

Genetic Diversity and Origins of the Homoploid-Type Hybrid *Phytophthora* -*alni*

[Jaime Aguayo,](http://orcid.org/0000-0002-7552-0655)^a Fabien Halkett,^b Claude Husson,^b Zoltán Á. Nagy,^c András Szigethy,^c József Bakonyi,^c [Pascal Frey,](http://orcid.org/0000-0001-6294-737X)^b Benoit Marçais^b

ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Malzéville, France^a; UMR IAM, INRA, Université de Lorraine, Nancy, France^b; Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary^c

ABSTRACT

Assessing the process that gives rise to hybrid pathogens is central to understanding the evolution of emerging plant diseases. *Phytophthora* -*alni***, a pathogen of alder, results from the homoploid hybridization of two related species,** *Phytophthora uniformis* and *Phytophthora × multiformis*. Describing the genetic characteristics of *P*. × alni should help us understand how repro**ductive mechanisms and historical processes shaped the population structure of this emerging hybrid pathogen. The population genetic structure of** *P***.** -*alni* **and the relationship with its parental species were investigated using 12 microsatellites and one mitochondrial DNA (mtDNA) marker on a European collection of 379 isolates. Populations of** *P***.** -*alni* **were dominated by one multilocus genotype (MLG). The frequency of this dominant MLG increased after the disease emergence together with a decline in diversity, suggesting that it was favored by a genetic mechanism such as drift or selection. Combined microsatellite and mtDNA results confirmed that** *P***.** -*alni* **originated from multiple hybridization events that involved different genotypes of the progenitors. Our detailed analyses point to a geographic structure that mirrors that observed for** *P. uniformis* **in Europe. The study provides more insights on the contribution of** *P. uniformis***, an invasive species in Europe, to the emergence of** *Phytophthora***-induced alder decline.**

IMPORTANCE

Our study describes an original approach to assess the population genetics of polyploid organisms using microsatellite markers. By studying the parental subgenomes present in the interspecific hybrid *P*. \times *alni*, we were able to assess the geographical and **temporal structure of European populations of the hybrid, shedding new light on the evolution of an emerging plant pathogen. In turn, the study of the parental subgenomes permitted us to assess some genetic characteristics of the parental species of** *P.* -*alni***,** *P. uniformis***, and** *P***.** -*multiformis***, which are seldom sampled in nature. The subgenomes found in** *P.* -*alni* **represent a picture of the "fossilized" diversity of the parental species.**

Interspecific hybridization can be a rapid track for the evolution of new species in many phylogenetic groups, including fungi of new species in many phylogenetic groups, including fungi and oomycetes $(1-3)$ $(1-3)$ $(1-3)$. It has been recognized as an important mechanism of plant disease emergence, with the description of many interspecific hybrid pathogens [\(4,](#page-10-3) [5\)](#page-10-4). In particular, in the genus *Phytophthora*, interspecific hybridization is increasingly seen as a major force generating new taxa: hybrids have been successfully created under laboratory conditions, and more importantly, many natural hybrids have been reported $(6-8)$ $(6-8)$ $(6-8)$. Thus, better knowledge of the processes that give rise to hybrid taxa is an important question in the evolutionary biology of emerging pathogens. Understanding the mechanisms that lead to speciation and to the establishment, spread, and evolution of hybrid taxa requires investigation of the identity and genetic variability of parental species and of the directionality and recurrence of the hybridization events [\(9,](#page-10-8) [10\)](#page-10-9).

Analysis of allele and genotype frequencies using standard population genetic tools can at least in part answer these questions [\(11\)](#page-10-10). However, the population genetics of polyploid organisms presents specific caveats: as allele copy numbers are ambiguous, computing allele frequencies and identifying multilocus genotypes can be complex [\(12\)](#page-10-11). This has limited the use of these tools in the study of polyploid organisms. To tackle this problem, the development of specific primers from the contributing progenitor genomes may enable the analysis of population genetics of allopolyploids [\(13,](#page-10-12) [14\)](#page-10-13). In this case, parental taxa must have been identified and their ploidy levels must be known. The identification of alleles from each parent and their separate treatment during the analysis can increase the robustness of the population genetic analysis [\(11\)](#page-10-10).

The alder pathogen *Phytophthora ×alni* constitutes a good model to study the emergence and evolution of hybrids, since the parental taxa and their ploidy level are known. *Phytophthora uniformis* and *Phytophthora* -*multiformis* have been identified as the parents of *P.* \times *alni* [\(15,](#page-10-14) [16\)](#page-10-15). Recent work coupling flow cytometry and quantification of allele copy number determined the exact

Received 29 July 2016 Accepted 22 September 2016 Accepted manuscript posted online 7 October 2016 Citation Aguayo J, Halkett F, Husson C, Nagy ZÁ, Szigethy A, Bakonyi J, Frey P, Marçais B. 2016. Genetic diversity and origins of the homoploid-type hybrid Phytophthora Xalni. Appl Environ Microbiol 82:7142-7153. [doi:10.1128/AEM.02221-16.](http://dx.doi.org/10.1128/AEM.02221-16) Editor: E. Master, University of Toronto Address correspondence to Benoit Marçais, benoit.marcais@inra.fr. P.F. and B.M. codirected this work. Supplemental material for this article may be found at [http://dx.doi.org/10.1128](http://dx.doi.org/10.1128/AEM.02221-16) [/AEM.02221-16.](http://dx.doi.org/10.1128/AEM.02221-16) Copyright © 2016, American Society for Microbiology. All Rights Reserved.

ploidy levels of the three species of the complex [\(17\)](#page-10-16). Accordingly, P. Xalni was shown to be a triploid homoploid-type taxon that formed through the hybridization of a diploid taxon (*P. uniformis*) and a tetraploid taxon (*P.* \times *multiformis*) without chromosome doubling. Therefore, *P.* \times alni possesses one-half of the genome of the two parental species.

P. uniformis, one of the parental species of *P*. \times alni, is a diploid species and has been isolated both in Europe and in North America [\(18](#page-10-17)[–](#page-10-18)[20\)](#page-10-19). Genetic characterization of European *P. uniformis* populations revealed low diversity and a clonal structure, while North American populations were more diverse and exhibited signs of outcrossing [\(19\)](#page-10-18). These results suggest that *P. uniformis* is exotic to Europe and that North America could be its center of origin. The introduction of *P. uniformis* to Europe would have enabled its hybridization with the other parental species and could thus be a major factor in the emergence of *P.* \times *alni*. Less is known about the origin of the other parental species, *P.* \times *multiformis*. This species is infrequently isolated, and only few individuals are available for analysis. Husson et al. [\(17\)](#page-10-16) showed that *P*. \times multi*formis* is a tetraploid organism, supporting the hypothesis raised by Ioos et al. [\(15\)](#page-10-14) that *P*. \times *multiformis* could have emerged after an ancient interspecific hybridization of two currently undetermined *Phytophthora* species. Nevertheless, whether *P. × multiformis* and/or its parental species are exotic or indigenous to Europe remains unknown.

It was suggested that the spread of *P*. \times *alni* within Europe is the product of clonal dispersion [\(21,](#page-11-0) [22\)](#page-11-1). The first evidence confronting this hypothesis came from the studies of Ioos et al. [\(15\)](#page-10-14), who studied mitochondrial and nuclear molecular markers, which under sexual reproduction are inherited uniparentally and biparentally, respectively. The authors showed that *P.* \times alni isolates exhibit different mitochondrial (mtDNA) and nuclear DNA patterns that are shared either with *P. uniformis* (multiple U mitotypes for the mtDNA and different *P. uniformis* allele types for each of the nuclear DNA genes studied) or with *P*. X multiformis (multiple M mitotypes for the mtDNA and different P . \times multi*formis* allele types for each of the nuclear DNA genes studied). These multiple-mitotype patterns suggest that several sexual hybridization events have led to the genesis of the hybrid and that the spread of *P*. Xalni throughout Europe might not be attributable to a single clone [\(15\)](#page-10-14).

In this article, we analyzed further the role of sexual reproduction in the genesis and genetic diversification of the hybrid species P. Xalni. Based on 12 microsatellite markers and one mitochondrial DNA marker, we assessed the level of genetic diversity of *P.* \times *alni* in Europe and the manner in which this diversity is structured in a geographical and a temporal scale. This was done by studying the parental subgenomes of *P. uniformis* and *P.* \times multi*formis* occurring in *P.* \times *alni*. In turn, the study of these subgenomes allowed to assess some genetic characteristics of the parental species, *P. uniformis* and *P. × multiformis*, which are seldom sampled in nature.

