Figure 3. Brain regions involved in scene prediction.
RO, rolandic operculum; SFG, superior frontal gyrus; IPG, inferior parietal gyrus; PC, precuneus; TP, temporal pole. (a) Mean absolute weight value in the naïve eight-class encoding (whole-scene model, see Fig. 2e). The weight value was normalized across regions of interest (ROIs) within each participant into a Z-score with a mean of 0.0 and standard deviation of 1.0. The abscissa indicates brain ROIs according to a list identified by automated anatomical labelling31. Each small, grey dot corresponds to a single participant, and each black, large one to the median of all participants. A unilateral statistical test was applied to 90 brain regions individually. The significance level was set at the square root of 5% with Bonferroni correction for multiple comparisons; if a pair of bilateral regions are independently significant, the pair becomes significant with p < 0.05 (corrected). In addition, a bilateral statistical test was applied to 45 bilateral brain regions with p < 0.005 (unc.). (b) Predictable-voxel maps showing overlap of the voxels consistently involved in the whole-scene model, plotted on the inflated brain surface. Bright parts consist of voxels involved in scene prediction in the full encoding model in at least 4 out of 7 participants; a statistical significance threshold of uncorrected p < 0.05 (r > 0.21) was required in each participant. The pie charts show the rates of bright-coloured voxels in the respective brain ROIs. (c) Spatial distributions of the voxels contributing to decoding scene predictions. Coloured voxels show those with a statistically significant information gain index (IGI) for at least 3 out of 7 participants, and hence those that would be incorporated into the scene prediction process; the significant voxels (see Data-driven analysis) in terms of the IGI are plotted; their colours correspond, respectively, to the different view parts (forward-left: ‘Left’, forward-centre: ‘Centre’ and forward-right: ‘Right’). The pie charts show the rates of coloured voxels in respective brain ROIs.