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Spatially differentiated trends in 
urbanization, agricultural land 
abandonment and reclamation, 
and woodland recovery in Northern 
China
Chao Wang, Qiong Gao, Xian Wang & Mei Yu

Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial 
for understanding mechanisms of LCLUC and assisting land use planning and conservation. China 
has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-
scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent 
decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying 
mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite 
imagery, we proposed a land change detection method to capture significant land change hotspots over 
Northern China during 2001–2013, and further analyzed temporal trends and spatial patterns of LCLUC. 
We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. 
The process was especially strong in North China Plain with 14,057 km2 of urban gain and −21,017 km2 
of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were 
reclaimed. Substantial recovery of forests (49,908 km2) and closed shrubland (60,854 km2) occurred in 
mountainous regions due to abandoned infertile farmland, secondary succession, and governmental 
conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information 
to support effective environmental policies towards sustainable development.

Since the Industrial Revolution, the growing pace and intensity of human activities have profoundly accelerated 
the land cover/land use changes (LCLUC)1,2. As a major driver of climatic and environmental changes from local 
to global scales3,4, LCLUC has received global concerns and become an important challenge in the studies of 
coupled human and nature systems5,6.

LCLUC alters landscape structure7, surface energy balance8, soil properties9, and water and nutrient cycles10,11, 
and thus impacts ecosystem services12 and climate8,13. LCLUC also raises the vulnerability of humans to natural 
disasters14. For example, the human settlements close to forest interiors make the populations vulnerable to the 
wildfire hazards15. In addition, economic globalization induces tight connection of LCLUC around the world: 
Rapid forest recovery in wealthy countries is often associated with massive deforestation in others via world 
trade16.

Monitoring LCLUC and exploring their spatial pattern dynamics have drawn much attention recently6. 
Remote sensing imagery has been used to assess the LCLUC due to its high consistency across spatiotemporal 
scales17. Early LCLUC studies were based on imagery of low spatial resolution at 1 km or above, but it is com-
mon today to use resolution at 30 m or less18. Based on the land cover derived from Landsat images, Etter et al. 
identified hotspots of deforestation and reforestation at local scale during a time period by subtracting the forest 
cover of the starting year from that of the ending year19. Since land cover recognition based on spectral reflec-
tance of remote sensor is strongly affected by extreme climate events such as El Niño, land change detection by 
Etter et al.’s methods may be prone to extreme climate events at the starting or ending year. To compensate, the 
trajectory-based change detection was proposed to identify land changes between forest and non-forest using 
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Normalized Difference Vegetation Index (NDVI) time series20. Furthermore, significant land change hotspots 
were detected by means of linear regression to fit slopes of land cover time series at the municipality scale21. 
However, the spatial heterogeneity of land changes within municipalities is ignored, and the temporal slope of 
land cover change strongly depends on the size of municipalities which could bias the associated spatial pattern of 
land change in a region. Therefore, it is critical to conduct land change trend analyses at fine and consistent scale 
in order to capture the hotspots and to reveal the underlying mechanisms.

China has been under unprecedented economic growth, massive population migration, and enormous land 
change over the past decades22,23. The fast-growing economy gave rise to the off-farm employment opportunities 
in cities and towns24, resulting in changes in demographic structure and composition across China25,26. Urban 
expansion, especially in the coastal and provincial cities, increased pressures on limited land resources in subur-
ban and incurred loss of vegetation for impervious surface27,28. At the same time, the industrialization accelerated 
the marginalization of the inferior farmland especially in central west China due to the rising costs of farming29. 
Furthermore, growing demand for forest products enhanced the competition between forestry and agriculture24. 
The economy pushed the farmland in less favorable areas (e.g., steep slope areas) out of agricultural production.

