess changes in muscle 
function independent of neuronal activation. Forces were 
followed for 1 h after exercise and we hypothesized that the 
pattern of force changes during this first hour would reveal 
mechanisms likely to underlie the decline in muscle perfor-
mance during exercise as well as factors involved in the trig-
gering PLFFD.

Methods

Subjects

The study involved nine groups of male volunteers and 
their characteristics are displayed in Table  1. All subjects 
were physically active and participated in recreational 
activities 2–3 times per week. They were asked to refrain 
from any exercise for 1  week prior to the experiment. 
Each group performed only one of the exercise protocols 
described below to avoid problems with results being 
affected by previous exercise; for instance, a single bout of 
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eccentric contractions induces a protection against deleteri-
ous effects of subsequent eccentric contractions (repeated 
bout effect) and this protection lasts for several weeks (e.g. 
Nosaka et al. 2005). The study was approved by the Kau-
nas Regional Ethics Committee and is consistent with the 
principles outlined in the Declaration of Helsinki. Each 
subject read and signed a written, informed consent form 
prior to participation.

Exercise protocols

Isometric MVC

Four different protocols were used: 30 s MVC; 60 s MVC; 
120 s MVC; 12 × 5 s MVCs at 60 s interval. We used sin-
gle MVCs of different durations (30–120 s) to assess how 
the duration of continuous activation affects force produc-
tion after exercise. Continuous MVC causes fatigue that 
involves decreased activation from the central nervous 
system and/or impaired sarcolemmal excitability (Bigland-
Ritchie et  al. 1983; Kent-Braun 1999); to minimize such 
decreases in activation, we also used repeated short (5  s) 
MVCs. Subject sat upright in the dynamometer chair (Sys-
tem 3; Biodex Medical Systems, Shiley, New York, USA) 
with a vertical back support. Isometric knee extension was 
performed with the knee joint positioned at an angle of 
60° (0°—full knee extension). The subjects were verbally 
encouraged to exert and maintain maximal force during the 
contractions.

All‑out cycling

Three different all-out cycling protocols were used: one 
bout of 30  s Wingate cycling (1  ×  30  s Win) (Bar-Or 
1987); three bouts of 30 s Wingate cycling at 4 min inter-
val (3 × 30 s Win); twelve bouts of 5 s all-out cycling at 
1 min interval (12 × 5 s all-out). In addition to one bout of 

Wingate cycling, we used three bouts to study the effect of 
repeating this highly exhaustive type of dynamic exercise 
on force production after exercise. We also used 12 × 5 s 
all-out cycling where, in contrast to 30  s all-out Wingate 
cycling, power output was expected to remain high during 
the cycling bouts and hence the effect of a higher average 
power exercise could be assessed. The subjects were seated 
on a mechanically braked cycle ergometer (Monark, 824E, 
Sweden) equipped with a basket weight loading system 
and appropriate adjustments were made to ensure an opti-
mal riding position. After a full acceleration without resist-
ance to reach the maximal pedal revolution rate, a brake 
weight corresponding to 7.5 % (approximated to the near-
est 0.1  kg) of the subject’s weight was applied to initiate 
the all-out cycling. The power output was averaged over 5 s 
periods.

Drop jumps

Subjects performed either 10 or 100 drop jumps at 30  s 
interval; the long interval was chosen to minimize the 
metabolic stress. This type of exercise involves mechani-
cally demanding eccentric contractions and the two dif-
ferent protocols were used to assess whether detrimental 
effects on force production require only a few (10 drop 
jumps) or many (100 drop jumps) of eccentric contractions. 
Drop jumps were performed from a height of 0.5 m. Upon 
landing, knee bending was counteracted by eccentric knee 
extensor contraction until 90° knee angle was reached, 
immediately followed by a maximal concentric rebound 
contraction (Kamandulis et al. 2010). The knee angle at the 
end of the deceleration phase was visually controlled by 
an experienced researcher and subjects were immediately 
instructed to modify the way the jumps were performed if 
the angle diverged from the intended 90°. Subjects landed 
on a contact mat (Powertimer Testing System, Newtest, 
Oulu, Finland), which allowed immediate feed-back of 

Table 1   Characteristics of subjects (mean ± SEM)

