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Abstract

Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on 

the properties of small or large solutes without the complications of explicit simulations. One 

common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety 

of small molecules, since many of these values have been measured. Studies of he temperature 

dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights 

into the performance of implicit solvent models. Here, we show how to compute temperature 

derivatives of hydration free energies for the 3D-RISM integral equation approach. Results for 

1123 small drug-like molecules (both neutral and charged) in water are compared to results from 

molecular dynamics simulations and to experiment. The uncorrected results are rather poor, but it 

is known that errors are strongly correlated with the partial molar volumes of the solutes. We 

examine several linear solvation Gibbs energy correction schemes and extend them to deal with 

solvation ethalpies and entropies.
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1. Introduction

Accurate hydration free energies (HFEs) and entropies are critical to correctly predicting and 

understanding the outcome of most clinically relevant biochemical processes, including drug 

binding affinity and reaction rates. During drug development, experimental measurement of 

solvation thermodynamics is cost prohibitive due to the large number of candidate molecules 

that must be synthesized and tested. This has led to interest in calculating solvation 

thermodynamics using computer simulations. Unfortunately, the most accurate simulation 

methods, such as molecular dynamics (MD) and ab initio quantum mechanical methods 

(QM), use explicit atomic models of the solvent, making them computationally expensive 
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and often take weeks or months to complete a single calculation [1–3] (although estimates of 

relative free energies of binding may be less expensive [4]). In response, faster, less accurate 

simulation methods have been developed which model the solvent as an implicit continuum, 

such as the generalized Born (GB) [5] and Poisson-Boltzmann (PB) [6, 7] methods. While 

PB in particular has had some success in predicting experimental and MD hydration free 

energies, it is unable to predict the location of the solvent molecules about the solute, and 

generally yields rather poor estimates for temperature derivatives [8, 9]. The spatial 

distribution of solvent molecules is often critical to understanding how solvation affects a 

particular reaction and can help improve the design of drug candidates. Statistical 

mechanical methods from liquid-state theory [10], such as density functional theory (DFT) 

[11, 12] or integral equation theories like molecular Ornstein-Zernike (MOZ) [13–15] and 

the reference interaction site model (RISM) [16–18], fill the gap between explicit and 

implicit solvent simulations. These methods typically make use of an atomic model of the 

solvent without explicitly modeling its motion in solution, allowing the methods to predict 

accurate solvent distributions, similar to explicit solvent models, while retaining the 

relatively low computational cost of implicit solvent models.

One promising integral equation method is the 3D-RISM [19–21], which extends the RISM 

to calculate three-dimensional solvent distributions about a solute, at a fraction of the 

computational expense of explicit solvent simulations. A known limitation of the 3D-RISM 

is its poor agreement with experimental solvation energies for small neutral molecules. 

Linear corrections for HNC-like closures have been proposed which increase the accuracy of 

the 3D-RISM solvation energies to be comparable with those of explicit solvent MD. Two 

such linear corrections are the Universal Correction (UC) [21, 22] and the Ng bridge 

correction (NgB) [23], both having correction terms related to the partial molar volume of 

the solvent. These linear corrections have found application both to DFT theories and the 

3D-RISM. Though useful, these corrections have not yet been satisfactorily explained on 

physical grounds and require experimental parameterization to obtain best results. Recent 

work by Sergiievsky et al. [24, 25] has lead to a parameter free correction of similar quality 

to UC and NgB for which several physical explanations have been proposed [24, 26–28]. 

Gaining physical insight into why these corrections are needed may provide a deeper 

understanding of integral equation methods and point towards an analytic means of 

increasing their accuracy beyond what is possible with ad hoc corrections.

In this work we introduce 3D-RISM as a practical method to calculate solvation enthalpies 

and entropies. Used in combination with the aforementioned corrections, good quantitative 

agreement with experiment is achieved. Previously, the only way to obtain such a 

decomposition was using exceptionally taxing MD simulations [29–31], but now the 3D-

RISM can be used to calculate accurate solvation energies and entropies for small molecules 

in a fraction of the time. Further, when compared to experiment, the decomposition indicates 

that the linear solvation energy corrections are mostly correcting the entropic term. Possible 

implications of this on the physical basis for the linear corrections and its relation to HNC-

like closures will be discussed. These results provide insights into the physical realism of the 

3D-RISM and suggest a path a to further improvements in the method.
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2. Theory

2.1. Energy and Entropy

Decomposition of excess chemical potentials into energy and entropic contributions using 

temperature derivatives comes from Yu, Roux and Karplus [32, 33] and has been previously 

applied in a few applications [34–36].