Recognizing the consequences of environmental degradation and crisis, the Chinese government imple-
mented a number of ecological restoration policies to promote the conversion of inappropriate farmland to grass-
lands and forests30. For instance, the Natural Forest Conservation Program (NFCP) and the Grain for Green 
Program (GFGP) fund the farmers for restoring ecosystem services31. Specifically, the NFCP protects and con-
serves natural forest by closing mountains, banning commercial logging, and providing incentives for affores-
tation. GFGP subsidizes farmers to convert marginal farmland to forest or grassland. Under the main trend of 
agricultural abandonment, reclamation of new farmland occurred in areas suitable for machine farming. The 
above processes and activities profoundly altered the spatial pattern of landscapes. However, there is limited 
knowledge about the spatial distribution of the rates and magnitudes of LCLUC in contemporary China. It is 
important to develop a land change detection method to explore spatial patterns of LCLUC and to quantify the 
rates and magnitudes of land change.

In this study, we mapped the yearly land cover of Northern China for 2001–2013, and proposed a method to 
detect land change hotspots by computing the temporal slope and magnitude of land cover changes. We explored 
the land change spatial patterns and tested the following hypotheses to answer the question of “where” and “how” 
LCLUC were occurring in Northern China: (1) urban expansion has pressured limited land resources around the 
coastal and provincial cities with the loss of fertile arable land, (2) new farmland has been reclaimed to meet the 
needs, and (3) forest recovery has occurred around the rural mountain areas due to the polices of conservation 
and the abandonment of farmland.

Methods
Study area. The Northern China (NC), geographically ranging over 32.47°–53.55°N and 73.84°–134.77°E 
and varying from 0 to 4,911 m a.s.l. in elevation (Fig. 1), stretches from the humid monsoon region in the east 
to the arid continental region in the west, and features great longitudinal rainfall gradient and diverse zonal veg-
etation types. The southwest of NC is bounded by the Qinghai-Tibet Plateau. NC covers most transitional area 
among the three major natural zones of China, i.e., the eastern monsoon zone, the northwestern arid and semi-
arid zone, and the Qinghai-Tibet alpine zone. With the total area of 4,566,804 km2, NC supports approximately 
5.8 billion people in 1,300 counties belonging to 16 provinces at the year of 201032. Ecological restoration policies 
have been implemented since 1998 to control land degradation and soil erosion, and to protect the natural for-
ests17. Governmental programs in this region have encouraged the conversion of existing inferior agricultural 
land to forest, scrubland, or grassland.

LCLU Mapping. The LCLU classification methodology in this study is generally outlined by Wang et al.17 
with modifications to fit the study at subcontinental scale. One important step of classification is to obtain the 
ground reference data in order to train the classifiers and to validate the classification. According to the visual 
interpretation schema in the previous studies17,33,34 and relevant literatures35,36, we intend to classify land cover 
into deciduous broadleaved forest (DBLE), deciduous needle-leaved forest (DNLE), evergreen broadleaved forest 
(EBLE), evergreen needle-leaved forest (ENLE), mixed forest (MIXED), closed shrubland (CLSH), open shrub-
land (OPSH), grassland (GRAS), sparse vegetation (SPAS), urban area (URBN), agricultural land (AGRI), bare 
ground (BARE), permanent snow cover (SNOW), and water (WATR). In this study, a total of 14,909 ground 
reference points were collected by means of a similar approach used in our study on the Agro-Pastoral Transition 
Band in Northern China17. The ground reference points were identified in a semi-random manner with the fol-
lowing criteria to minimize the spatial autocorrelation and the effects of triangular PSF (point spread function) 
along the scan direction37 of MODIS sensor: 1) the distance between any pair pixels is greater than 1,500 m, and 
2) each reference point as a MODIS pixel is located within a uniform land cover patch on Google Earth images. 
The process of reference point identification was aided by the historical vegetation maps38, the high resolution 
images and user-pinned photos on Google Earth (GE), and the species distribution information from Flora of 
China (http://www.eflora.cn/). We listed the typical remote sensing images, corresponding ground photographs 
(available at Google Earth), and brief description of locations for the LCLU types within Northern China in a 
table (Supplementary Table S1).