MVC isometric maximum voluntary contraction, Win Wingate cycling, DJ drop jumps, Pt peak twitch force, HRT twitch half-relaxation time, 
P20 and P100 peak force with 20 and 100 Hz stimulation, respectively

Intervention N Age (years) Weight (kg) Height (m) Pt (Nm) HRT (ms) P20 (Nm) P100 (Nm)

30 s MVC 12 20.5 ± 0.7 80.4 ± 1.2 1.82 ± 0.03 17.2 ± 2.1 65.5 ± 3.2 100.2 ± 6.1 188.2 ± 9.3

60 s MVC 14 20.8 ± 0.3 81.1 ± 0.6 1.84 ± 0.01 17.5 ± 2.2 68.4 ± 2.4 107.5 ± 6.2 183.4 ± 7.3

120 s MVC 12 19.9 ± 0.4 80.8 ± 1.3 1.79 ± 0.04 16.1 ± 2.1 64.9 ± 2.9 102.5 ± 5.4 184.2 ± 8.6

12 × 5 s MVC 13 21.2 ± 0.9 79.2 ± 0.9 1.78 ± 0.02 16.8 ± 1.9 64.5 ± 2.8 101.5 ± 5.2 186.2 ± 7.9

30 s Win 12 22.5 ± 0.7 83.1 ± 1.6 1.85 ± 0.03 17.1 ± 2.5 67.4 ± 2.6 104.4 ± 6.3 178.4 ± 11.4

3 × 30 s Win 12 24.5 ± 0.9 77.9 ± 1.6 1.80 ± 0.03 17.9 ± 2.2 67.7 ± 3.1 103.5 ± 8.3 184.9 ± 11.5

12 × 5 s all-out cycling 14 23.1 ± 0.9 79.9 ± 1.0 1.81 ± 0.01 16.5 ± 2.4 69.4 ± 2.6 108.5 ± 8.9 181.4 ± 7.8

10 DJ 12 20.8 ± 0.4 80.1 ± 0.7 1.79 ± 0.02 16.9 ± 2.9 64.4 ± 3.1 104.5 ± 10.2 174.4 ± 8.6

100 DJ 14 21.5 ± 0.6 77.7 ± 1.2 1.82 ± 0.02 15.1 ± 2.1 64.9 ± 2.7 101.5 ± 7.5 178.9 ± 10.5



2218	 Eur J Appl Physiol (2016) 116:2215–2224

1 3

jumping heights and subjects were encouraged to execute 
each rebound jump as high as possible.

Direct electrical muscle stimulation and force 
measurements

Electrically evoked peak isometric force of the right leg 
quadriceps muscle was measured with a Biodex isokinetic 
dynamometer. The subjects sat upright with the knee joint 
positioned at an angle of 60°. Shank, trunk, and shoulders 
were stabilized by belts. Direct electrical muscle stimula-
tion was applied using two carbonized rubber electrodes 
covered with a thin layer of electrode gel (ECG–EEG 
Gel; Medigel, Modi’in, Israel). One of the electrodes 
(6 cm × 11 cm) was placed transversely across the width 
of the proximal portion of the quadriceps muscle next to 
the inguinal ligament; the other electrode (6 cm × 20 cm) 
covered the distal portion of the muscle above the patella. 
An electrical stimulator (MG 440; Medicor, Budapest, 
Hungary) delivered square-wave pulses of 1  ms duration. 
Each subject was familiarized to the experimental pro-
cedures and electrical stimulation on a separate occasion 
before the actual testing. The amplitude of the square-
wave current pulses required to obtain maximum force was 
determined by gradually increasing the voltage until no 
increment in force response was elicited by a 10  % volt-
age increase. We measured peak force during 1 s trains of 
current pulses given at 20 or 100 Hz and separated by a 5 s 
resting period. Each frequency was only tested once at each 
time point. Tests were performed before and directly, 5, 10, 
30 and 60 min after exercise. The test directly after exer-
cise was performed ~30 s after the end of isometric MVCs, 
and ~2 min after the end of all-out cycling and drop jumps 
where subjects had to move to the dynamometer chair. 
Peak MVC force was measured before and 5, 10, 30 and 
60 min after exercise.

The reliability of force measurements for voluntary and 
electrically evoked contractions was tested on two consecu-
tive days and under the same conditions in physically active 
male volunteers (n = 19). The coefficient of variation (the 
ratio of the standard deviation to the mean) for MVC, 
100 Hz and 20 Hz evoked force was 2.5 % (3.7 Nm), 4.9 % 
(6.2 Nm), and 5.8 % (4.5 Nm), respectively.

