Table 3.
Comparative analysis of prediction accuracies of different GS models for four yield related traits across chickpea population.
ICRISAT-IR-13 | ICRISAT-RF-13 | IARI-IR-13 | IARI-IR-12 | ICRISAT-IR-12 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Correlations | SE | Correlations | SE | Correlations | SE | Correlations | SE | Correlations | SE | |
Days to flowering (DF) | Ridge Regression | 0.665 | 0.005 | 0.556 | 0.006 | 0.674 | 0.005 | 0.663 | 0.006 | 0.823 | 0.003 |
Kinship Gauss | 0.707 | 0.005 | 0.635 | 0.005 | 0.673 | 0.005 | 0.701 | 0.006 | 0.847 | 0.003 | |
Bayes Cπ | 0.663 | 0.005 | 0.564 | 0.006 | 0.675 | 0.005 | 0.663 | 0.006 | 0.824 | 0.003 | |
Bayes B | 0.647 | 0.005 | 0.560 | 0.006 | 0.673 | 0.005 | 0.664 | 0.006 | 0.825 | 0.003 | |
Bayes LASSO | 0.666 | 0.005 | 0.562 | 0.006 | 0.673 | 0.005 | 0.664 | 0.006 | 0.827 | 0.003 | |
Random Forest | 0.693 | 0.005 | 0.626 | 0.006 | 0.683 | 0.004 | 0.695 | 0.006 | 0.851 | 0.003 | |
Days to maturity (DM) | Ridge Regression | 0.794 | 0.004 | 0.478 | 0.006 | 0.301 | 0.008 | 0.325 | 0.009 | 0.374 | 0.007 |
Kinship Gauss | 0.808 | 0.004 | 0.539 | 0.006 | 0.304 | 0.008 | 0.320 | 0.008 | 0.394 | 0.007 | |
Bayes Cπ | 0.799 | 0.004 | 0.495 | 0.006 | 0.304 | 0.009 | 0.324 | 0.009 | 0.379 | 0.007 | |
Bayes B | 0.798 | 0.004 | 0.510 | 0.006 | 0.289 | 0.009 | 0.331 | 0.009 | 0.395 | 0.007 | |
Bayes LASSO | 0.797 | 0.004 | 0.476 | 0.006 | 0.301 | 0.008 | 0.329 | 0.009 | 0.376 | 0.007 | |
Random Forest | 0.815 | 0.004 | 0.531 | 0.007 | 0.254 | 0.009 | 0.300 | 0.009 | 0.407 | 0.007 | |
100 seed weight (SDW) | Ridge Regression | 0.893 | 0.002 | 0.797 | 0.004 | 0.816 | 0.004 | 0.898 | 0.002 | 0.909 | 0.002 |
Kinship Gauss | 0.893 | 0.002 | 0.798 | 0.003 | 0.817 | 0.004 | 0.909 | 0.002 | 0.912 | 0.002 | |
Bayes Cπ | 0.892 | 0.002 | 0.797 | 0.003 | 0.817 | 0.004 | 0.901 | 0.002 | 0.909 | 0.002 | |
Bayes B | 0.887 | 0.002 | 0.792 | 0.004 | 0.816 | 0.004 | 0.903 | 0.002 | 0.908 | 0.002 | |
Bayes LASSO | 0.892 | 0.002 | 0.799 | 0.004 | 0.817 | 0.004 | 0.900 | 0.002 | 0.909 | 0.002 | |
Random Forest | 0.897 | 0.002 | 0.801 | 0.004 | 0.815 | 0.004 | 0.909 | 0.001 | 0.912 | 0.002 | |
Seed yield (SY) | Ridge Regression | 0.523 | 0.006 | 0.172 | 0.008 | 0.166 | 0.008 | 0.604 | 0.005 | 0.222 | 0.008 |
Kinship Gauss | 0.522 | 0.006 | 0.148 | 0.008 | 0.138 | 0.008 | 0.602 | 0.005 | 0.218 | 0.008 | |
Bayes Cπ | 0.520 | 0.007 | 0.175 | 0.008 | 0.163 | 0.008 | 0.602 | 0.005 | 0.216 | 0.008 | |
Bayes B | 0.517 | 0.006 | 0.171 | 0.008 | 0.168 | 0.008 | 0.597 | 0.005 | 0.209 | 0.009 | |
Bayes LASSO | 0.524 | 0.006 | 0.182 | 0.008 | 0.163 | 0.007 | 0.598 | 0.006 | 0.216 | 0.008 | |
Random Forest | 0.493 | 0.006 | 0.186 | 0.008 | 0.165 | 0.009 | 0.606 | 0.005 | 0.205 | 0.009 |
SE, Standard Error.