Seasonal MODIS reflectance of blue, red, near infrared and mid infrared bands and vegetation indices (VIs), 
as well as the phenological parameters derived from the MODIS EVI (Enhanced Vegetation Index) product 
(MOD13Q1, 16-Day Level 3 Global 250 m SIN Grid, Collection 5)39, were used as variables to classify LCLU for 
each calendar year from 2001 to 2013. In addition, topographic features, such as elevation, slope, and aspect, were 
included to complement the remote sensing data due to their important roles in vegetation distribution.

http://www.eflora.cn/
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Due to the great difference in environments, we divided our study area into north-northeast (NNE) and 
northwest (NWC) sub-regions with overlaysas as illustrated in upper left of Fig. 1, and then trained and tested 
the classifier for each sub-region separately. Specifically, for each sub-region, we extracted the abovementioned 
variables for the ground reference points and randomly split the points into two subsets: 70% for training and the 
remaining for testing. For the training subset, we formed three combinations of predicates as the training inputs: 
C1 includes the growing-season statistics of MODIS reflectance and VIs, the phenology parameters, and the 
topographical features; C2 is a modification of C1 by substituting four-season statistics of VIs for the phenology 
parameters; and C3 encompasses all the variables in C1 and C2. Random forest (RF) classifier was used in this 
study because RF was proved to be more robust and efficient than other classifiers17. RF was trained and tested by 
each of the three datasets to obtain three classification models for each sub-region. We quantified classification 
accuracy using overall classification accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and Kappa 
statistics. For each sub-region, we applied the three models separately and derived the LULC classification maps 
as well as the corresponding class membership probability datasets at pixel level. If the classification was consist-
ent across three models, the final classification for the pixel was set to the agreed LCLU type (occurred for most 
of the pixels). If not consistent, Bayesian-average integration was applied to set the final LCLU type according to 
the classified type and the corresponding membership probability of each model. This approach was proved to 
yield high accuracy in LCLU mapping17. The classification results for the two sub-regions were finally mosaicked 
to obtain the LCLU maps for the whole Northern China.

Trend Analyses to identify LCLUC hotspots. Hotspot analyses focused on the land conversions among 
AGRI, BARE, CLSH, FORE (including all forest types), GRAS, OPSH, SPAS, and URBN. Hotspots of land change 
were identified based on the rate of change over the 13 years. We modified the LCLUC hotspots detection used 
in LCLUC for the Latin America and the Caribbean regions21,40 by linear regression for each big grid cell. The 
approach intended to catch spatial heterogeneity of LCLUC at local scales and to provide unbiased mapping of 
temporal trend of LCLUC. Specifically, we first calculated the fractions of the eight land cover types in each big 
grid cell of 2.5 ×  2.5 km2 (10 ×  10 MODIS pixels, Fig. 2). The size of the big grid cell was proved to minimize the 
‘speckle’ in land cover maps and to capture the trend of LCLUC19. This allowed us to obtain a time series of annual 
land cover fractions for each big grid cell. Simple linear regression of the land cover fraction series on years 
enabled us to obtain a trend slope with associated significance (p-values). Gain or loss of each land cover type 

Figure 1. Study Area of Northern China. The upper left panel shows two sub-regions for land cover 
classification purpose: northwest China (in pale orange) and north-northeast China (in light green) with an 
overlay in the middle (in lime green). The bottom panel presents the 7 biomes distributed in northern China 
(Data sources: The Nature Conservancy, 2012. tnc_terr_ecoregions: vector digital data available at http:// maps. 
tnc. org/ gis_ data. html; Metadata available at http:// maps. tnc. org/ files/ metadata/ TerrEcos. xml). Map created using 
ArcGIS 10.0 (Esri, CA, www.esri.com).

http://maps.tnc.org/gis_data.html
http://maps.tnc.org/gis_data.html
http://maps.tnc.org/files/metadata/TerrEcos.xml
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was computed as the significant slope (p-value <  0.1) multiplied by the time interval of 13 years (Fig. 2). We also 
estimated the uncertainties of the net land change by multiplying the standard error of the slope by 13 to give the 
one standard deviation of the net land cover change, SDLCC.