MATERIALS AND METHODS

Isolate collection and DNA extraction. For organisms with suspected low polymorphism, the choice of the sampling strategy is highly dependent on the objectives of the study. When the goal is to assess diversity in a population, as is the case here, the recommended strategy should be to sample along the whole distribution area of the target population, in order to attempt to collect more distinct and rare genotypes [\(23\)](#page-11-2). This will

minimize bias in the estimation of the diversity indices and deliver better approximations of the real population values. Here we also considered the temporal dimension. For this study, surveys of *Alnus glutinosa* and *Alnus incana* stands were conducted over 10 years (from 1999 to 2009) across France, Belgium, and Hungary to collect P. uniformis, P. Xmultiformis, and P. Xalni samples. Sampling was performed from infected alder trees that exhibited typical *Phytophthora* collar canker symptoms. Small sections of necrotic bark pieces were placed on V8 juice or carrot agar medium selective for *Phytophthora*. As soon as detected, growing mycelium was transferred to fresh V8 juice agar containing rifampin (10 mg/liter) or nonamended carrot agar. To broaden sample collection, 57 additional isolates from 11 European countries were obtained from colleagues (see Table S1 in the supplemental material). Sampled locations are shown in [Fig. 1.](#page-2-0) For *P. uniformis*, the European and North American isolates de-scribed by Aguayo et al. [\(19\)](#page-10-18) were added as reference isolates to track the contribution of this invasive species to the emergence of *P*. \times *alni*. DNA extractions were performed from pure fresh or lyophilized mycelium using the BioSprint 96 DNA plant kit in combination with the BioSprint 96 automated workstation (Qiagen, Courtaboeuf, France), following the BS-96DNA-plant protocol, or using the Qiagen DNeasy Plant minikit according to supplier instructions. Isolate identity (*P.* \times *alni*, *P.* \times *multiformis*, or *P. uniformis*) was determined using the set of species-specific PCR primers TRP-PAU-F/-R, RAS-PAM1-F/-R, and RAS-PAM2-F/-R described by Husson et al. [\(17\)](#page-10-16).

Study of the *P. alni* **complex by microsatellite and mitochondrial markers.** A set of microsatellite markers was generated independently from the two parental species. These markers were developed from microsatellite-enriched libraries sequenced with a Roche GS-FLX Titanium pyrosequencing platform following the procedure described by Malausa et al. [\(24\)](#page-11-3) and Aguayo et al. [\(19\)](#page-10-18). Markers obtained from the *P*. \times multi*formis* microsatellite-enriched library did not show polymorphism within any species of the *P. alni* complex; they were therefore discarded for further tests. Polymorphism was detected in *P. ×alni*, *P. uniformis*, and *P.* \times *multiformis* with markers obtained from the *P. uniformis* microsatellite-enriched library. This set of markers comprised five microsatellite markers developed by Aguayo et al. [\(19\)](#page-10-18) and another five additional loci that exhibited polymorphism in *P.* \times *alni* and *P.* \times *multiformis*. Additionally, two polymorphic microsatellite loci derived from *P.* \times *alni*, PA17 and PA23, described by Ioos et al. [\(25\)](#page-11-4), were added to the marker set. In all, we used 12 microsatellite markers to characterize our isolate collection. The PCR amplification conditions were those described by Aguayo et al. [\(19\)](#page-10-18). The mitochondrial type of the *P*. \times alni isolates, either U or M mitotype [\(15\)](#page-10-14), was studied using the *cox1* gene primers (COXF4N/COXR4N) designed by Kroon et al. [\(26\)](#page-11-5) with PCR mix and run conditions as described by Ioos et al. [\(15\)](#page-10-14). Subsequently, 20 µl of the PCR product was digested using HaeIII for 1 h at 37°C, according to the manufacturer's instructions (Invitrogen, Saint-Aubin, France). Digested DNA patterns were resolved after 1 h of electrophoresis (0.6 V/cm) in a 1% agarose gel in 0.5% Trisborate-EDTA (TBE) buffer. Gels were stained with ethidium bromide to visualize polymorphisms of DNA fragments.

Assignment of microsatellite alleles to species of the *P. alni* **complex.** For each locus, we first assessed the different parental microsatellite profiles. As shown by Aguayo et al. [\(19\)](#page-10-18), the diploid parent *P. uniformis* exhibited one or two alleles at all loci. For *P*. \times *multiformis*, we assumed the hypothesis of an ancient hybridization origin that formed a tetraploid hybrid as stated by Husson et al. [\(17\)](#page-10-16). In the simplest cases, when one and four peaks were observed, we considered that each allele was present in four copies or one copy, respectively. If two or three peaks were observed, peak height ratios were used to assess allele copy numbers [\(27\)](#page-11-6). In general, we observed two alleles with comparable peak sizes and we attributed two copies of each allele. Figure S1 in the supplemental material shows how chromatograms were used to determine the allele composition whenever 3 alleles where found in *P*. X multiformis.

Microsatellite profiles for the triploid hybrid *P*. Xalni were then studied. First, at each locus we determined which specific alleles from each

FIG 1 Geographical origins of *P. × alni* (Pxa), *P. × multiformis* (Pxm), and *P. uniformis* (Pu) isolates used in this study. 1, Sarre/Nied (France); 2, Rhine (France); 3, Meurthe/Moselle (France); 4, Saône (France); 5, Ognon (France); 6, Meuse (France and Belgium); 7, Loir (France); 8, Loire (France); 9, Sèvre Niortaise (France); 10, Salamanca (Spain); 11, England (United Kingdom); 12, Scotland (United Kingdom); 13, Rhineland (Germany); 14, Braunschweig (Germany); 15, Freising (Germany); 16, Oder (Germany); 17, Poland; 18, Répce (Hungary); 19, Balaton (Hungary); 20, Zala (Hungary).

parental species could be found in *P.* \times *alni*. When alleles present in *P.* \times *alni* were found exclusively in *P. uniformis* and not in *P.* \times *multiformis*, we assumed that they represented the haploid contribution of *P. uniformis*(here named *P. uniformis*subgenome [*Pu*SG]) to the genome of *P.* \times *alni*. When alleles in *P.* \times *alni* were found exclusively in *P.* \times *multiformis* and not in *P. uniformis*, we assumed that they represented the two haploid genomes' contribution of *P*. \times *multiformis* to *P.* \times *alni*, as de-scribed by Ioos et al. [\(15\)](#page-10-14) and Husson et al. [\(17\)](#page-10-16). The *P*. \times *multiformis* contribution will be referred to as *P*. \times *multiformis* subgenome (*P* \times *mSG*) here. For the *P.* \times *multiformis* subgenome occurring in *P.* \times *alni*, different scenarios were considered: when only one *P.* \times *multiformis* allele was found in *P.* \times *alni*, these individuals were considered to be homozygous for the *P*. Xmultiformis allele. Whenever two different *P*. Xmultiformis alleles were found exclusively in *P.* \times alni, we considered that individuals might have inherited two different alleles coming from the double haploid contribution of *P*. Xmultiformis. Another case occurred when *P. uniformis* and P. \times *multiformis* shared one allele. In such a case, we considered that the shared allele was a contribution of both *P. uniformis* and P . \times multiformis subgenomes in *P. × alni*. In this case, the expected peak height ratio for the shared allele should be 2-fold compared to the remaining allele. The last case appeared when one allele was found exclusively in P. Xalni but not among parental isolates. In this case, alleles were assigned as belonging either to the *P. uniformis* or to the *P.* \times *multiformis* subgenome according to the mutation steps that separated the two subgenomes. To confirm reproducibility, a subset of 219 isolates (169 P. \times alni, 12 P.

uniformis, and 38 P. Xmultiformis isolates) were genotyped twice in independent PCR assays.