We used direct electrical muscle stimulation to be able 
to assess exercise-induced changes in muscle function inde-
pendent of any changes neuronal muscle activation. Several 
studies have shown major differences in the response to 
exercise performed with voluntary contractions vs. similar 
exercise with electrically evoked contractions (e.g. Hansen 
et  al. 2009; Jubeau et  al. 2008). In the present study, all 
types of exercise were performed with voluntary contrac-
tions and only the testing before and after exercise involved 
contractions induced by direct electrical stimulation. Thus, 

it appears unlikely that the observed changes in force pro-
duction after exercise were significantly affected by the 
brief electrical stimulation.

Statistical analysis

Data are presented as mean  ±  SEM. One way analysis 
of variance (ANOVA) for repeated measures was used to 
determine statistical differences in force production dur-
ing recovery vs. before exercise. If significant effects were 
found, post hoc testing was performed with Bonferroni cor-
rection for multiple comparisons. The level of significance 
was set at 0.05.

Results

MVC—isometric contractions

Initial experiments were performed with continuous MVCs. 
Directly after the fatiguing contractions, 20 and 100  Hz 
forces were decreased by ~25 % with 30 s MVCs and by 

a b c

Fig. 1   Electrically induced isometric force production at 20 Hz (P20) 
and 100 Hz (P100) of supramaximal stimulation, and the 20/100 Hz 
force ratio presented relative to the baseline value in each subject. 
Data are mean (±SEM; n = 12–14, see Table 1) and were obtained 
~30 s, and 5, 10, 30 and 60 min after: a 30 and 60 s MVC; b 120 s 
MVC; c 12 × 5 s MVC. *P < 0.05 vs. before MVC contractions; in 
a asterisk above and below data points refer to 30 and 60  s MVC, 
respectively
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~45 % with 60 s MVCs (Fig. 1a). Forces then showed an 
initial full recovery, which was followed by a secondary 
decrease at 20 Hz whereas the 100 Hz force remained high. 
Thus, there was a prolonged decrease of 20 Hz force and 
the 20/100  Hz force ratio of ~10 and ~20  % after the 30 
and 60 s MVCs, respectively.

The force decrease was more severe when the MVC 
duration was increased to 120  s, but the general pat-
tern during recovery was similar to that with the shorter 
MVCs; that is, an early improvement followed by a pro-
longed decrease, which now also involved 100  Hz force 
(Fig. 1b). At 60 min of recovery, 20 and 100 Hz force and 
the 20/100 Hz force ratio were decreased by about 60, 20 
and 50 %, respectively.

The force produced during a prolonged MVC gradu-
ally declines due to fatigue development, which involves 
decreased activation from the central nervous system and/
or impaired sarcolemmal excitability (Bigland-Ritchie 
et  al. 1983; Kent-Braun 1999), both of which will limit 
the energy metabolic stress during the contraction. Hav-
ing this in mind, we also tested the effect of repeated 
short MVCs (12  ×  5  s contractions at 60  s interval), 
which would induce less activation failure and hence put 
a larger stress on energy metabolism. Despite a total dura-
tion of contraction of only 60  s, the force–time integral 
of these repeated contractions was similar to that of the 
120  s MVCs and consequently the average force was 
about twice as large with the repeated MVCs (Table  2). 
The magnitude of the prolonged force depression after the 
repeated MVCs was similar to that observed with 120  s 
MVCs, but the initial transient improvement did not occur 
(Fig. 1c).

All‑out cycling—dynamic contractions

In the next series of experiments, subjects performed all-
out cycling, which involves energetically highly demand-
ing concentric contractions. Subjects performed either 
30 s of all-out Wingate cycling (Bar-Or 1987) or bouts of 
5  s all-out cycling. The power output showed a marked 
decline during each 30  s bout, whereas it was well main-
tained during the 5  s bouts (Fig.  2). The pattern of force 
changes after one bout of 30 s Wingate cycling was similar 
to that observed with the prolonged MVCs: an initial force 

improvement, which was followed by a prolonged second-
ary reduction especially of 20 Hz force (Fig. 3a). A more 
severe force depression was observed after three Wingate 
cycling bouts performed at 4 min interval (Fig. 3b). There 
was a slight tendency of an initial force recovery after the 
three Wingate cycling bouts and thereafter all measured 
parameters remained severely depressed. In a final set of 
cycling experiments, subjects performed 12 ×  5  s all-out 
cycling bouts at 1 min interval. This resulted in a prolonged 
force depression of a magnitude similar to that observed 
with 3 × 30 s Wingate cycling, but it was not accompanied 
by any sign of transient early recovery (Fig. 3c).