In the canonical ensemble, the excess chemical potential, Δμ, due to a solvent site α is 

composed of the excess partial molar entropy, ΔsT,V, and partial molar energy, ΔεT,V [33]

(1)

To simplify the notation, we will omit T, V from this point on. The entropy can be expressed 

as the temperature derivative of the the excess chemical potential,

(2)

where

(3)

Inserting equation (2) into equation (1) we have

(4)

and

To obtain Δμα and its temperature derivative for a large macromolecule we employ 3D-

RISM [19, 20, 37, 38] to compute the distribution of each solvent site:

(5)
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where h (k) is the total correlation function, c (k) is the direct correlation function,  is 

solvent susceptibility of solvent sites α and γ, precomputed by dielectrically consistent 

RISM (DRISM) [18, 39] and ˙̂ denotes the Fourier transform. Alternatively, this may be 

expressed in matrix notation

(6)

The temperature derivative is obtained by applying equation (3) to the 3D-RISM equation, 

equation (5), giving

(7)

where δTχ̂VV = ρδTĥVV is obtained from 1D-RISM.

equation (6) and (7) require closure equations to calculate a solution and provide an 

expression for Δμα and δTΔμα. The most popular closure equations used in RISM theory are 

the hypernetted chain equation (HNC) [40], Kovalenko-Hirata (KH) [19] and the partial 

series expansion of order-n [41], which all have closed form expressions for the excess 

chemical potential. As the results for HNC and KH can be obtained from PSE-n when n = 

∞ and n = 1 respectively, we will restrict our attention to the PSE-n. Results for all closures 

are in Table 2.

The PSE-n expression for the closures is given as

(8)

and the excess chemical potential as

(9)

where Θ is the Heaviside step function. Applying equation (3) gives
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(10)

The temperature derivative of the closure, necessary to solve the temperature derivative 

integral equation, is

(11)

2.2. Free Energy Corrections

While equation (9) is consistent with the PSE-n closure, in practice, hydration free energies 

calculated from this expression are too high, which has been linked to the non-polar 

component[42–44]. In response to this, a number corrections have been proposed that use a 

modified equation for the excess chemical potential while leaving the predicted solvent 

distributions unchanged.

For brevity, we will focus on the Universal Correction (UC) [45] and the pressure 

corrections known as PC+/3D-RISM [24, 25, 28]. We do not apply the recently developed 

Galvani correction for ions [46]. Details of the Gaussian fluctuations correction (GF) [47, 

48], and the Ng Bridge Correction (NgB) [23] are presented in Appendix A. Temperature 

derivatives of these corrected free energy expressions yield an expression for the solvation 

energy, much like equation (10). Expressions for all these corrections can be found in Table 

1 and Table 2.

2.2.1. Universal Correction—The Universal Correction (UC) is a simple empirical 

correction to the RISM excess chemical potential [45],

(12)

where a and b are parameterized from experimental data and v, the partial molar volume 

(PMV), is calculated from equation (13). In the original presentation, the Gaussian 

fluctuation approximation (GF) [47, 48] was used for ΔμRISM, but subsequent studies have 

used the closure specific excess chemical potential with improved results [23, 49]. In what 

follows either the closure specific or Gaussian fluctuation approximation may be used (see 

Appendix Appendix A.1 for details of the GF temperature derivative). The parameterization 
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must be repeated for any change in solvent composition, temperature or density. The 

expression shows considerable improvement for small, non-polar molecules in pure water.

Chong and Hirata [34] provide the following convenient expression for the PMV

(13)

where χT is the isothermal compressibility for the bulk solvent, calculated as [10, 50, 51]

(14)

For uncorrected excess chemical potential, the non-polar component, , can be 

obtained by setting all partial charges to zero. The polar component is then

For UC, the non-polar component is

where vNP is the partial molar volume of the chargeless solute. The polar component is 

computed as

Since solvent polarization component of the partial molar volume, vPol, is relatively small, 

the polar component of the excess chemical potential is only slightly changed.

In the original formulation, a and b are constants with no temperature dependence. However, 

as we show in Results, including a linear temperature dependence for these coefficients,

(15)
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provides significantly improved results compared to experiment. Applying equation (3) to 

equation (12) we have

(16)

The temperature derivative of the PMV is

(17)

where δTχT is also pre-calculated with DRISM,

(18)

After some algebra, we have

Including this form of temperature dependence does not change the fitting procedure to 

determine a and b needed for hydration free energies. Only two new parameters need to be 

fit, a1 and b0, and can determined by fitting against empirical enthalpies or entropies at a 

single temperature.

The Ng Bridge Correction (NgB) [23] is similar in spirit to UC but contains an explicit 

temperature dependence and only one free parameter. Details of NgB can be found in 

Appendix A.2.