Characterization of the parental species *P. uniformis* **and** *P***.** -*multiformis* and comparisons with reconstructed subgenomes in *P.* \times *alni*. Microsatellite profiles of P. uniformis and P. X multiformis were compared to the reconstituted subgenomes in *P.* \times alni. Each locus in *P.* \times alni was converted into diploid profiles for the *P. uniformis* subgenome and to tetraploid profiles for the *P*. \times *multiformis* subgenome. The *P. uniformis* subgenome was compared to *P. uniformis* North American and European isolates, and the *P.* \times *multiformis* subgenome was compared to European P. Xmultiformis samples. Multilocus genotypes (MLGs) were identified using Genotype [\(28\)](#page-11-7), computing distances under the stepwise mutation model (SMM). The assignment was performed by computing a pairwise distance matrix and selecting a threshold that defines the maximum distance between two individuals at which they are still assigned to the same clonal lineage. The threshold was set at zero to differentiate individuals with small differences. Genotype can handle putative missing alleles by comparing the apparent difference in ploidy level in one locus to other loci of the same individual. Whenever an allele was missing due to potential amplification problems, it was considered a null allele. Poppr [\(29\)](#page-11-8) was used to assess genotypic richness, genotypic diversity, and the evenness for each group of samples. Genotypic richness was assessed by computing the raw number of observed MLGs and the expected MLG (eMLG) corrected by the smallest sample size based on rarefaction. Genotypic diversity was assessed with the Simpson's diversity index (*D*), corrected by sample size across all samples. *D*, defined as the probability that two individuals taken at random belong to different MLGs, was equation 1 computed as

$$
\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{G}p_i^2\right) \tag{1}
$$

where *N* is the sample size, *G* the number of MLGs detected over all samples, and p_i is the frequency of the *i*th MLG in the sample. Evenness (E_5) , an index that reflects equitability in the distribution of clonal membership among samples, was also estimated. E_5 is the ratio of the number of abundant genotypes to the number of rarer genotypes [\(30\)](#page-11-9). Evenness may range from 0 to 1, with 0 for a population dominated by a single MLG, and 1 for a population with equally abundant MLGs. Clonal richness (*R*), i.e., the ratio of the number of MLGs found over the sample size, was computed according to the formula $(G - 1)/(N - 1)$. *R* ranges from 0, when all individuals share the same MLG, to 1, when all individuals have distinct MLGs. Minimum spanning networks (MSN) were constructed to assess genetic relationships among subgenomes and parental genomes. Poppr was used to compute the Bruvo pairwise genetic distance [\(31\)](#page-11-10) between samples of the *P. uniformis* subgenome and *P. uniformis* and of the *P*. Xmultiformis subgenome and *P*. Xmultiformis. The Bruvo distance, adapted to polyploid organisms, is similar to band-sharing indices used with dominant data but takes into account the stepwise mutational distance between microsatellite alleles [\(12\)](#page-10-11). The distance ranges from 0, indicating identical MLGs, to 1, indicating maximum dissimilarity. This distance is better adapted to autopolyploids but can be applied to allopolyploids, provided that when alleles present at one locus can originate from the two subgenomes, these alleles are separated by at least three mutation steps [\(32\)](#page-11-11).

Last, we compared P. uniformis and P. \times multiformis subgenome profiles to the observed MLGs of the parental isolates to decipher their *in* natura contribution to the variability of *P.* \times *alni*. Simulated crosses between all parental *P. uniformis* and *P. ×multiformis* MLGs were performed under the hypothesis of a sexual origin of the hybrid to determine whether some of the possible mating combinations could generate a specific *P.* \times alni MLG. When a perfect match was found, the parental *P*. uniformis and P. X multiformis MLGs were considered putative progenitors of *P*. \times *alni*.

Geographical and temporal structure of P. \times alni. For the whole P. Xalni collection (269 samples), MLGs were identified using Genotype as explained previously. Genotypic richness, genotypic diversity, and evenness were computed using Poppr. Clonal richness corrected by sample size was also estimated. Two approaches were used to study the geographical population structure of *P.* \times *alni*. The first approach used principal-component analysis (PCA) to assess genetic relationships among samples of *P.* \times *alni*. Multivariate analyses such as PCA are exploratory methods that can be used to cluster individuals without making strong assumptions about an underlying genetic model, allowing to summarize genetic variability to reveal structure (33) . POLYSAT (12) was used to compute the Bruvo distance between *P.* \times *alni* samples. The distance matrix was visualized after scaling using PCA with FactoMineR [\(34\)](#page-11-13). An analysis of variance (ANOVA) test was used to assess whether *P.* \times alni clusters observed in PCA could be explained by the geographical coordinates and by the putative *P. uniformis* and *P. ×multiformis* parents assigned to P. Xalni after the simulated sexual crosses. Likewise, the homogeneity of mtDNA type (M or U) distribution in Europe was tested by ANOVA, using the geographical coordinates of each sampling location as independent variables.

The second approach used conventional population genetics tools based on allele frequency. For this approach, isolates were assigned to 20 watershed/country populations. The number of isolates per site was in many cases limited because of low isolation rates in some locations. We thus grouped isolates at a larger geographical scale (minimum group size of 4). As *P*. Xalni is able to disperse over long distances by river water, isolates were grouped by watershed whenever the exact sampling locations were known. Seventeen watershed populations could be defined (see [Table 3\)](#page-7-0). Three additional populations (from England, Scotland, and Poland) were also defined for isolates with unknown or incomplete geographical coordinates. These three populations were arbitrarily located at the country's barycenter. The number of *P*. \times alni isolates that could be assigned to watershed/country populations (populations with at least four *P.* \times *alni* individuals) was 254. The remaining 15 isolates could not be assigned to a watershed or a country population because it was not possible to group more than 4 isolates together. For each population, we computed the number of observed MLGs, clonal richness, and genotypic diversity as described previously. Population differentiation was studied by estimation of the genetic differentiation indexes *F*st and *R*st, using SPAGeDi 1.3a [\(35\)](#page-11-14). The *F*st and *R*st indexes measure the apportionment of genetic variability between population and individual levels, based on allelic states and allele sizes, respectively. Polyploids with disomic inheritance, such as allopolyploids, can be analyzed using these two estimators when alleles from the different subgenomes can be distinguished in the hybrid genome. Both indexes were tested for significance by 10,000 permutations. Diversity indexes and genetic differentiation were assessed for P. Xalni isolates and for their reconstructed *P. uniformis* and *P.* Xmulti*formis* subgenomes for each population.

For the temporal structure of *P*. \times *alni*, the evolution of clonal richness over the years was compared by regression with a linear model. To account for the strong unbalanced sampling between years and locations, we simulated samples by randomly selecting one isolate per year for each location. Estimation of the mean clonal richness per year was computed after 1,000 repetitions. By using the same procedure, we studied the evolution of the mtDNA type, either M or U, over the years. Temporal population differentiation of *P.* \times *alni* was assessed by estimation of global *Fs*t and *R*st using SPAGeDi 1.3a as described above for geographical structure. Collection years were known for 266 P. Xalni samples, which were used to determine temporal structure.

RESULTS

Microsatellite analyses and allele assignment to *P. uniformis* and P. Xmultiformis subgenomes. A total of 379 isolates were genotyped (269 P. × alni, 39 P. × multiformis, and 71 P. uniformis isolates), including all the 71 *P. uniformis* isolates previously studied by Aguayo et al. [\(19\)](#page-10-18). Repeatability of the allele peak height ratios was consistent between replicates ($R^2 = 0.76$; $P < 0.001$). This information was therefore used to estimate the allele copy number present in each isolate whenever the number of alleles was lower than expected and to assign alleles to *P. uniformis* and P. X multiformis subgenomes. Polymorphism of the microsatellite markers was low, although all loci exhibited polymorphism for at least one species of the *P. alni* complex. In total, 34 alleles were amplified for the 12 microsatellite loci. The number of alleles at each locus for each species ranged from 1 to 4 [\(Table 1\)](#page-4-0). Consistent with the hypothesis used for ploidy levels, 1 or 2, 1 to 4, and 1 to 3 alleles per isolate were amplified at each locus in *P. uniformis*, P. \times *multiformis*, and *P.* \times *alni*, respectively. Four microsatellite loci amplified exclusively in *P. uniformis* and *P.* \times alni, and one exclusively in *P*. \times *multiformis* and *P.* \times *alni* [\(Table 1\)](#page-4-0). The Venn diagram in [Fig. 2](#page-4-1) displays the allelic distribution within the three species. Most alleles were specific either to both *P. uniformis* and *P.* \times *alni* or to both *P.* \times *multiformis* and *P.* \times *alni*. Only one allele was shared among the three species (allele 68 at locus M-PAU14).

Concerning the parental species *P. uniformis*, 4 private alleles were observed. Three were observed only in North American samples (allele 90 at locus M-PAU32, allele 95 at locus M-PAU9, and allele 202 at locus M-PAU53), while one was shared by American and European samples (allele 105 at locus M-PAU3). No private P. \times *multiformis* alleles were observed. Concerning *P.* \times *alni*, all alleles could be assigned either to a P . uniformis or to a P . \times mul*tiformis* subgenome [\(Table 2\)](#page-5-0). One single allele was found at each

^a From Aguayo et al. [\(19\)](#page-10-18).