We further analyzed the land change hotspot at large scales by overlaying the land change raster with a biome 
map to quantify the overall rates of change at different biomes. Spatial patterns of urbanization, agriculture aban-
donment and reclamation, and reforestation were explored to reveal the interrelationships. In specific, relation-
ship between urbanization and farmland displacement was obtained by calculating areas of net land transfer 
within Jing-Jin-Ji Urban Agglomeration, one of the three largest urban agglomerations in China. We also illus-
trated the land changes between agriculture and grassland, and the shift from shrubland to forest. Specifically, we 
quantified the woodland (including shrubland and forest) dynamics in three montane areas: Lüliang Mountains, 
Taihang Mountains, and Yan Mountains.

Results
Accuracy of LCLU mapping. Among the three input datasets, the highest overall accuracies and Kappa 
statistics were achieved for the predicator combination 3 which included the reflectance, VIs, phenology, and ter-
rain information for both NNE and NWC sub-regions (Table 1). The average overall accuracies were 85.1± 0.6% 
and 87.2± 1.2% for NNE and NWC, respectively. Classification accuracies were higher for AGRI, BARE, EBLE, 
SNOW, URBN, and WATR than for other land cover types. The forest covers in NWC had relatively high accura-
cies with average PA of 91.5% and UA of 95.4%, due to the strong contrast between forest and desert vegetation in 
NWC. Specifically, DNLE had greater than 90% accuracies for C2 and C3 in NWC, whereas only less than 70% in 
NNE since DNLE in NNE was likely to be mixed with DBLE. PA for MIXED was relatively lower (62~67%) than 
those of other land cover types.

Trend of land cover changes. Forest and closed shrubland in Northern China (Fig. 3A) increased substan-
tially during 2001–2013 period with a net gain of 49,908 km2 (8.5% of 2001) and 60,854 km2 (20.5%), respectively. 

Figure 2. Illustration of land changes in the big grid and linear regression for each land cover type (e.g. 
forest land change). Land cover in a series of big grids (A); Each big grid cell contains 10 ×  10 land cover pixels 
(B); Forest cover dynamics as a time series in one big grid cell (C); Regression of forest cover on time (D). NG, 
net gain, NL, net loss.
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Likewise, urban expanded with a net gain of 23,129 km2 (91.7%). Net gain of these land cover types costed mas-
sive declines of bare ground, open shrubland, and sparse vegetation summed to a total of 98,262 km2 (− 5.1%). 
Agriculture and grassland also lost 4,140 km2 (− 0.5%) and 2,576 km2 (− 0.3%), respectively.

Land cover change differs among biomes (Fig. 3B–H). Although urban expansion was observed in all biomes 
except boreal forests (BF), approximately 76% of urban gain was concentrated in the temperate broadleaf and mixed 
forests biome (TBMF). Agriculture declined greatly in TBMF (− 34.3 ×  103 km2), but gained in the flooded grass-
lands biome (FG, or wetland) (13.2 ×  103 km2) and the deserts and xeric shrublands biome (DXS) (21.7 ×  103 km2), 
which incurred the loss of grassland in FG, and the loss of bare ground and sparse vegetation in DXS. The forest 
cover increased in all biomes except BF, FG, and DXS where forest cover encountered slight decrease. Forest gain 
ranged from 1,659 km2 in the montane grasslands and shrublands biome (MGS) to 39,551 km2 in the TBMF biome. 
The closed shrubland increased, but the open shrubland decreased in the biomes of TBMF, temperate grasslands 
and shrublands (TGS), and MGS. The sparse vegetation decreased greatly in the biomes of TGS, MGS, and DXS.