Table 2   Force measurements 
during either continuous 
(30–120 s) or repeated brief 
(12 × 5 s) maximum voluntary 
contractions (mean ± SEM)

Duration (s) Number of subjects Force–time integral (kNm × s) Average force (Nm)

30 12 6.75 ± 0.12 225.0 ± 3.8

60 14 9.90 ± 0.21 165.0 ± 3.5

120 12 14.10 ± 0.39 118.0 ± 3.3

12 × 5 13 14.10 ± 0.56 235.0 ± 9.3

a b

c

Fig. 2   Power output during all-out cycling bouts. Data are mean 
(±SEM; n = 12–14, see Table 1) and were obtained during Wingate 
cycling, a 1 × 30 s and b 3 × 30 s at 4 min interval, and c during 
12 × 5 s all-out cycling at 1 min interval. Averaged power during the 
first and last 5 s periods are for the 30 s cycling bouts
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Drop jumps—eccentric contractions

In a final series experiments, subjects performed drop 
jumps at 30  s interval. This kind of exercise involves 
repeated eccentric contractions, which means that mus-
cles are exposed to large mechanical stress whereas the 
demand on energy metabolism is limited. The force at 20 
and 100 Hz stimulation and the 20/100 Hz force ratio were 
all markedly decreased directly after the 10 drop jumps and 
they remained depressed throughout the 60  min recovery 
period (Fig. 4a). More severe decreases were observed after 
the 100 drop jumps with reductions ranging from ~35  % 
for 100 Hz force to ~65 % for 20 Hz force (Fig. 4b).

MVC forces after exercise

Maximum voluntary contraction forces were followed 
between 5 and 60  min after each of the above presented 
exercises (Fig. 5). The force reductions after exercise were 
generally smaller than those obtained with electrical mus-
cle stimulation, which implies that the impaired muscular 
force production can be compensated for by increased neu-
ronal activation.

Discussion

This study was based on the hypothesis that the pat-
tern of force changes during the first hour after differ-
ent types exercise would reveal mechanisms likely to 
underlie the decline in muscle performance during exer-
cise as well as factors involved in the triggering PLFFD. 
In accordance with this hypothesis, our results propose 
at least three different mechanisms that influence force 
production after exercise: (1) a fast process that develops 
during metabolically demanding exercise and is reversed 
within 10 min of recovery; (2) a slowly developing and 
prolonged process initiated by metabolically demanding 

a b c

Fig. 3   Electrically induced isometric force production at 20 Hz and 
100 Hz of supramaximal stimulation, and the 20/100 Hz force ratio 
presented relative to the baseline value in each subject. Data are 
mean (±SEM; n = 12–14, see Table 1) and were obtained ~2, 5, 10, 
30 and 60 min after Wingate cycling, a 1 × 30 s and b 3 × 30 s at 
4 min interval, and c after 12 × 5 s all-out cycling at 1 min interval. 
*P < 0.05 vs. before cycling exercise

a b

Fig. 4   Electrically induced isometric force production at 20 Hz and 
100 Hz of supramaximal stimulation, and the 20/100 Hz force ratio 
presented relative to the baseline value in each subject. Data are mean 
(±SEM; n = 12–14, see Table 1) and were obtained ~2, 5, 10, 30 and 
60  min after a 10 or b 100 drop jumps performed at 30  s interval. 
*P < 0.05 vs. before drop jumps
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exercise; (3) a prolonged process that develops dur-
ing exercise with mechanically demanding eccentric 
contractions.

In this study we followed the force produced in response 
to direct electrical stimulation of quadriceps muscles after 
exercise. An advantage of the present approach with elec-
trical muscle stimulation is that altered muscle function 
can be assessed without influence from any changes in the 
neuronal muscle activation. However, it must be noted that 
altered muscle activation by the central nervous system can 
also affect physical performance after exercise.