2.2.2. Pressure Correction—It is well known that the HNC family of closures 

overestimate solvent pressures by several orders of magnitude [10, 44]. While the 

mechanical, PΔV, work required to create a cavity for a small molecule is negligible at 

atmospheric pressure, the high pressures from the HNC closure lead to large solvation 

penalties in 3D-RISM. Recent work has sought to compensate for this excess mechanical 

work by subtracting this additional mechanical work from ΔμRISM [24, 28] and has been 

successfully applied to neutral and ionic small molecules [25, 28, 46].

The expression for pressure in these corrections was original proposed for DFT [24],
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(19)

and later 3D-RISM [28]

(20)

where , χT is the calculated isothermal compressibility of the solvent 

and Nsite is the number of sites in the solvent. equation (19) has previously been derived as 

the contact pressure of a hard sphere solvent at an infinite hard wall for both DFT [52] and 

Ornstein-Zernike theory [53] using the HNC closure. These expressions are not the same as 

the bulk pressure calculated from the free energy route [54], which is too low to be used in 

the correction below. In fact, the pressure predicted by equation (20) is approximately 1.6 

times that of the bulk pressure. This discrepancy between the pressure equations is expected 

due to known thermodynamic inconsistencies of the HNC closure [10]. However, it is not 

clear that equation (19) and equation (20) are applicable to a Lennard-Jones potential since 

previous derivations depend on the form of the potential [53].

Taking the PMV as the change in volume, pressure correction expressions for DFT and 3D-

RISM have been proposed with (PC) and without (PC+) the ideal gas contribution included. 

PC+ has been observed to produce superior results for both DFT and 3D-RISM. For 3D-

RISM, the PC+ expression has the form

(21)

For water, Nsite = 3, giving PC+/3D-RISM the same final form as PC/DFT, which is also 

known as the initial state correction (ISc) in the literature [25]. It should be noted that while 

the total PexpV may be negligible, the ideal and excess components are not. In particular, 

Pideal = 1354 atm for water at 298.15 K and 101325 Pa. It is therefore unclear why PC+ 

works better than PC.

As with UC, the polar/non-polar decomposition is straightforward:
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and

The solvation energy is then

2.2.3. Long-Range Asymptotics—In order to compute solutions to equation (6) and (7), 

it is necessary to account for the long-range behavior of electrostatic interactions, which 

cannot be Fourier transformed due to divergence at small k. The use of long-range 

asymptotics [55–57] has been described for 1D-RISM and 3D-RISM [37, 38, 58–60].

As we are only concerned with pure water, we need only consider the long-range behavior of 

cα (r), which is approximated as

(22)

where qα is the charge of solvent site α, Qi and Ri are the partial charge and position of site i 

of NU solute sites, η is the charge smearing coefficient and erf is the error function. 

is subtracted from cα(r) before performing a forward Fourier transform and then

(23)

is added back in reciprocal space.

equation (7) also requires the temperature derivatives of equation (22) and 23:

and
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(24)

3. Methods

3.1. Data Sets and Hydration Energy Data

Several sets of small molecule structures and their experimental hydration energies were 

obtained from previous publications for use in this work. These sets are labeled after the last 

name of one of their publication authors: Abagyan [61], Mobley [62], Rizzo [63], and 

Palmer [45]. Only the Rizzo set contains ionic molecules. Additionally, a solute set of 9 

alkali halide ions was created using parameters from [44]. These sets were combined into a 

single small molecule database, including duplicate molecules whose structures differ due to 

use of different relaxation techniques among published sets.

In total the small molecule database contains 1123 molecules, consisting of 1075 neutral 

molecules, 39 monovalent ionic molecules, and 9 monovalent monoatomic ions, all with 

associated experimental Gibbs energies of hydration. To allow decomposing the enthalpic 

and entropic contributions to the Gibbs energies, experimental enthalpic and entropic 

energies of hydration were collected from the literature. Due to the relative sparsity of 

experimental entropic and enthalpic energies of hydration, only 74 molecules have their full 

experimental energy decomposition data. Datasets are again labeled using the last name of 

the first author: Abraham [64] and Cabani [65] (59 neutral molecules), Fawcett [66] (7 

monovalent ionic molecules), and Marcus [67, 68] (8 monovalent monoatomic molecules). 

All experimental values are reported as being measured in standard thermodynamic 

conditions with temperatures between 298 and 298.15 K.