Spatial patterns of land cover change hotspots. Urbanization and Agriculture Conversion. The 
spatial patterns of land cover change (Fig. 4) indicated that the significant loss of agricultural land in North 
China Plain (with the boundary in red) during 2001–2013 was associated with urban expansion around the 
provincial capital cities. This association was especially strong for the Jing-Jin-Ji (Beijing, Tianjin, Hebei) Urban 
Agglomeration (as labeled with blue boundary) which pioneered urbanization in China. We calculated net 
changes of the two land cover types within the Jing-Jin-Ji Urban Agglomeration. The results showed a tremen-
dous urban expansion of 6,387 km2, but a massive loss of 6,601 km2 of fertile agricultural land in the Urban 
Agglomeration. The cities of Tianjin, Tangshan, Beijing, and Shijiazhuang had high urban expansion speed dur-
ing 2001–2013 with the net gain of 1,183, 1,062, 700, and 638 km2, respectively.

Agricultural Reclamation. In contrast to loss of agricultural land around cities, new agricultural lands were 
also reclaimed to sustain food production in northeast China. Areas with significant agriculture gain (Fig. 5A) 
approximately matched those with grassland loss (Fig. 5B). The new agricultural lands were mainly located in 
the northeastern Sanjiang Plain, the north and southeast edge and west of Songnen Plain, and the northwestern 
Liaohe Plain (Fig. 5A). The net gain of agricultural land and net loss of grassland in Sanjiang Plain were 12,523 
and 12,399 km2, respectively, thus almost all these new agricultural reclamations were in the price of grassland 
loss. Contrary to the gain in the plains and lowland, agriculture in upland (around the 1,000-meter contour in the 
bottom left of Fig. 5A) declined and was converted to grassland, closed shrubland, or forest.

Significant agricultural land expansion (Fig. 6A) was also detected in Xinjiang province with arid environ-
ment. The comparison of the agriculture gain in Fig. 6A to the land cover changes in Fig. 6B–E revealed that 
the gain in agriculture was associated with the loss in shrubland, sparse vegetation, and bare ground. The total 
agricultural land gain of 25,418 km2 in Xinjiang mainly came from the previous closed shrubland (− 4,527), open 
shrubland (− 5,797), sparse vegetation (− 6,421), and bare ground (− 5,840).

Woodland Recovery. The spatial patterns of net forest change for 2001–2013 (Fig. 7A) showed regional heteroge-
neity. Forest gains were mainly occurring in the mountains. A comparison between Fig. 7A and B revealed forest 
recovery advanced into the previous closed shrubland. Forest gains in Lüliang Mountains and Taihang Mountains 

Producer’s Accuracy (%) User’s Accuracy (%)