Rapid initial recovery

A transient initial force recovery was observed with sin-
gle MVCs (30–120 s duration) and with a single Wingate 
cycling bout (30 s duration). A common property of these 
exercises is a shorter duration from the start to the end of 
exercise (≤2 min) than with repeated MVCs (12 × 5 s with 
60 s rest between contractions, totally 12 min) and the all-
out cycling protocols (3 ×  30  s at 4  min interval, totally 

9.5 min; 12 × 5 s at 1 min interval, totally 12 min). Thus, 
these results indicate that the prolonged force depression 
(2) developed already during the more long-lasting exer-
cises and hence these showed no fast recovery phase. Two 
likely mechanisms underlying the decreased force produc-
tion after the single MVCs and the single Wingate cycling 
can be proposed. First, prolonged continuous contractions 
are accompanied by decreased central activation of motor 
units and possibly impaired action potential propagation 
within the muscle fibers (Bigland-Ritchie et al. 1983; Kent-
Braun 1999). This type of activation failure can be rapidly 
reversed. For instance, reducing the stimulation frequency 
during ongoing, electrically induced contractions may 
actually increase force production, presumably by limit-
ing K+- and Na+-fluxes over the sarcolemma and hence 
counteracting problems related to high-frequency action 
potential propagation (Jones et al. 1979; Westerblad et al. 
1990). Second, a major metabolic factor causing decreased 
force production in acute fatigue is myoplasmic accumu-
lation of inorganic phosphate ions due to breakdown of 
phosphocreatine (Allen et al. 2008; Dahlstedt et al. 2000). 
Phosphocreatine recovers to the control level, and hence 
the increase in inorganic phosphate ions vanishes, within a 
few minutes after prolonged contractions (Henriksson et al. 
1986). To conclude, two mechanisms might explain the 
rapid initial recovery: reversal of deficient activation and 
the return of myoplasmic inorganic phosphate ions down to 
control levels. Deficient activation appears more likely to 
occur during the prolonged MVCs, where the requirement 
of a continuous generation of action potentials imposes a 
high risk of problems related to large K+- and Na+-fluxes 
(Bigland-Ritchie et al. 1983; Jones et al. 1979; Kent-Braun 
1999; Westerblad et al. 1990). Conversely, Wingate cycling 
involves repeated brief contractions followed by rest peri-
ods, which means a lower risk of action potential failure, 
whereas the demand on rapid energy metabolism is high 
and large increases inorganic phosphate are likely to occur.

Slowly developing, prolonged force depression initiated 
by metabolically demanding exercise

A prolonged force depression that was more prominent at 
20  Hz than at 100  Hz stimulation was observed after all 
MVC and all-out cycling protocols. This type of PLFFD 
can theoretically be due to decreased sarcoplasmic reticu-
lum (SR) Ca2+ release and/or decreased myofibrillar 
Ca2+ sensitivity (Allen et  al. 2008). Recent studies aimed 
at identifying the mechanism(s) behind this force depres-
sion have revealed a key role of increased production of 
reactive oxygen/nitrogen species (ROS). The results from 
these studies show a coherent picture where the cellular 
ROS handling determines whether the dominating cause 
of the force depression is decreased SR Ca2+ release or 

a b c

d e f

g h i

Fig. 5   MVC forces after exercise presented relative to the base-
line value obtained before exercise, which was set to 100 % in each 
subject. Data are mean (±SEM; n =  12–14, see Table  1) and were 
obtained 5, 10, 30 and 60 min after a 30 s MVC, b 60 s MVC, c 120 s 
MVC, d 12 × 5 s MVC, e 1 × 30 s and f 3 × 30 s Wingate cycling, 
g 12 × 5 s all-out cycling, h 10 and i 100 drop jumps. *P < 0.05 vs. 
before exercise
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reduced myofibrillar Ca2+ sensitivity (Cheng et  al. 2016), 
Decreased SR Ca2+ release dominates in conditions where 
accumulation of superoxide anions (O2

·−) is favored; con-
versely, reduced myofibrillar Ca2+ sensitivity is the domi-
nating cause with facilitated clearance of O2

·−, which can 
be achieved by increased endogenous concentration of 
superoxide dismutase (converts O2

