Skip to main content
. 2016 Nov 22;7:1666. doi: 10.3389/fpls.2016.01666

Table 3.

Comparative analysis of prediction accuracies of different GS models for four yield related traits across chickpea population.

ICRISAT-IR-13 ICRISAT-RF-13 IARI-IR-13 IARI-IR-12 ICRISAT-IR-12
Methods Correlations SE Correlations SE Correlations SE Correlations SE Correlations SE
Days to flowering (DF) Ridge Regression 0.665 0.005 0.556 0.006 0.674 0.005 0.663 0.006 0.823 0.003
Kinship Gauss 0.707 0.005 0.635 0.005 0.673 0.005 0.701 0.006 0.847 0.003
Bayes Cπ 0.663 0.005 0.564 0.006 0.675 0.005 0.663 0.006 0.824 0.003
Bayes B 0.647 0.005 0.560 0.006 0.673 0.005 0.664 0.006 0.825 0.003
Bayes LASSO 0.666 0.005 0.562 0.006 0.673 0.005 0.664 0.006 0.827 0.003
Random Forest 0.693 0.005 0.626 0.006 0.683 0.004 0.695 0.006 0.851 0.003
Days to maturity (DM) Ridge Regression 0.794 0.004 0.478 0.006 0.301 0.008 0.325 0.009 0.374 0.007
Kinship Gauss 0.808 0.004 0.539 0.006 0.304 0.008 0.320 0.008 0.394 0.007
Bayes Cπ 0.799 0.004 0.495 0.006 0.304 0.009 0.324 0.009 0.379 0.007
Bayes B 0.798 0.004 0.510 0.006 0.289 0.009 0.331 0.009 0.395 0.007
Bayes LASSO 0.797 0.004 0.476 0.006 0.301 0.008 0.329 0.009 0.376 0.007
Random Forest 0.815 0.004 0.531 0.007 0.254 0.009 0.300 0.009 0.407 0.007
100 seed weight (SDW) Ridge Regression 0.893 0.002 0.797 0.004 0.816 0.004 0.898 0.002 0.909 0.002
Kinship Gauss 0.893 0.002 0.798 0.003 0.817 0.004 0.909 0.002 0.912 0.002
Bayes Cπ 0.892 0.002 0.797 0.003 0.817 0.004 0.901 0.002 0.909 0.002
Bayes B 0.887 0.002 0.792 0.004 0.816 0.004 0.903 0.002 0.908 0.002
Bayes LASSO 0.892 0.002 0.799 0.004 0.817 0.004 0.900 0.002 0.909 0.002
Random Forest 0.897 0.002 0.801 0.004 0.815 0.004 0.909 0.001 0.912 0.002
Seed yield (SY) Ridge Regression 0.523 0.006 0.172 0.008 0.166 0.008 0.604 0.005 0.222 0.008
Kinship Gauss 0.522 0.006 0.148 0.008 0.138 0.008 0.602 0.005 0.218 0.008
Bayes Cπ 0.520 0.007 0.175 0.008 0.163 0.008 0.602 0.005 0.216 0.008
Bayes B 0.517 0.006 0.171 0.008 0.168 0.008 0.597 0.005 0.209 0.009
Bayes LASSO 0.524 0.006 0.182 0.008 0.163 0.007 0.598 0.006 0.216 0.008
Random Forest 0.493 0.006 0.186 0.008 0.165 0.009 0.606 0.005 0.205 0.009

SE, Standard Error.