NNE (training: 9,881) NWC (training: 8,927) NNE NWC

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

AGRI 94.0 94.4 94.4 91.3 91.6 91.9 93.7 94.4 94.9 91.0 91.0 92.2

BARE 86.8 87.4 86.3 92.6 94.0 93.3 94.0 97.0 96.9 96.7 97.8 97.8

CLSH 78.4 78.8 80.8 78.9 80.2 81.0 82.0 82.7 83.4 78.9 78.8 80.7

DBLE 88.6 87.5 89.0 90.3 90.3 88.7 73.7 74.8 73.8 98.2 100 100

DNLE 62.9 67.4 65.2 79.7 91.6 93.0 67.5 69.8 69.9 95.0 95.6 96.4

EBLE 88.3 88.3 88.3 — — — 93.2 90.7 91.9 — — —

ENLE 80.7 79.4 81.2 96.7 96.7 96.7 87.8 86.8 88.3 88.2 92.8 92.8

MIXED 62.4 66.9 65.4 — — — 80.6 80.9 82.9 — — —

GRAS 84.4 87.0 86.2 84.1 85.7 84.8 82.5 85.2 84.7 82.9 86.1 84.4

OPSH 74.2 77.3 77.3 79.2 81.2 81.6 75.0 75.7 75.7 70.7 71.0 71.6

SNOW 100 100 100 100 100 100 96.9 96.9 96.9 97.9 97.9 98.3

SPAS 83.1 85.1 86.2 74.6 76.3 76.3 71.7 73.1 72.7 79.9 84.2 83.4

URBN 90.5 89.0 88.0 91.6 91.6 92.9 93.8 93.7 94.1 94.0 93.4 92.9

WATR 93.9 94.6 93.9 93.9 93.0 93.9 100 100 100 99.1 100 100

OA 84.5 85.4 85.5 86.0 87.7 87.8

Kappa 82.8 83.9 84.0 87.4 88.9 89.0

Table 1.  Classification accuracies for two sub-regions with three input datasets (NNE: north-northeast; 
NWC: northwest).
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reached 2,611 and 3,789 km2, in the price of declined closed shrubland (the major contributor, Fig. 7B) of 2,093 
and 3,437 km2, respectively. However, the woodland dynamics in Yan Mountains was different: Forest gained in 
the south and middle of the mountains by 8,531 km2 which incurred the loss of 3,925 km2 of closed shrubland 
mostly in the south, but closed shrubland gained in the central mountains.

Discussion
Methodology and Uncertainty. We adopted and modified a robust LCLU classification method to incor-
porate multiple classification models and posterior data fusion17. This LCLU mapping was based on a reliable 
ground reference data collection strategy and could yield high statistical accuracy, and provided pixel-level 
uncertainties which were essential for subsequent analyses and applications. We implemented a hotspot detection 
method of LCLUC at big grid cells, rather than at municipalities. The hotspot detection in previous studies21,40  
at municipality level ignored the spatial heterogeneity within municipalities and could bias the land change 
trend and associated spatial pattern due to the inconsistent municipality size. Slope and change based on linear 

Figure 3. Land cover net gain and net loss in Northern China (NC, panel A) and in the seven biomes in NC 
(panels B–H. (B) Boreal Forests, (C) Temperate Broadleaf and Mixed Forests, (D) Temperate Conifer Forests, 
(E) Temperate Grasslands and Shrublands, (F) Flooded Grasslands, (G) Montane Grasslands and Shrublands, 
(H) Deserts and Xeric Shrublands). Map created using ArcGIS 10.0 (Esri, CA, www.esri.com).
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regression are less prone to the error caused by extreme climate events than the approach to take the difference 
between the beginning and ending years. Furthermore, the standard error of the regressed slope allowed us to 
assess the significance and uncertainty in the land cover changes at big grid level. The modified LCLU mapping 
and the improved hotspot detection contributed to the mechanistic understanding of LCLUC dynamics and per-
tinent socioecological consequences at regional to global scales. Policy makers could also be benefited to propose 
rational land use policies that balance between human demands and environment protection for sustainable use 
of land resources.

There exist limitations with the proposed LCLUC hotspot detection. We could not detect the changes at 
scales less than 5.3 ha due to the medium spatial resolution of MODIS images. Another limitation is that the 
linear regression is unable to catch the nonlinear LCLUC caused by severe disturbances. In the assessment of 
uncertainties of forest change, we showed (Supplementary Figure S2) that 87.7% of the big grid cells had their 
estimated errors of net forest change lower than 1 km2. This is the case for mountainous area such as Taihang 
and Lüliang Mountains where forests spontaneously regenerated so that the estimated errors were relatively low 
(Supplementary Figure S2). The estimated errors could be large when there were disturbances such as fire (Sites 
A, B, C in Fig. S2). For example, site A encountered a fire disturbance in 2003, spread from the grassland in the 
west, and thus showed a high error41.