^b From Ioos et al. [\(25\)](#page-11-4).

^c From this study.

^d F, forward; R, reverse.

exclusive *P. uniformis* and *P. × alni* locus. For these loci, the observed allele was thus considered to represent the haploid contribution of the *P. uniformis*subgenome. Similarly, 1 or 2 alleles were present in *P. × alni* at loci exclusive to *P. × multiformis* and P. Xalni, and they were considered to represent the haploid contribution of the *P*. Xmultiformis subgenome. For loci that crossamplified in the three species, assignment was usually straightfor-

FIG 2 Venn diagram representing the allelic distribution within P . \times alni, *P.* \times *multiformis*, and *P. uniformis*. Numbers in the circles represent the number of alleles found in one specific species or in more than one of the species simultaneously.

ward since they generally differed between *P. uniformis* and P. Xmultiformis. The only shared allele (allele 68 at locus M-PAU14) was found in all *P.* \times alni samples. For 99% of the P. Xalni isolates that presented 3 alleles at locus M-PAU14, the alleles exhibited similar height ratios, and assignment was straightforward. For the 1% of the *P. ×alni* isolates that exhibited only two alleles at locus M-PAU14, peak height ratios enabled us to determine that allele 68 was present in two copies, and it was assumed that one copy originated from *P. uniformis* and the other from P. X multiformis. Three private alleles were observed exclusively in *P.* \times *alni*, though present in few individuals. These alleles were at one mutation step away from their putative parental alleles in *P.* \times *multiformis* (allele 185 at locus M-PAU11) and *P. uniformis* (allele 206 at locus M-PAU53 and allele 322 at locus PA17). Eleven P. Xalni isolates (4.09%) presented missing alleles at least at one locus, which were considered null alleles. It is interesting that private *P. uniformis* alleles observed only in North American samples were very seldom observed in *P.* \times *alni*. The only exception was allele 243 at locus M-PAU55, which was observed in one Hungarian isolate. Multilocus allelic profiles for all isolates used in this study are presented in Table S1 in the supplemental material.

Relationship between P. \times *alni* and parental species P. *uniformis* **and** *P***.** -*multiformis***.** Seven MLGs were observed in North American *P. uniformis* samples. Although clonal richness was low $(R = 0.23)$, genotypic diversity $(D = 0.70)$ and evenness $(E_5 = 0.23)$ 0.63) were moderate. Diversity in European *P. uniformis* was low, with only 3 observed MLGs. One dominant MLG (*Pu*-E1) included 91% of the isolates (see Table S1 in the supplemental ma-

^a Complete data are presented in Table S1 in the supplemental material.

^b P. uniformis multilocus genotypes are those described by Aguayo et al. [\(19\)](#page-10-18) but renamed according to Husson et al. [\(17\)](#page-10-16).

^c nf, no putative parent could be found.

terial). This influenced the low levels of clonal richness ($R = 0.05$), genotypic diversity ($D = 0.18$), and evenness ($E₅ = 0.14$) exhibited by European isolates. The number of expected MLGs (eMLG) at the smallest sample size (27 North American isolates) based on rarefaction was 2.58. Concerning the *P. uniformis* subgenome, 5 MLGs were observed. Two MLGs were shared between European *P. uniformis* isolates and the *P. uniformis* subgenome (*Pu*-E1 and *Pu*SG-1 and *Pu*-E2 and *Pu*SG-3). As for *P. uniformis* isolates, a dominant *P. uniformis* subgenome MLG (*Pu*SG-1) grouped 91% of the isolates. The eMLG index for the *P. uniformis* subgenome data set was 2.2, a value close to the one observed for the European *P. uniformis* isolates, assuming equal sample sizes. Similar to what was seen for European *P. uniformis*, the *P. uniformis* subgenome data set presented low levels of clonal richness ($R = 0.01$), genotypic diversity ($D = 0.17$), and evenness ($E_5 = 0.14$). The minimum spanning network (MSN) clearly differentiated two groups of isolates [\(Fig. 3a\)](#page-6-0). A first group included exclusively North American *P. uniformis* isolates (MLGs *Pu*-A1 to *Pu*-A7). A second group included European *P. uniformis* isolates and *P. uniformis* subgenome MLGs, indicating their straight relationship. Within this group, *Pu*SG-1 MLG was placed together with *Pu*-E1 and *Pu*-E3 MLGs, which were found as its putative parents after simulated crosses (see Table S1 in the supplemental material). Similarly, *Pu*SG-3 was placed together with *Pu*-E2, its putative *P. uniformis* parent (see Table S1 in the supplemental material). *Pu*SG-2, *Pu*SG-4, and *Pu*SG-5 grouped 2.6% of the isolates characterized by nonsampled *P. uniformis* putative parents.

Five MLGs were identified among *P*. *×multiformis* isolates,

with one major MLG $(P \times m-1)$ including 56% of the isolates. *P*. \times *multiformis* clonal richness was low ($R = 0.11$), and genotypic diversity was moderate ($D = 0.59$). The evenness index was estimated at 0.72, indicating some dissimilarity among samples. For the *P.* Xmultiformis subgenome, 13 MLGs were observed, with clonal richness and genotypic diversity levels of 0.04 and 0.25, respectively. Estimated P. Xmultiformis subgenome eMLG rarefied to 39 samples was 5.12, indicating that genotypic richness was similar to that of *P*. Xmultiformis when considering equal samples. MSN did not exhibit a clear structure pattern because polymorphism was low and several P. Xmultiformis subgenome MLGs shared putative parents [\(Fig. 3b\)](#page-6-0). This is specially the case for putative parents $P \times m$ -1 and $P \times m$ -2, which were found as putative progenitors for 89% of P. Xmultiformis subgenome MLGs [\(Table 3;](#page-7-0) see also Table S1 in the supplemental material). The percentage of isolates for which putative progenitors could not be attributed was 2.6%.

General genetic characteristics of P. \times **alni.** Twenty-six MLGs were observed in *P.* \times *alni* samples. One dominant MLG (*P* \times *a*-1) included 80% of the isolates. Minor MLGs, comprising 3 to 10 isolates, encompassed 13% of the isolates. Seventeen MLGs (6% of the isolates) were sampled once. Clonal richness was low $(R =$ 0.09), and genotypic diversity was moderate $(D = 0.35)$. Evenness was low ($E_5 = 0.288$), indicating low diversity within *P*. \times *alni* isolates. Mitochondrial types studied for 265 P. Xalni isolates showed that most (80%) had an M mtDNA profile while 20% exhibited a U mtDNA. In four microsatellite MLGs, both U and M mitotypes were present, adding a new level of polymorphism.

DISTANCE

FIG 3 Minimum spanning network (MSN) performed on Bruvo's distances. (a) *Phytophthora uniformis* isolates (*Pu*) and *P. uniformis*subgenome (*Pu*SG) found in *P.* \times alni isolates. (b) *Phytophthora* \times *multiformis* isolates (*P* \times *m*) and *P.* \times *multiformis* subgenome (*P* \times mSG) found in *P.* \times *alni* isolates.

When microsatellite and mtDNA data were combined, the number of MLGs increased to 30. This means that microsatellite MLGs with both mtDNAs are not true lineages but the product of at least two hybridization events. Under a conservative estimation (con-

sidering only known assigned parents to *P. ×alni* MLGs), the number of hybridization events was at least 13.