3.2. Solute Preparation

Antechamber was used to assign partial charges to all molecular atoms using the AM1-BCC 

semi-empirical model and the Amber GAFF [69] force field parameters, except for alkali 

halides which used Joung and Cheatham SCP/E parameters [70]. No structural alterations 

were made to the published molecules. A small set of molecules whose 3D-RISM 

calculations failed to converge were not used for correction model fitting.

3.3. Hydration Free Energy Calculations

All RISM calculations were performed using a modified version of AmberTools 15. 

Modifications will be released as part of AmberTools 16.

3.3.1. 1D-RISM Calculations—One 1D-RISM calculation was performed for each 

desired closure (KH, HNC, and PSE-3) for a total of three 1D-RISM calculations. Each 

calculation used the cSPC/E water model [71] (see Table Table 3) at 298 K on a simulation 

grid of 16,384 grid points separated by a grid spacing of 0.025 Å. Calculations were 

performed with a solvent dielectric of 78.497, water density of 55.345 M, and a target 

residual tolerance for the MDIIS solver set to 10−12.
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3.3.2. 3D-RISM Calculations—The 3D-RISM calculations were performed for the KH, 

HNC, and PSE-3 closures. The 3D-RISM equation and its closure relation were solved on a 

3D grid with infinite dilution boundary conditions. The simulation box was a cube with 30 Å 

side length and 0.3 Å grid spacing. Interaction potentials were given an infinite cut off. The 

modified direct inversion in the iterative subspace (MDIIS) solver was used to increase the 

rate of convergence of the integral equation solution [72]. In order to overcome convergence 

problems with PSE-3 and HNC, closure chaining was used. Here, a solution was obtained 

using a lower order closure and this solution was used as a starting point for solving the 

target closure. For PSE-3, solutions with KH and PSE-2 were used, while for the HNC 

closure, KH, PSE-2 and PSE-3 were chained together.

3.4. Parameter Fitting

Correction model parameters were fitted by bootstrap ordinary least squares (OLS) linear 

regression using the Python statsmodels module (version 0.6.1) [73]. Parameter fitting used 

only empirical data for neutral molecules from the Mobley, Abagyan, Rizzo and Palmer 

datasets. As with bootstrap analysis described below, the original data was resampled with 

replacement to obtain a new data set. An independent OLS fitting was performed on each 

resampled data set. The final values and confidence interval for each parameter was taken as 

the mean and standard error over all best fit parameters for each set or resampled data.

3.5. Model Testing

Testing of corrected and uncorrected expressions, with and without fit parameters, was done 

independently from parameter fitting and employed 1,000 rounds of bootstrap analysis and 

k-fold cross validation.

3.5.1. k-Fold Cross-Validation—The expected goodness of fit of each model, 

independent of the data used to train it, was estimated using k-fold cross-validation. To 

perform k-fold cross-validation, the sample is randomly divided into k equally sized 

subsamples. Each subsample is used once as test data for the model produced using the other 

k − 1 subsamples as training data. The statistics of the resulting k models and their test 

regressions form distributions which can be used to calculate the root mean squared error of 

the R2 regression factor. The error in the R2 factor provides a statistical estimate for the 

effect the particular small molecular solute sample has on goodness of fit of the correction 

regression. For this work k = 10 was chosen and the average taken over 1,000 cross-

validations. Due to the small number of solutes in the Fawcett and Marcus datasets, k-fold 

cross-validation was not performed for the enthalpy/entropy decomposition of ions.

3.5.2. Bootstrap Analysis—Bootstrap regression analysis was used to obtain the 

confidence intervals for the fitted model parameters. In bootstrap analysis, a random sample 

of size N is obtained from the original sample, allowing the same sample member to be 

selected more than once (i.e., sampling with replacement). Regression is performed using 

the resampled data. This procedure is repeated many times. The statistics of the resulting 

regression models form distributions which can be used to calculate the desired confidence 

intervals for the fitting parameters. In this work N was chosen to be equal to the original 

sample size and 1,000 resamples were taken.
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4. Results

In total, eight different corrections were tested with three different closures. Of these, the 

UC(T) and NgB corrections performed well against all closures. PC+/3D-RISM performed 

well with PSE-3 and HNC but not KH. As PC+/3D-RISM was derived for HNC, the poor 

performance with KH is not surprising. The original UC functional, UCGF(T), only 

performed well for the KH closure. Despite adding temperature dependence to the fit 

coefficient, NgBT did no better than NgB. This can be seen in parameterization (see Table 4) 

where γ0 is the dominate contribution to γ. In the case of UCT, the addition of temperature 

dependence to the coefficient is necessary and a1T is the dominate contribution to a at room 

temperature. In this, UCT, NgB and PC+/3D-RISM all give a linear temperature dependence 

to the PMV correction.