Urbanization and Agricultural Lands Replacement. Other than urban sprawl in most developed 
countries (e.g., US)42,43 or excessive urbanization in the developing countries in Latin America44, urbaniza-
tion in China is characterized by rapid and excessive land conversion which is often ahead of urban popula-
tion growth45,46. According to our result, urban lands expanded significantly with associated neighborhood 
agricultural land decline during 2001–2013 in Northern China, especially in the Plains (e.g. North China Plain 
and Northeast China Plain, Fig. 4A and B), which concurred with existing studies28,47. The net urban gain of 
23,129 km2, an increase of 91.7%, is also comparable with the report in the literature48. Neighborhood farmlands 
replacement by urban expansion could be attributed to the rapid growing economy in China, which leads to a 
rise in both the off-farm employment opportunities and the income of secondary and service sectors. The trend 
of economy is especially strong in the coastal and provincial cities (red dots in Fig. 4), and has incurred rural 
population to surge continuously into cities23,49. In addition, the much higher land price in cities than in rural 
areas stimulates the advance of cities towards rural neighborhoods, which swallows up fertile farmland but boosts 
the governments’ revenues28,50. The incomes from land conversion, as high as 30–70% of municipal revenue in 
many cities, are invested in the facilities and infrastructures of the cities28,51 which in turn creates jobs and leads 
to further urban expansion. Facing risks of food security and urbanization foam, the Chinese government has 
implemented policies and laws aiming at halting the loss of farmland and regulating the real estate market46,49. 
The effect of agricultural protection policies on land conversion is not imminent, however, the spatial growth of 
urban area has slowed down49.

Figure 4. Net changes of agriculture (A, AGRI) and urban area (B, URBN) from 2001 to 2013 in a part of 
north-northeast China. The land change is significant for p-value <  0.1. BJ, Beijing, TJ, Tianjing, and SJZ, 
Shijiazhuang. Map created using ArcGIS 10.0 (Esri, CA, www.esri.com).
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Agricultural Lands Abandonment and Reclamation. Global agriculture towards mechanization and 
intensification43,52 is accompanied with abandonment of marginal farmlands53,54. In addition to the neighborhood 
farmlands loss due to urbanization, our results revealed high spatial heterogeneity in agricultural land change pat-
terns across Northern China. The agricultural land decreased in the eastern and central mountain regions, merely 
changed in those basic farmland protection areas set up by the central government in the Plains, but significantly 
increased in the flat regions of the northeastern (e.g., Heilongjiang province, Fig. 5A) and the northwestern (e.g., 
Xinjiang province, Fig. 6A) China. The newly reclaimed agricultural land offsets the loss induced by urban expan-
sion and agricultural abandonment, resulting in no significant increasing or decreasing trends for the total area 
of farmland in Northern China (p-value =  0.7).

In general, agricultural abandonment can be ascribed to the facts that: the remote smallholders were out-
competed by the large enterprises due to lack of access to markets, investment, and new farming technology55, 
and the economically attractive off-farm jobs pulled the labors out of farming24,55. In China, in addition to dis-
placing farmland (Fig. 4), the growing economy and associated urbanization promote the labor costs and the 
rural-to-urban migration, and thus accelerate the marginalization of the inferior farmland29,47. Long-term irra-
tional cultivation at steep slopes causes soil erosions and fertility degradation, and some degraded farmlands were 
therefore abandoned to give way to natural recovery56. Many ecological restoration policies also fund the farmers 
to convert the inferior or marginal farmland to forest or grassland. Farmland abandonment in China could be 
attributed to economic development, rural-urban-migration, land degradation, and ecological restoration poli-
cies and programs.