Geographical structure of P. Xalni populations. The conditions required to use Bruvo's distance for *P*. \times alni were fulfilled,

ID	Country	Population	No. of samples	M/U type ^{a}	$P. \times alni$			PuSG			$P\times mSG$		
no.					MLG	\boldsymbol{R}	D	MLG	R	D	MLG	\boldsymbol{R}	D
	France	Sarre/Nied	37	37/0	4	0.08	0.16	$\overline{2}$	0.03	0.05	3	0.06	0.11
$\overline{2}$	France	Rhine	10	9/1	2	0.11	0.2		Ω	$\overline{0}$	\overline{c}	0.11	0.2
3	France	Meurthe/Moselle	8	6/2		0.14	0.25		Ω	$\overline{0}$	\overline{c}	0.14	0.25
$\overline{4}$	France	Saône	21	20/1		0.05	0.1			$\overline{0}$		Ω	Ω
5	France	Ognon	5	4/1		0.25	0.4		Ω	$\mathbf{0}$	\overline{c}	0.25	0.4
6	France-Belgium	Meuse	19	17/2		Ω	Ω		0	0		Ω	0
7	France	Loir	12	$0/10$ (2 NA)		Ω	Ω		Ω	θ		Ω	Ω
8	France	Loire	8	5/3	\overline{c}	0.14	0.25		Ω	θ	\overline{c}	0.14	0.25
9	France	Sèvre Niortaise	14	13/1		0	0		0	$\overline{0}$		Ω	0
10	Spain	Salamanca	6	6/0		Ω	0		Ω	Ω		Ω	0
11	United Kingdom	England	5	3/2	4	0.75	0.9	\overline{c}	0.25	0.4	3	0.5	0.8
12	United Kingdom	Scotland	4	3/1		Ω	Ω	$\overline{2}$	$\mathbf{0}$	$\overline{0}$		Ω	0
13	Germany	Rhineland	6	$5/0$ (1 NA)	4	0.6	0.87		Ω	Ω	4	0.6	0.87
14	Germany	Braunschweig	$\overline{4}$	2/2	4			3	0.67	0.83	3	0.67	0.83
15	Germany	Freising	6	0/6		Ω	Ω		Ω	$\overline{0}$		Ω	0
16	Germany	Oder	9	9/0	3	0.25	0.42		θ	θ	3	0.25	0.42
17	Poland	Poland	9	2/7	$\overline{2}$	0.13	0.5	\overline{c}	0.13	0.5	1	Ω	Ω
18	Hungary	Répce	26	19/7	6	0.2	0.65	3	0.08	0.52	3	0.08	0.22
19	Hungary	Balaton	9	8/1	$\overline{2}$	0.13	0.22		Ω	$\overline{0}$	$\overline{2}$	0.13	0.22
20	Hungary	Zala	36	36/0	3	0.06	0.11	3	0.06	0.11	2	0.03	0.06

TABLE 3 Characteristics of *P.* \times alni populations in Europe

^a Abbreviations: M/U type, frequency of samples with M or U mtDNA type; NA, information not available; MLG, number of multilocus genotypes per population; *R*, clonal richness; D, genotypic diversity (Simpson's index); PuSG, P. uniformis subgenome in P. ×alni isolates; P×mSG, P. ×multiformis subgenome in P. ×alni isolates.

except for allele 68 at locus M-PAU14, which was shared by the two parental species. However, this allele was present in all P. Xalni samples and did not impact the estimation of genetic distances between isolates. The first two axes of the PCA explained 98.5% of the total variation and revealed a strong structure with three distinct clusters [\(Fig. 4\)](#page-7-1). A first cluster, here called A,

FIG 4 Principal component analysis (PCA) performed on Bruvo's distances on the whole collection of *P*. \times *alni* (269 isolates). Symbols indicate *P*. \times *multiformis* and *P. uniformis* putative parents: \bigcirc , $P\times m$ -1 or $P\times m$ -2; \Box , $P\times m$ -2 or $P \times m$ -4; \triangle , $P \times m$ -1, $P \times m$ -2, or $P \times m$ -5; ∇ , $P \times m$ -2; \diamond , $P \times m$ -4; $+$, undetermined. Black filled symbols, *Pu*-E1 or *Pu*-E3; empty symbols, *Pu*-E2; gray filled symbols, undetermined *P. uniformis* putative parents. The numbers indicate the *P*. \times *alni* MLGs.

grouped most of the samples (91% of the isolates and 17 of the 26 P. Xalni MLGs). Consistently with the MSN built for *P. uniformis* and *Pu*SG, cluster A was characterized by isolates that had either *Pu*-E1, *Pu*-E3, or a nonsampled MLG as putative *P. uniformis* parent. A second cluster, here called B, grouped samples with the *Pu*-E2 MLG as the putative *P. uniformis* parent. The third cluster (C) is less clear, was characterized by samples with missing alleles at some loci, and therefore had nonsampled *P. uniformis* putative parents. As for the MSN computed for *P. ×multiformis* and *P* \times *mSG*, the *P*. \times *multiformis* putative parents did not show any relationship with the structure of the *P*. \times *alni* clusters. Significant differences were found between samples of the different clusters when tested against latitude ($F = 16.6$; $P < 0.001$) and longitude $(F = 12.8; P < 0.001)$, with clusters B and C located further east and north than cluster A [\(Fig. 5\)](#page-8-0). Neither latitude nor longitude was found to be significantly related to the mtDNA type of samples ($F = 0.07$, $P = 0.78$; and $F = 3.74$, $P = 0.053$, respectively).

Diversity and population structure were further studied for 254 samples that could be assigned to the 20 watershed/country populations. Diversity indices for each population are listed in [Table 3.](#page-7-0) No genetic diversity was found for six populations (Freising, Loir, Sèvre Niortaise, Meuse, Salamanca, and Scotland), and only the $P\times a$ -1 MLG was present. In contrast, the Braunschweig population exhibited different MLGs for the 4 sampled isolates. Although limited in size, the England and Rhineland populations exhibited relatively high diversity, with levels of clonal richness and genotypic diversity close to 1. Moderate diversity indices were estimated for the Oder, Ognon, and Répce populations. For the remaining populations, diversity indices were low. In most populations, the dominant $P \times a$ -1 MLG was present in frequencies ranging from 0.20 to 1, except in the Oder population, where $P \times a$ -1 was absent. $P \times a$ -3 was observed only in the Oder population, while $P \times a$ -4 was observed only in the Ognon population.

FIG 5 Geographical distribution of *P. ×alni* clusters determined by principal component analysis (PCA). Isolates from clusters B and C are distributed mostly in the north and the east of Europe, in contrast to isolates from cluster A.

Rare MLGs (only one isolate) were observed in England, Braunschweig, Oder, Répce, Rhin, Rhineland, Saône, Sarre and Nied, and Zala populations. It must be taken into account that three rare MLGs ($P \times a$ -24, $P \times a$ -25, and $P \times a$ -26) were not included in this section of the study because these isolates could not be assigned to any watershed/country population. The *P*. \times *alni* populations presented low, albeit significant, genetic differentiation, with estimated *Fst* of 0.024 ($P < 0.001$) and *Rst* of 0.004 ($P < 0.001$). Genetic diversity within populations was significantly lower for the *P. uniformis* subgenome than for the *P.* \times *multiformis* subgenome. Indeed, no genetic diversity was found for 14 of 20 populations when they were analyzed for the *P. uniformis* subgenome. Despite this low population diversity, when evaluated for the *P. uniformis* subgenome, strong genetic differentiation was found with high *Fst* and *Rst* values (*Fst* = 0.51, $P < 0.001$; *Rst* = 0.56, $P < 0.001$). When populations were analyzed for the *P*. \times *multiformis* subgenome, genetic differentiation estimates were similar to those obtained for *P*. \times *alni*, with low but significant *Fst* and *Rst* $(Fst = 0.02, P < 0.001; Rst = 0.021, P < 0.001).$

Temporal structure of P. \times alni isolates. [Figure 6](#page-8-1) summarizes the assessment of the temporal changes of the clonal richness for P. Xalni. The regression showed a significant decrease of the clonal richness from 1996 to 2010 ($F = 12.1$, $R^2 = 0.559$, $P =$ (0.013) . $P\times a$ -1 had little presence at the beginning of the sampling period, and was strongly dominant in the late collection years

FIG 6 Temporal changes of clonality in *P. × alni*. Linear regression shows that clonal richness decreased with time.

(after 2000). Changes in the ratio of the mtDNA haplotypes, M or U, over the years did not show any significant trend, staying stable during the evaluated period ($P = 0.07$). Moreover, while samples of clusters A and B were collected at about the same time (respective means of 2006 \pm 0.5 and 2007 \pm 1.1), samples of cluster C were collected much earlier (1999 \pm 3.9). *Fst and Rst estimated values* suggest a low but significantly different from zero temporal differentiation (*Fst* = 0.003, *P* = 0.04; and *Rst* = 0.001, *P* = 0.003).

DISCUSSION

In our study, we were able to assign alleles from parental subgenomes to most *P.* \times *alni* samples by combining the analysis of microsatellite profiles and peak height ratios. Microsatellites revealed low polymorphism in *P.* \times *alni*. Yet, the genotypic richness and diversity within *P.* \times *alni* were consistent with those of its parental species. Moreover, our approach allowed us to explore the diversity of both parental species, by studying the extra genetic variability that is found in *P.* \times alni subgenomes. In the case of *P*. uniformis and P. \times multiformis, this is interesting because both species are seldom isolated, likely due to the capacity of *P.* \times *alni* to replace its parents under most environmental conditions [\(22,](#page-11-1) [36\)](#page-11-15).