·− to hydrogen peroxide 
(H2O2)) or application of exogenous antioxidants (Bruton 
et al. 2008; Cheng et al. 2015; Watanabe et al. 2015). The 
SR Ca2+ release channel, the ryanodine receptor 1 (RyR1), 
has been shown to be particularly sensitive to ROS-induced 
modifications resulting in impaired function and muscle 
weakness (Andersson et  al. 2011; Bellinger et  al. 2008). 
In a recent study (Place et al. 2015), we showed a marked 
PLFFD and a striking RyR1 fragmentation in muscles 
of recreationally active subjects after 6  ×  30  s Wingate 
cycling bouts. Intriguingly, the same exercise caused a sim-
ilar PLFFD in elite endurance athletes, but in this case the 
RyR1 remained intact and the difference can be explained 
by a higher superoxide dismutase expression in elite ath-
letes (Place et  al. 2015). Thus, the mechanism behind 
PLFFD induced by MVCs and Wingate cycling bouts can, 
depending on the training status, be either impaired SR 
Ca2+ release or reduced myofibrillar Ca2+ sensitivity.

Prolonged force depression initiated by exercise 
with mechanically demanding eccentric contractions

Repeated drop jumps resulted in marked PLFFD, which 
was more severe after 100 than after 10 drop jumps and 
which tended to be more stable than after the metaboli-
cally more demanding types of exercise (MVC and all-out 
cycling). Thus, no initial transient recovery was observed 
even after 10 drop jumps where the total exercise duration 
was 4.5 min (9 × 30 s), i.e., less than the 5 min required 
for the initial force increase to reach its peak after short-
lasting MVCs and Wingate cycling. Unaccustomed eccen-
tric contractions are followed by signs of general muscle 
damage, such as, delayed onset muscle soreness, swell-
ing, protein leakage and inflammation (Clarkson and 
Hubal 2002). Accordingly, we have previously shown that 
repeated drop jumps cause a marked PLFFD, which was 
not fully reversed even after 14  days (Dargeviciute et  al. 
2013; Skurvydas et  al. 2011). They also induced severe 
delayed onset muscle soreness and substantially increased 
plasma creatine kinase activity, which indicates substan-
tial protein leakage, and the magnitude and duration of 
these signs of muscle damage were larger after 100 than 
after 50 drop jumps (Dargeviciute et  al. 2013; Skurvydas 
et al. 2011). Eccentric contractions exert a large mechani-
cal stress on activated muscle fibers and a likely cause of 
the force depression after these contractions is myofibrillar 
damage and disorganized sarcomeres (Fridén et  al. 1983; 

Proske and Morgan 2001; Yu et  al. 2004). Still, muscle 
problems induced by eccentric contractions might also be 
linked to increased ROS production (Kerksick et al. 2010; 
Kon et  al. 2007; Nikolaidis et  al. 2008; Pal et  al. 2013) 
and changes in cellular Ca2+ handling (Balnave and Allen 
1995; Gehlert et al. 2012; Ingalls et al. 1998). If ROS- and/
or Ca2+-dependent processes are involved in the PLFFD 
after drop jumps, these processes are unlikely to be iden-
tical to those underlying PLFFD after MVC and all-out 
cycling exercises, because they were triggered by mark-
edly different major challenges (mechanical vs. metabolic 
stress) and they developed with different time-courses. 
Moreover, additional complex interactions may occur; for 
instance, delayed increases in ROS have been observed 
in skeletal muscle after eccentric contractions and these 
have been linked to leukocyte infiltration and inflammation 
(Nikolaidis et al. 2008).

Conclusions

We followed force production induced by direct electrical 
stimulation of quadriceps muscles for 60 min after different 
types of physical exercise and distinguish three processes 
that affect force:

1.	 A transient initial force recovery that peaked ~ 5 min 
after short-lasting metabolically demanding exercise. 
This transient recovery is likely to be due to reversal 
of fatigue-induced activation failure and/or increase in 
myoplasmic inorganic phosphate ions.

2.	 A delayed, long-lasting force depression after meta-
bolically demanding exercise that can be explained by 
ROS-dependent decreases in SR Ca2+ release and/or 
myofibrillar Ca2+ sensitivity.

3.	 A prolonged force depression developing during 
mechanically demanding eccentric contractions that is 
likely to be mainly due to myofibrillar disintegrity.
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