The rising food demands for a growing population have stimulated the reclamation of new farmland suitable 
for machine farming. Our results are consistent with the reports that farmland (i.e., paddy rice) in the east-
ern Sanjiang Plain expanded significantly due to the conversion of large flat grasslands (e.g., marshes) since 
late 1980 s22,57,58. Technology advances make it possible to expand farming in dryland of Spain by large farming 

Figure 5. Net changes of agriculture (A), grassland (B), closed shrubland (C), and forest (D) from 2001 to 2013 
in northeast China. Changes are significant with p-value <  0.1. Map created using ArcGIS 10.0 (Esri, CA, www.
esri.com).
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enterprises to maximize the use of dry and sunny areas with high productivity potentials55. In this study, we found 
a similar phenomenon that the farmland reclamation and the state farms sector reached high mechanized level 
in the arid and semi-arid region of Xinjiang province (Fig. 6A), where the drylands were previously only suitable 
for grazing. Yi et al.58 reported that more than 3,725.93 km2 unused land were converted to farmlands in Xinjiang 
during the period of 2000–2010, which concurred with our result that the farmlands had largely expanded into 
bare grounds, sparse vegetation lands, and shrublands (Fig. 6B,C,D and E).

Woodland Change Dynamics. Global forest cover undergoes continuous decline, whereas forest changes 
present spatiotemporal heterogeneity among countries. Deforestation has been dominant in tropical regions since 
1980 s1,59. However, reforestation has emerged in many temperate countries and also some tropical areas after a 
long-term decline, such as European countries60,61, United States62,63, India64, and Puerto Rico7. Forest Transition 
theory was proposed to understand the mechanisms of forest dynamics shifting from deforestation to reforest-
ation in a country65. Economic growth and forest scarcity are highlighted in the Forest Transition theory, which 
ascribed forest recovery to the rural-to-urban migration and the rising farming costs24.

China has experienced extensive forest recovery since 1980s22,66. Huge afforestation programs and forest pro-
tection policies are believed to take important roles in this process17,31. Our results supported that afforestation 
and reforestation prevailed in Northern China with significant woodland expansion around the mountains over 
the period of 2001–2013 (Figs 3, 5 and 7). The increasing trend of the total area of woodland in Northern China 
is significant at p <  0.001. Forests and closed shrublands gained in this period (Fig. 3) by 49,908 km2 or 8.5% 
and 60,854 km2 or 20.5%, respectively. These substantial increases in woodland could be a result of the massive 

Figure 6. Net Changes of agriculture (A), grassland (B), closed shrubland (C), open shrubland (D), and sparse 
vegetation (E) from 2001 to 2013 in the northwestern China. Land changes are significant with p-value <  0.1. 
Map created using ArcGIS 10.0 (Esri, CA, www.esri.com).
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rural-to-urban migration, the abandoned marginal farming in low-hilly regions, and the governmental subsidy 
to farmers for conservation67. The abandoned farmlands were either planted with trees or gradually replaced 
by spontaneous growth of grass, shrubs, and trees via secondary succession17. For instance, in most regions of 
Lüliang Mountains and Taihang Mountains and the southern region of Yan Mountains, the forest gains were 
achieved primarily from the previous closed shrubland (Fig. 7). Existing remnant trees in forest patches in the 
mountains not only serve as seed sources but also attract animal dispersers68, and thus could accelerate spon-
taneous regeneration of secondary forest. Technically, the planted saplings are likely to be classified initially as 
shrubland by remote sensing but later as forest when the trees grow up. In the middle region of Yan Mountains, 
both the closed shrublands and the forests expanded rapidly. It implies that the woodland expansion might be 
accomplished not only by spontaneous regeneration via succession but also by afforestation due to programs and 
policies, such as BTSSCP (Beijing and Tianjin Sandstorm Source Control Project) and GFGP implemented in 
this region (Supplementary Figure S1). In addition, recent increasing trend of rainfall in Northern China might 
also favor the regrowth of woodlands (unpublished data). This conclusion was supported by others who reported 
vegetation increased over the most BTSSCP region during 2000–201069. The woodland recovery in mountainous 
areas proves the effectiveness of the ecological restoration policies and could guide future policy making.
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