Comparing the genetic characteristics of *P. uniformis* isolates to those of the *P. uniformis* subgenome highlighted interesting information. All diversity indexes used in this study, including estimations within watershed/country populations, were extremely low for the European *P. uniformis* isolates and for the reconstructed *P. uniformis* subgenome. These results differ from diversity indexes estimated for North American isolates, which were consistently higher. This indicates that *P. uniformis* is present in Europe as very few genotypes dispersed throughout the continent. Despite this low diversity, *P. uniformis* seems to have presented a strong geographic differentiation in Europe, as shown by MSN, PCA, and by *F*st and *R*st, estimated for the *P. uniformis* subgenome. However, it appears that there are genotypes other than those described for *P. uniformis* by Aguayo et al. [\(19\)](#page-10-18). In fact, some *P.* Xalni isolates exhibited *P. uniformis* subgenomes that were not attributable to any *P. uniformis* isolate sampled so far. A hypothesis would be that they were not recovered because of toolow sampling pressure. It has, for example, been suggested that *P. uniformis* is well adapted to cold climates, which explains its frequent isolation from Swedish rivers [\(20\)](#page-10-19), as under these environmental conditions *P*. \times *alni* may not be able to develop and replace *P. uniformis*. This is consistent with the widespread presence of *P. uniformis* in cold regions, such as Alaska and Oregon [\(18,](#page-10-17) [37\)](#page-11-16). *P. uniformis* from colder locations could hide new diversity, and other genotypes may be discovered. The characterization and comparison of new *P. uniformis* individuals from these locations could bring new insights into the origins of both *P. uniformis* and the hybrid *P*. Xalni.

The genetic characteristics of *P*. *×multiformis* and of the P. X multiformis subgenome were also compared. P. X multiformis is an extremely rare species, and only a few European strains have been sampled so far. However, after intense sampling in France and Belgium and the contribution of European colleagues, we were able to gather a *P*. \times *multiformis* collection of 39 isolates. Overall, P. Xmultiformis exhibited low polymorphism. However, diversity indexes within the species showed that there is some diversity, and 5 P. Xmultiformis MLGs were observed. Concerning the P . \times *multiformis* subgenome, the number of P . \times *multiformis*subgenome MLGs increased to 13. However, diversity indexes

computed for the *P*. \times *multiformis* subgenome were smaller than for *P. ×multiformis*. When genotypic richness (estimated by eMLG rarefying to 39 samples) was computed for the *P*. \times multiformis subgenome, it was found to be similar to that of *P*. \times *mul*tiformis, suggesting that some diversity within *P*. Xmultiformis effectively exists but has not been sampled. It must be considered that *P*. X multiformis has been described as a polyploid product of an interspecific hybridization between two unknown *Phytophthora* species [\(15,](#page-10-14) [17\)](#page-10-16) and that it may present diversity levels close to those of *P. × alni*. Sampling complications, added to the low polymorphism exhibited by the microsatellite markers, make the characterization of P. \times *multiformis* a difficult task. P. \times *multiformis* diversity is far from being well understood, and if possible, more samples should be included to make more-robust genetic inferences and determine its putative origin. We can, however, suggest that this sampling effort should be performed in areas were P. Xalni is not present, including samples from other European alder species and integrating asymptomatic or nondeclining trees, as was the case for the Durance and Marais-Poitevin populations.

Our study allowed us to determine some genetic characteristics of the hybrid *P*. Xalni. Simulated sexual crosses between the two parental species allowed us to identify *P. uniformis* and *P.* \times *mul*tiformis putative progenitors for 89% of the *P*. \times alni isolates and to assess its diversity, revealing at least 30 different MLGs. As both U and M mtDNA patterns could be found in isolates exhibiting the same microsatellite MLG, these are not likely to be true clonal lineages but rather products of several hybridization events involving the same parental MLGs. Moreover, this constitutes supplementary pieces of evidence that the sexual hybridization took place in both directions, with both parents potentially acting as the antheridial strain, as previously shown by Ioos et al. [\(15\)](#page-10-14). In this regard, the predominance of the M over the U mtDNA in *P.* \times *alni* is also consistent with the pattern found by Ioos et al. [\(15\)](#page-10-14). Despite the fact that during sexual hybridization both parents could act as the antheridial strain, it seems that one is often favored, leading to an unequal transmission of the mtDNA [\(38,](#page-11-17) [39\)](#page-11-18). Bringing together this evidence, we estimated that at least 13 different hybridization events occurred during the genesis of *P*. \times *alni*. These multiple hybridization events have shaped the geographical structure of *P.* Xalni populations. Although no obvious geographical pattern could be demonstrated for the mtDNA and for the *P*. \times *multiformis* subgenome, a clear spatial pattern was shown for the *P. uniformis*subgenome, indicating that *P. uniformis*, described as an invasive species [\(19\)](#page-10-18), had a major role in shaping this structure. At least two clusters differentiated by their putative *P. uniformis* parents exist within *P.* \times *alni*. While cluster A, with *Pu*-E1 and *Pu*-E3 putative progenitors, is found throughout Europe, cluster B, with the *Pu*-E2 MLG progenitor, is preferentially found in Eastern Europe. Although $P \times a$ -1 MLG, which belongs to cluster A, became dominant in Europe, MLGs deriving from the *Pu*-E2 subgenome were not replaced by this MLG in Eastern Europe. This suggests that the different hybridization events that occurred in several European areas shaped the *P*. Xalni population structure and that more than one single hybridization center occurred, from which the different MLGs arose and then dispersed. This pattern is not unexpected for an infertile hybrid like *P*. \times *alni* [\(40\)](#page-11-19) and can be explained by restricted gene flow between populations, founder effects resulting from the introduction of alimited number of parental genotypes, absence of recombination, and spread of few genotypes within its populations.

Overall, diversity within *P. ×alni* was low. In particular, a

dominant microsatellite MLG, including more than 80% of the isolates (including both U and M types), was observed. This largely explains the low clonal richness estimated for *P.* \times alni. Although genetic differentiation over the years was not evident by *F*st or *R*st estimations, we observed a declining tendency of clonal richness with an increased frequency of this dominant MLG over time. This could be explained by genetic drift, which can eliminate rare genotypes from local populations [\(41\)](#page-11-20), especially if the populations experience bottlenecks. These can be associated with human intervention such as eradication: however, management of alders in Europe is limited [\(42\)](#page-11-21). Adverse climatic events that negatively affect the pathogen population may better explain the occurrence of bottlenecks. Indeed, population crashes after an unfavorable season offer an advantage to already well established genotypes during the recolonization process and may thus cause the extinction of rare genotypes [\(43\)](#page-11-22). This applies to P. \times alni, as the pathogen has been shown to be highly susceptible to both high summer and low winter temperatures [\(44,](#page-11-23) [45\)](#page-11-24). Another explanation for the decrease in clonal richness could be selection, which results in shifts in the frequency of genotypes over time when fitness differences are large [\(46\)](#page-11-25). This may result from differences in adaptation to their host and/or environment. For example, Chandelier et al. [\(47\)](#page-11-26) found that, while little variability in aggressiveness toward A. glutinosa exists within P. \times alni, the sporulation capacity is isolate dependent. However, whether genetic drift or selection is the mechanism that enables one MLG to finally predominate is currently not clear. Resolving this question would require an analysis of life history traits determining the fitness of *P.* \times *alni* [\(48\)](#page-11-27). Nevertheless, our results illustrate how the diversity of an emerging oomycete may decrease during or shortly after the invasion process.

Finally, this study illustrates the benefits of studying the parental subgenomes present in an interspecific hybrid when the parental species are difficult to sample, rare, or even extinct. These subgenomes represent a picture of the "fossilized" diversity of the parental species.

ACKNOWLEDGMENTS

We thank our European and American colleagues for sharing their isolates. We thank Renaud Ioos (ANSES) for helpful comments on early versions of the manuscript.