None of the three closures used performed significantly better or worse overall with UC(T) 

or NgB. PSE-3 generally has good agreement with experiment and molecular dynamics and 

typically has the same convergence properties as KH when the closure chaining protocol 

described in Methods is used. Furthermore, PC+/3D-RISM worked well with PSE-3 but not 

KH. For these reasons, our discussion focuses on PSE-3 but complete results for all closures 

and corrections can be found in ??. An archive of all Amber input and output files is 

available upon request.

4.1. Hydration Free Energies

As expected, uncorrected 3D-RISM provides poor predictions of the HFE of small neutral 

molecules for all closures (for PSE-3, see Figure 1 and Table 5 and for all closures, see 

Table ??). R2 ranged from 0.218(1) to 0.305(1) for the three closures and the y-intercept, 

MUE and RMSE were approximately 20 kcal/mol or higher.

UC-PSE-3, NgB-PSE-3 and PC+/3D-RISM-PSE-3 all compare favorably to experiment and 

are statistically quite close to MD. Results for UC-PSE-3 and PC+/3D-RISM-PSE-3 are 

extremely close for the PSE-3 closure and have identical slopes. The errors are, overall all, 

lower for UC-PSE-3, which is to be expected since UC-PSE-3 has been fit to the data. 

However, while PC+/3D-RISM performs well for PSE-3 and HNC, it is significantly worse 

with the KH closure, giving errors more than 2 kcal/mol (see Table ??). UCGF, the original 

correction proposed by Palmer et al. [45], gives results similar to UC for KH but shows large 

systematic errors for higher order closures with slopes of 1.30.

There is no clear best overall correction and closure combination, though UC has the lowest 

errors across all closures. We recommend against UCGF for all closures (even for KH, UC is 

better). We also recommend against PC+/3D-RISM for KH, due to the relatively large 

errors.

UC-PSE-3, NgB-PSE-3 and PC+/3D-RISM-PSE-3 all capture the slope of ionic solutes 

approximately as well as they do for neutral solutes and have improved R2 values. In 

absolute terms, the RMSE, MUE and the y-intercept are all significantly worse (see Figure 2 

and Table 6) but the relative errors are similar to those of the neutral compounds.
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It is not immediately clear how much of this error is due to 3D-RISM and how much should 

be attributed to the force field or errors in the experimental data. The relatively simple case 

of monovalent ions highlights the problem (filled triangles in Figure 2). Empirical values are 

available from Refs. [74–76] and have a RMS difference of roughly 3 kcal/mol. We have 

used the Joung-Cheatham parameters [44], which are fit to data from Ref. [74] but, for 

comparison purposes, we use values from Ref. [75, 76]. Other ions in the data set have not 

received the same attention as the alkali-halide ions, contributing to the large absolute errors. 

Due to these uncertainties, the ion HFEs were not used in fitting UC, UCGF or NgB 

corrections.

4.1.1. Comparison Against Molecular Dynamics—Since 3D-RISM and MD 

calculations share nearly the same force field, we might expect 3D-RISM to reproduce MD 

results better than experiment. Comparing Table 7 and Table 5 we see this is the case with 

R2 > 0.9 for all corrections, a significant improvement over the comparison to experiment.

Despite the improved correlations, RMSE, MUE and the absolute y-intercept between PC

+/3D-RISM and MD are larger than those between 3D-RISM and experiment. This is 

despite having despite having improved correlation coefficients and slightly improved 

slopes. This can be understood by observing the y-intercept was negative relative to the 

experimental data while MD over estimated experimental data by 0.64(5) kcal/mol. This 

relative shift then contributes to the RMSE and MUE values.

There are also several factors that affect the ability of 3D-RISM to reproduced MD results. 

Certainly, approximations in RISM theory contribute to some of the differences between 3D-

RISM and MD. Modifying the water model by adding a Lennard-Jones potential to the 

water hydrogens also contributes, as does setting the dielectric constant of water to 78.497, 

rather than that of SPC/E. In addition, we fit UC and NgB against experimental data and did 

not optimize to reproduce MD results.

MD data also allows us to compare polar and non-polar contributions to the free energy. 

Previous work has suggested that the polar component calculated by 3D-RISM is in good 

agreement with MD [23, 44, 77] while the non-polar contribution is the primary source of 

error [23, 43]. Indeed, uncorrected 3D-RISM data is much better for just the polar 

component (see Table 8 and Figure 4) and is generally poor for the non-polar component 

(see Table 9 and Figure 5).