FUNDING INFORMATION

This work, including the efforts of Jaime Aguayo, was funded by The Lorraine Region. This work, including the efforts of Jaime Aguayo, Claude Husson, and Benoit Marçais, was funded by FEDER (Interreg IV-A Ecolirimed program). This work, including the efforts of Zoltán A. Nagy, András Szigethy, and József Bakonyi, was funded by OTKA (OTKA K61107). This work, including the efforts of Zoltán A. Nagy, András Szigethy, and József Bakonyi, was funded by European Cooperation in Science and Technology (COST) (COST FP0801 STSM). This work, including the efforts of Jaime Aguayo, Fabien Halkett, Claude Husson, Pascal Frey, and Benoit Marçais, was funded by Agence Nationale de la Recherche (ANR) (ANR 07-BDIV-003 Emerfundis program). This work, including the efforts of Fabien Halkett, was funded by Agence Nationale de la Recherche (ANR) (ANR-11-BSV7-0007 CLONIX project). This work, including the efforts of Fabien Halkett, Claude Husson, Pascal Frey, and Benoit Marçais, was funded by Agence Nationale de la Recherche (ANR) (ANR-11-LABX-0002-01 Laboratory of Excellence ARBRE).

REFERENCES

1. **Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME.** 2008. Speciation in fungi. Fungal Genet Biol **45:**791–802. [http://dx.doi.org/10](http://dx.doi.org/10.1016/j.fgb.2008.02.001) [.1016/j.fgb.2008.02.001.](http://dx.doi.org/10.1016/j.fgb.2008.02.001)

- 2. **Schardl CL, Craven KD.** 2003. Interspecific hybridization in plantassociated fungi and oomycetes: a review. Mol Ecol **12:**2861–2873. [http:](http://dx.doi.org/10.1046/j.1365-294X.2003.01965.x) [//dx.doi.org/10.1046/j.1365-294X.2003.01965.x.](http://dx.doi.org/10.1046/j.1365-294X.2003.01965.x)
- 3. **Stukenbrock EH.** 2016. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology **106:**104 –112. [http://dx.doi.org/10.1094/PHYTO-08-15-0184-RVW.](http://dx.doi.org/10.1094/PHYTO-08-15-0184-RVW)
- 4. **Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM.** 2007. The fungal dimension of biological invasions. Trends Ecol Evol **22:**472–480. [http://dx.doi.org/10.1016/j.tree](http://dx.doi.org/10.1016/j.tree.2007.04.005) [.2007.04.005.](http://dx.doi.org/10.1016/j.tree.2007.04.005)
- 5. **Stukenbrock EH, McDonald BA.** 2008. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol **46:**75–100. [http://dx.doi.org/10](http://dx.doi.org/10.1146/annurev.phyto.010708.154114) [.1146/annurev.phyto.010708.154114.](http://dx.doi.org/10.1146/annurev.phyto.010708.154114)
- 6. **Bertier L, Leus L, D'hondt L, de Cock AWAM, Höfte M.** 2013. Host adaptation and speciation through hybridization and polyploidy in *Phytophthora*. PLoS One **8:**e85385. [http://dx.doi.org/10.1371/journal.pone](http://dx.doi.org/10.1371/journal.pone.0085385) [.0085385.](http://dx.doi.org/10.1371/journal.pone.0085385)
- 7. **Man in't Veld WA, Rosendahl K, Hong C.** 2012. *Phytophthora* X*serendipita* sp. nov. and *P*. X*pelgrandis*, two destructive pathogens generated by natural hybridization. Mycologia **104:**1390 –1396. [http://dx.doi.org/10](http://dx.doi.org/10.3852/11-272) [.3852/11-272.](http://dx.doi.org/10.3852/11-272)
- 8. **Burgess TI.** 2015. Molecular characterization of natural hybrids formed between five related indigenous clade 6 phytophthora species. PLoS One **10:**e0134225. [http://dx.doi.org/10.1371/journal.pone.0134225.](http://dx.doi.org/10.1371/journal.pone.0134225)
- 9. **Palop-Esteban M, Segarra-Moragues JG, González-Candelas F.** 2011. Polyploid origin, genetic diversity and population structure in the tetraploid sea lavender *Limonium narbonense* Miller (Plumbaginaceae) from eastern Spain. Genetica **139:**1309 –1322. [http://dx.doi.org/10.1007/s10709-012](http://dx.doi.org/10.1007/s10709-012-9632-2) [-9632-2.](http://dx.doi.org/10.1007/s10709-012-9632-2)
- 10. **Robertson A, Rich TCG, Allen A, Houston L, Roberts C, Bridle JR, Harris SA, Hiscock SJ.** 2010. Hybridization and polyploidy as drivers of continuing evolution and speciation in *Sorbus*. Mol Ecol **19:**1675–1690. [http://dx.doi.org/10.1111/j.1365-294X.2010.04585.x.](http://dx.doi.org/10.1111/j.1365-294X.2010.04585.x)
- 11. **Dufresne F, Stift M, Vergilino R, Mable BK.** 2014. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol **23:**40 – 69. [http://dx.doi.org/10.1111/mec.12581.](http://dx.doi.org/10.1111/mec.12581)
- 12. **Clark LV, Jasieniuk M.** 2011. POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour **11:**562–566. [http://dx.doi.org/10](http://dx.doi.org/10.1111/j.1755-0998.2011.02985.x) [.1111/j.1755-0998.2011.02985.x.](http://dx.doi.org/10.1111/j.1755-0998.2011.02985.x)
- 13. **Korbecka G, Rymer PD, Harris SA, Pannell JR.** 2010. Solving the problem of ambiguous paralogy for marker loci: microsatellite markers with diploid inheritance in allohexaploid *Mercurialis annua* (Euphorbiaceae). J Heredity **101:**504 –511. [http://dx.doi.org/10.1093/jhered/esq026.](http://dx.doi.org/10.1093/jhered/esq026)
- 14. **Pairon M, Jacquemart A-L, Potter D.** 2008. Detection and characterization of genome-specific microsatellite markers in the allotetraploid *Prunus serotina*. J Am Soc Hortic Sci **133:**390 –395.
- 15. **Ioos R, Andrieux A, Marcais B, Frey P.** 2006. Genetic characterization of the natural hybrid species *Phytophthora alni* as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet Biol **43:**511–529. [http://dx](http://dx.doi.org/10.1016/j.fgb.2006.02.006) [.doi.org/10.1016/j.fgb.2006.02.006.](http://dx.doi.org/10.1016/j.fgb.2006.02.006)
- 16. **Ioos R, Panabieres F, Industri B, Andrieux A, Frey P.** 2007. Distribution and expression of elicitin genes in the interspecific hybrid oomycete *Phytophthora alni*. Appl Environ Microbiol **73:**5587–5597. [http://dx.doi.org](http://dx.doi.org/10.1128/AEM.00721-07) [/10.1128/AEM.00721-07.](http://dx.doi.org/10.1128/AEM.00721-07)
- 17. **Husson C, Aguayo J, Revellin C, Frey P, Ioos R, Marçais B.** 2015. Evidence for homoploid speciation in *Phytophthora alni* supports taxonomic reclassification in this species complex. Fungal Genet Biol **77:**12– 21. [http://dx.doi.org/10.1016/j.fgb.2015.02.013.](http://dx.doi.org/10.1016/j.fgb.2015.02.013)
- 18. **Adams GC, Catal M, Trummer LM.** 2010. Distribution and severity of alder phytophthora in Alaska, p 29 –49.*In* U.S. Department of Agriculture Forest Service (ed), Gen Tech Rep PSW-GTR-229, Proceedings of the sudden oak death, fourth science symposium, Albany, CA. Pacific Southwest Research Station, Albany, CA.
- 19. **Aguayo J, Adams GC, Halkett F, Catal M, Husson C, Nagy ZA, Hansen EM, Marcais B, Frey P.** 2013. Strong genetic differentiation between North American and European populations of *Phytophthora alni*subsp. *uniformis*. Phytopathology **103:**190 –199. [http://dx.doi.org/10.1094/PHYTO-05-12](http://dx.doi.org/10.1094/PHYTO-05-12-0116-R) $-0116 - R$.
- 20. **Redondo MA, Boberg J, Olsson CHB, Oliva J.** 2015. Winter conditions correlate with *Phytophthora alni* subspecies distribution in southern Sweden. Phytopathology **105:**1191–1197. [http://dx.doi.org/10.1094/PHYTO](http://dx.doi.org/10.1094/PHYTO-01-15-0020-R) [-01-15-0020-R.](http://dx.doi.org/10.1094/PHYTO-01-15-0020-R)
- 21. **Brasier CM, Rose J, Gibbs JN.** 1995. An unusual *Phytophthora* associated with widespread alder mortality in Britain. Plant Pathol **44:**999 –1007. [http://dx.doi.org/10.1111/j.1365-3059.1995.tb02658.x.](http://dx.doi.org/10.1111/j.1365-3059.1995.tb02658.x)
- 22. **Nagy ZÁ, Bakonyi J, Érsek T.** 2003. Standard and Swedish variant types of the hybrid alder *Phytophthora* attacking alder in Hungary. Pest Manag Sci **59:**484 –492. [http://dx.doi.org/10.1002/ps.681.](http://dx.doi.org/10.1002/ps.681)
- 23. **Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA.** 2007. Standardizing methods to address clonality in population studies. Mol Ecol **16:**5115– 5139. [http://dx.doi.org/10.1111/j.1365-294X.2007.03535.x.](http://dx.doi.org/10.1111/j.1365-294X.2007.03535.x)
- 24. **Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé P-JG, Ferreira S, Martin J-F.** 2011. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour **11:**638 –644. [http://dx.doi.org/10.1111/j](http://dx.doi.org/10.1111/j.1755-0998.2011.02992.x) [.1755-0998.2011.02992.x.](http://dx.doi.org/10.1111/j.1755-0998.2011.02992.x)
- 25. **Ioos R, Barrès B, Andrieux A, Frey P.** 2007. Characterization of microsatellite markers in the interspecific hybrid *Phytophthora alni ssp. alni*, and cross-amplification with related taxa. Mol Ecol Notes **7:**133–137.
- 26. **Kroon L, Bakker FT, van den Bosch G, Bonants P, Flier WG.** 2004. Phylogenetic analysis of *Phytophthora* species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol **41:**766 –782. [http://dx.doi.org](http://dx.doi.org/10.1016/j.fgb.2004.03.007) [/10.1016/j.fgb.2004.03.007.](http://dx.doi.org/10.1016/j.fgb.2004.03.007)
- 27. **Esselink GD, Nybom H, Vosman B.** 2004. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet **109:**402–408.
- 28. **Meirmans PG, Van Tienderen PH.** 2004. Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes **4:**792–794. [http://dx.doi.org/10.1111/j.1471-8286.2004.00770.x.](http://dx.doi.org/10.1111/j.1471-8286.2004.00770.x)
- 29. **Kamvar ZN, Tabima JF, Grünwald NJ.** 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ **2:**e281. [http://dx.doi.org/10.7717/peerj.281.](http://dx.doi.org/10.7717/peerj.281)
- 30. **Grünwald NJ, Goodwin SB, Milgroom MG, Fry WE.** 2003. Analysis of genotypic diversity data for populations of microorganisms. Phytopathology **93:**738 –746. [http://dx.doi.org/10.1094/PHYTO.2003.93.6.738.](http://dx.doi.org/10.1094/PHYTO.2003.93.6.738)
- 31. **Bruvo R, Michiels NK, D'Souza TG, Schulenburg H.** 2004. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol **13:**2101–2106. [http://dx.doi.org/10.1111/j](http://dx.doi.org/10.1111/j.1365-294X.2004.02209.x) [.1365-294X.2004.02209.x.](http://dx.doi.org/10.1111/j.1365-294X.2004.02209.x)
- 32. **Clark LV.** 2013. Polysat version 1.3 tutorial manual. Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL.
- 33. **Jombart T, Pontier D, Dufour AB.** 2009. Genetic markers in the playground of multivariate analysis. Heredity **102:**330 –341. [http://dx.doi.org](http://dx.doi.org/10.1038/hdy.2008.130) [/10.1038/hdy.2008.130.](http://dx.doi.org/10.1038/hdy.2008.130)
- 34. **Lê S, Josse J, Husson F.** 2008. FactoMineR: an R package for multivariate analysis. J Stat Software **25:**1–18.
- 35. **Hardy OJ, Vekemans X.** 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or popula-