All of the corrections perform as well, as or better than uncorrected 3D-RISM for the polar 

SFE with the exception of UCGF with PSE-3 or HNC and NgB (see Table ??). Even with 

these included, R2 > 0.92 for all corrections and closures. That NgB does not show 

improvement is due to the nature of the correction, which only effects the non-polar 

contribution (see equation (A.4)). The improvement in the other corrections is due to the 

electrostriction effect, which accounts for the polar component of the PMV. In particular, 

UC-PSE-3 and PC+/3D-RISM-PSE-3 show improvement over uncorrected 3D-RISM with 

MUE ≈ 0.54 kcal/mol and RMSE ≈ 0.84 kcal/mol.
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As previously noted, the non-polar contribution to solvation free energy predicted by 3D-

RISM is extremely poor (see Table 9 and Figure 5). All corrections substantially improve the 

prediction of ΔGNP but the extent to which they do varies considerably. NgB performs the 

best across all closures with slopes and y-intercepts within error of 1.0 and 0.0 respectively. 

NgB also has the lowest RMSE and MUE and the highest R2. UC-PSE-3 and PC+/3D-

RISM-PSE-3 do improve greatly over uncorrected 3D-RISM but do not have the predictive 

power of NgB-PSE-3. UC-PSE-3 has both poor slope and R2 but the limited range of the 

data means that the RMSE and MUE are still reasonably good. In contrast, PC+/3D-RISM-

PSE-3 has an R2 only slightly smaller than NgB-PSE-3 but the slope, RMSE and MUE are 

all worse than UC-PSE-3. Of course, UC and PC+/3D-RISM have the same dependence on 

PMV but differ in how the coefficients are obtained. If UC was fit against MD data instead 

of experiment, we would expect UC results to be at least as good as PC+/3D-RISM in this 

comparison.

4.2. Hydration Energies and Entropies

4.2.1. Solvation Energies/Enthalpies—Care must be taken when comparing 3D-RISM 

data against solvation enthalpy and entropy from experiment. As discussed in Section 2 and 

Ref. [33], the temperature derivative data presented here are properly the solvation energy 

and entropy at constant volume. This difference will be small and is estimated to be on the 

order of 1 kcal/mol [33]. Since the the coefficients for UCT, UCGFT, and NgBT corrections 

were fit against enthalpy data, we can claim that these are models that predict enthalpy and 

the associated constant pressure entropy.

Uncorrected 3D-RISM performs reasonably well for neutral molecules with all three 

closures (see Table 10, Table ?? and Figure 6) and much better than for SFE. For all three 

closures R2 ≈ 0.80, RMSE < 2.8 kcal/mol and MUE < 2.4 kcal/mol, which is good 

considering that we are comparing enthalpies and energies and expect the error to be on the 

order of 1 kcal/mol at a minimum. NgB and NgBT provide nearly identical results with each 

other and with uncorrected 3D-RISM. Combined with the parameterization of γ0 and γ1 

(see Table 4) it is clear that NgB has the correct temperature dependence. UC, on the other 

hand, has RMSE > 19 kcal/mol for all closures and requires temperature dependence to be 

added to both coefficients. With this temperature dependence added, UCT performs quite 

well and has the lowest RMSE and MUE of any correction. R2 and y-intercept from UCT 

are both quite close to values from no correction and NgB. PC+/3D-RISM also performs 

well. It has a slope and y-intercept within error of 1.0 and 0.0. R2 is identical to no 

correction, NgB and UCT. RMSE and MUE close to those of UCT and better than NgB. 

Overall, the quality of 3D-RISM’s treatment of enthalpies is similar to its treatment of the 

polar SFE. In both cases only small correction are needed and are made.

When we consider the energy/enthalpy of ionic solutes, the absolute errors are much larger, 

just as they were for the SFE, but the relative errors are similar to those of neutral 

compounds and correlation is improved. Again, there is little difference between uncorrected 

3D-RISM and the corrections and NgB is nearly identical to uncorrected 3D-RISM is all 

metrics. Similarly, PC+/3D-RISM and UC are slightly better than NgB in terms of RMSE 

and MUE. The values of the RMSE, MUE and y-intercept are all larger than observed for 
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the SFE of ionic solutes. The errors in the y-intercept are particularly large but, again, so are 

the statistical errors as the sample size is becoming much smaller.

4.2.2. Solvation Entropies—Entropies, like the non-polar SFE contributions, are poorly 

handled by 3D-RISM and are a large source of error (see Table 12 and Figure 8). Of the 

three most successful corrections, NgB has the best slope and intercept but, given the low 

R2, this may not be meaningful. PC+/3D-RISM and UCT both have lower errors than NgB. 

While the errors for UCT are only slightly larger in magnitude than those for the SFE of 

small neutral molecules (see Figure 1) the low R2 means that comparing relative solvation 

entropies may not be useful. Entropy is also the only quantity that shows a clear closure 

dependence, with statistics improving as the closure order is increased.

The solvation entropies of ionic solutes is quite similar to that of neutral molecules. The 

magnitudes of the values and errors as well as the quality of the corrections are qualitatively 

the same between the two data sets. The major differences for the corrections are that the R2 

values are slightly higher for ionic solutes and that NgB has the lowest errors and UCT the 

highest instead of the other way around.

5. Conclusions

We have presented a new implementation of temperature derivatives in 3D-RISM, capable of 

efficiently calculating solvation energies and entropies of charged and neutral small 

molecules. Accuracy comparable to that of explicit solvent molecular dynamics simulations 

is achieved through the use of different correction methods. While a number of corrections 

have been proposed in the literature, we found that only UC(T) and NgB are applicable to all 

closures, while PC+/3D-RISM works with PSE-n closures for n ≥ 3. UC with the Gaussian 

fluctuation free energy functional only works with the KH closure.

The physical basis of these corrections is to mitigate the effects of the excessively high 

pressures predicted by the HNC-like closures used here. Due to the over-estimation of 

pressure, additional mechanical work is included in the 3D-RISM excess chemical potential 

calculation and must be subtracted off. The PMV accounts for the change in volume 

required to accommodate the solute. Since the leading contribution to the PMV is the van 

der Waals size of the solute, UCT and PC+/3D-RISM corrections primarily improve the 

non-polar and entropic components of the SFE. However, the PMV also depends on the 

charge state of the solute through the electrostriction effect. UCT and PC+/3D-RISM also 

improve the polar and energetic components of the SFE as a result while NgB does not. To 

compensate for the extra mechanical work, several expressions for pressure are available, 

including the bulk pressure from the compressibility and energy routes, and the contact 

pressure. However, only the contact pressure on the solute, as used in PC+/3D-RISM, 

successfully mitigates the excess mechanical work. The fact that these pressure expressions 

give different quantitative results is symptomatic of the larger inconsistencies in the HNC 

closure.

While these corrections are of practical use in calculating solvation free energies and their 

decomposition, they do not address the underlying deficiencies in the closures. Further 
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improvements in 3D-RISM and related methods will require new closure approximations 

that avoid these inconsistencies.
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Appendix A. Other Corrections

Appendix A.1. Gaussian Fluctuation Approximation

The Gaussian fluctuation approximation (GF) [47, 48] has been shown to produce better 

results than HNC in many [48, 78] but not all [43, 49] cases. It has the form

(A.1)

Applying equation (3) we have

(A.2)

This gives

(A.3)

Appendix A.2. Ng Bridge Correction

Closely related to the UC, Truchon et al. [23] proposed the following correction
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(A.4)

where  is the non-polar CDF of oxygen – calculated with the solute charges turned off – 

ρO is the bulk number density of oxygen and γ is an adjustable parameter. While the KH 

closure was originally used, here we apply the correction to any PSE-n closure, which 

includes KH when n = 1.

Since NgB uses only non-polar terms to correction ΔμRISM, the polar/non-polar 

decomposition is simply

From this we see that the correction does not change the polar component of the solvation 

free energy.

As with UC, we apply a linear temperature dependence to the fit parameter,

We will denote the linear temperature dependence as NgBT. Taking the temperature 

derivative we have

Using for equation (10) we have

Without the temperature dependence, we have
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As with UC, the temperature dependence of γ does not change the fitting procedure to 

obtain accurate solvation free energies and only one new parameter needs to be fit against 

empirical enthalpies and entropies. For testing purposes, we will denote the original 

correction NgB and NgBT when γ1 is included.
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Figure 1. 
Hydration free energies of neutral molecules (semi-transparent circles) from 3D-RISM-

PSE-3 and MD vs. experiment (Mobley, Abagyan, Rizzo and Palmer datasets).
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Figure 2. 
Hydration free energies of ions from 3D-RISM-PSE-3 vs. experiment (Rizzo dataset). 