tion levels. Mol Ecol Notes **2:**618 –620. [http://dx.doi.org/10.1046/j](http://dx.doi.org/10.1046/j.1471-8286.2002.00305.x) [.1471-8286.2002.00305.x.](http://dx.doi.org/10.1046/j.1471-8286.2002.00305.x)

- 36. **Brasier CM, Kirk SA.** 2001. Comparative aggressiveness of standard and variant hybrid alder phytophthoras, *Phytophthora cambivora* and other *Phytophthora* species on bark of *Alnus*, *Quercus* and other woody hosts. Plant Pathol **50:**218 –229. [http://dx.doi.org/10.1046/j.1365-3059.2001](http://dx.doi.org/10.1046/j.1365-3059.2001.00553.x) [.00553.x.](http://dx.doi.org/10.1046/j.1365-3059.2001.00553.x)
- 37. **Sims LL, Sutton W, Reeser PW, Hansen EM.** 2015. The *Phytophthora* species assemblage and diversity in riparian alder ecosystems of western Oregon, USA. Mycologia **107:**889 –902. [http://dx.doi.org/10.3852/14-255.](http://dx.doi.org/10.3852/14-255)
- 38. **Man In't Veld WA, Veenbaas-Rijks WJ, Ilieva E, de Cock AW, Bonants PJ, Pieters R.** 1998. Natural hybrids of *Phytophthora nicotianae* and *Phytophthora cactorum* demonstrated by isozyme analysis and random amplified polymorphic DNA. Phytopathology **88:**922–929. [http://dx.doi.org/10](http://dx.doi.org/10.1094/PHYTO.1998.88.9.922) [.1094/PHYTO.1998.88.9.922.](http://dx.doi.org/10.1094/PHYTO.1998.88.9.922)
- 39. **Goodwin SB, Fry WE.** 1994. Genetic analyses of interspecific hybrids between *Phytophthora infestans* and *Phytophthora mirabilis*. Exp Mycol **18:**20 –32. [http://dx.doi.org/10.1006/emyc.1994.1003.](http://dx.doi.org/10.1006/emyc.1994.1003)
- 40. **Delcán J, Brasier CM.** 2001. Oospore viability and variation in zoospore and hyphal tip derivatives of the hybrid alder Phytophthoras. Forest Pathol **31:**65–83. [http://dx.doi.org/10.1046/j.1439-0329.2001.00223.x.](http://dx.doi.org/10.1046/j.1439-0329.2001.00223.x)
- 41. **Vercauteren A, De Dobbelaere I, Grünwald NJ, Bonants P, Van Bockstaele E, Maes M, Heungens K.** 2010. Clonal expansion of the Belgian *Phytophthora ramorum* populations based on new microsatellite markers. Mol Ecol **19:**92–107. [http://dx.doi.org/10.1111/j.1365-294X.2009.04443.x.](http://dx.doi.org/10.1111/j.1365-294X.2009.04443.x)
- 42. **Gibbs J.** 2003. Management and control of Phytophthora disease of alder, p 73–78. *In* Gibbs JN, Van Dijk C, Webber JF (ed), Phytophthora disease of alder in Europe. Forestry Commission Bulletin no. 126. Forestry Commission, Edinburgh, United Kingdom.
- 43. **Mascheretti S, Croucher PJP, Vettraino A, Prospero S, Garbelotto M.** 2008. Reconstruction of the Sudden Oak Death epidemic in California through microsatellite analysis of the pathogen *Phytophthora ramorum*. Mol Ecol **17:**2755–2768. [http://dx.doi.org/10.1111/j.1365-294X.2008.03773.x.](http://dx.doi.org/10.1111/j.1365-294X.2008.03773.x)
- 44. **Aguayo J, Elegbede F, Husson C, Saintonge F-X, Marçais B.** 2014. Modeling climate impact on an emerging disease, the *Phytophthora alni*induced alder decline. Global Change Biol **20:**3209 –3221. [http://dx.doi](http://dx.doi.org/10.1111/gcb.12601) [.org/10.1111/gcb.12601.](http://dx.doi.org/10.1111/gcb.12601)
- 45. **Cerny K, Strnadova V.** 2012. Winter survival of *Phytophthora alni subsp. alni* in aerial tissues of black alder. J Forest Sci **58:**328 –336.
- 46. **Goodwin SB.** 1997. The population genetics of *Phytophthora*. Phytopathology **87:**462–473. [http://dx.doi.org/10.1094/PHYTO.1997.87.4.462.](http://dx.doi.org/10.1094/PHYTO.1997.87.4.462)
- 47. **Chandelier A, Husson C, Druart P, Marçais B.** 2016. Assessment of inoculation methods for screening black alder resistance to *Phytophthora* -*alni*. Plant Pathol **65:**441–450. [http://dx.doi.org/10.1111/ppa.12418.](http://dx.doi.org/10.1111/ppa.12418)
- 48. **Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, Lannou C.** 2009. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol **58:**409 –424. [http://dx.doi.org/10.1111/j.1365-3059.2009.02039.x.](http://dx.doi.org/10.1111/j.1365-3059.2009.02039.x)