Positive ions are blue triangles pointing up and negative ions are red triangles pointing 

down. Filled symbols are alkali-halide ions.
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Figure 3. 
Hydration free energies of neutral molecules from 3D-RISM-PSE-3 vs. MD (Mobley 

dataset). Coloring as in Figure 1.
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Figure 4. 
Hydration free energies of solvent polarization for neutral molecules from 3D-RISM-PSE-3 

vs. MD (Mobley dataset). Coloring as in Table 5.
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Figure 5. 
Non-polar hydration free energies of neutral molecules from 3D-RISM-PSE-3 vs. MD 

(Mobley dataset). Coloring as in Table 5.
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Figure 6. 
Hydration energies/enthalpies of neutral molecules from 3D-RISM-PSE-3 vs. experiment 

(Abraham and Cabani datasets). Coloring as in Table 5.
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Figure 7. 
Hydration energies/enthalpies of ions from 3D-RISM-PSE-3 vs. experiment. Coloring as in 

Figure 2.
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Figure 8. 
Hydration entropies of neutral molecules from 3D-RISM-PSE-3 vs. experiment (Abraham 

and Cabani datasets). Coloring as in Table 5.
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Figure 9. 
Hydration entropies of ions from 3D-RISM-PSE-3 vs. experiment. Coloring as in Figure 2 

(Fawcett and Marcus datasets).
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Table 1

Closure expressions and excess chemical potential equations for various common closures and corrections.

Closure Closure Relation

KH

g (r) = exp (t∗ (r)) t∗ (r) < 0

1 + t∗ (r) t∗ (r) ≥ 0

HNC g(r) = exp(t*(r))

PSE-n

g (r) =
exp (t∗ (r)) t∗ (r) < 0

∑
i = 0

n t∗ (r)i
i! t∗ (r) ≥ 0

t*(r) = −βu(r) + h(r) − c(r)

Closure Excess Chemical Potential

KH

ΔμKH = kT∑γ ργ∫
hγ
2(r)
2 Θ( − hγ (r)) − cγ (r) −

hγ(r)cγ(r)
2 dr

HNC

ΔμHNC = kT∑γ ργ∫
hγ
2(r)
2 − cγ (r) −

hγ(r)cγ(r)
2 dr

PSE-n

ΔμPSE‐n = kT∑γ ργ∫
hγ
2(r)
2 − cγ (r) −

hγ(r)cγ(r)
2 −

tγ
∗(r)n + 1

(n + 1)! Θ(hγ (r))dr

Correction Excess Chemical Potential

GF

ΔμGF = kT∑γ ργ∫ −cγ (r) −
hγ(r)cγ(r)

2 dr

UCT ΔμUC = ΔμRISM + av + b

NgBT

ΔμNgB = ΔμRISM +
kTρO

2 (1 − γ)∫ cO
np(r) dr

PC+/3D-RISM

ΔμPC+/3D‐RISM = ΔμRISM − 1
2kTv 1

χTkT + NsiteρTot
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Table 2

Closure expression temperature derivatives and excess solvation energy equations for various common 

closures and corrections.

Closure Temperature Derivative

KH

δTh (r) =
g (r) δTt∗ (r) for t∗ < 0

δTt∗ (r) for t∗ ≥ 0

HNC δTh(r) = g(r) δTt*(r)

PSE-n

δTh (r) =

g (r) δTt∗ (r) t∗ (r) < 0

∑
i = 0

n − 1 t∗ (r)i
i! δTt∗ (r) t∗ (r) ≥ 0

δTt*(r) = βu(r) + δTh(r) − δTc(r)

Closure Excess Solvation Energy

KH

ΔεKH = − kT∑
γ

ργ∫ hγ (r) δThγ (r) Θ ( − hγ (r)) − δTcγ (r)

− 1
2[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr

HNC

ΔεHNC = − kT∑
γ

ργ∫ hγ (r) δThγ (r) − δTcγ (r)

− 1
2[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr

PSE-n

ΔεPSE‐n = − kT∑
γ

ργ∫ hγ (r) δThγ (r) − δTcγ (r)

− 1
2[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)]

−
tγ
∗n(r)
n! [βu (r) + δThγ (r) − δTcγ (r)] Θ (hγ (r)) dr

Correction Excess Solvation Energy

GF

ΔεGF = − kT∑
γ

ργ∫ −δTcγ (r) − 1
2[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr
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Closure Temperature Derivative

UCT ΔεUCT = ΔεRISM + a(v − δTv) − Ta1v + b0

NgBT

ΔεNgB = ΔεRISM −
kTρO

2 {(1 − γ)∫ δTcO
np(r) dr − γ1T∫ cO

np(r) dr}

PC+/3D-RISM

ΔεPC+/3D‐RISM = ΔεRISM + kT
2 δTv 1

χTkT + NsiteρTot − v 1
χT

2
(χT + δT χT)
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Table 3

Parameters of water models used in 1D-RISM calculations.

Parameter

cSPC/E

H Value O Value

mass (u) 1.008 16

charge (e+) 0.4238 −0.8476

Lennard-Jones ε (J/C) 0.01553 0.1553

Lennard-Jones rmin/2 (Å) 0.654237952 1.7767

H-O bond length (Å) 1

H-O-H bond angle (degrees) 109.47°
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