

Transposition of Tn*125* **Encoding the NDM-1 Carbapenemase in** *Acinetobacter baumannii*

Séverine Bontron,a,b Patrice Nordmann,a,b,c Laurent Poirela,b

Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland^a, ; INSERM European Unit (LEA Paris, France), University of Fribourg, Fribourg, Switzerland^b; University of Lausanne and University Hospital Center, Lausanne, Switzerland^c

The $bla_{\rm NDM-1}$ gene encodes a carbapenemase that confers resistance to almost all β -lactams, including last-resort carbapenems. **This is increasingly reported worldwide in nosocomial and community-acquired Gram-negative bacteria.** *Acinetobacter baumannii* is an important opportunistic pathogen that is considered an intermediate reservoir for the bla_{NDM-1} gene. In this spe**cies, the** *bla***NDM-1 gene is located within the Tn***125* **composite transposon. The mechanism driving the mobility of Tn***125* **has not yet been elucidated. Here we experimentally demonstrated the transposition of Tn***125* **in** *A. baumannii***. Systematic 3-bp duplication of the target site, being the signature of transposition, was evidenced. The target site consensus sequence for Tn***125* **transposition was found to be GC enriched at the duplicated 3 bp and AT rich in the vicinity. Transposition frequency was not influenced by temperature changes or by exposure to subinhibitory concentrations of various antibiotics. This work is the first direct evidence of the functionality of a composite transposon in** *A. baumannii***. It provides a mechanistic clue for the dissemination of the** *bla***NDM-1 gene in** *Acinetobacter* **spp. and subsequently among** *Enterobacteriaceae***.**

 \bigcap arbapenemases are enzymes hydrolyzing most β -lactams, including penicillins, cephalosporins, and carbapenems. Durarbapenemases are enzymes hydrolyzing most β -lactams, ining the last decade, they have been increasingly reported worldwide in *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacteriaceae*. The spread of carbapenemases is of utmost importance for medicine, since carbapenems are last-resort antibiotics for treating the most severe and hospital-acquired infections. The class B New Delhi metallo-β-lactamase (NDM-1) is a broad-spectrum ß-lactamase, hydrolyzing penicillins, cephalosporins, and carbapenems [\(1\)](#page-5-0). NDM-1 was first identified in a *Klebsiella pneumoniae* isolate from a patient previously hospitalized in India in 2008 [\(2\)](#page-5-1). Since then, it has been found mostly in *Enterobacteriaceae* and *A. baumannii* and to a lesser extend in *P. aeruginosa* [\(1,](#page-5-0) [3\)](#page-5-2). The origin of the *bla*_{NDM-1} resistance gene and the mechanism(s) driving its mobility remains unknown. However, a current hypothesis suggests that the *bla*_{NDM-1} gene originates from an environmental bacterial progenitor species and that *A. baumannii* is an intermediate reservoir for the bla_{NDM-1} gene (4) .

A. baumannii is an opportunistic human pathogen and a common cause of sepsis, pneumonia, urinary tract infection, and primary bacteremia. Multidrug-resistant *A. baumannii* isolates are of great concern $(5, 6)$ $(5, 6)$ $(5, 6)$. In *Acinetobacter* spp., the $bla_{\text{NDM-1}}$ gene is embedded in transposon Tn*125* [\(4,](#page-5-3) [7,](#page-5-6) [8\)](#page-5-7). Tn*125* is a 10,099-bp composite transposon bracketed by two copies of the insertion sequence (IS) IS*Aba125* orientated in the same direction [\(Fig. 1A\)](#page-1-0) [\(4,](#page-5-3) [7,](#page-5-6) [8\)](#page-5-7). The 1,087-bp IS*Aba125* element belongs to the IS*30* family and encodes a 322-amino-acid-long DDE-type transposase surrounded by imperfect terminal inverted repeat sequences (IRR [inverted repeat right] and IRL [inverted repeat left], sharing 20/26 nucleotide identity) [\(9,](#page-5-8) [10\)](#page-5-9). The *ble*_{MBL} gene, which encodes a 121-amino-acid-long protein conferring resistance to bleomycin, a glycopeptide antibiotic used as an antitumor agent, is located downstream of the $bla_{\text{NDM-1}}$ gene [\(11\)](#page-5-10). In addition, Tn125 comprises six genes encoding putative proteins (*iso*, *tat*, *dct*, *groES*, $groEL$, and Δpac [a truncated phospholipid acetyltransferase gene]), the IS*CR21* element, and the putative *ori*IS sequence that

defines the origin of replication of IS*CR21* [\(7,](#page-5-6) [8\)](#page-5-7). IS*CR* elements are peculiar ISs belonging to the IS*91* family, likely mobilizing genes located at their left-hand extremity by a rolling-circle transposition process [\(12,](#page-5-11) [13\)](#page-5-12).

Current observations suggest that the $bla_{\text{NDM-1}}$ gene originates from an unknown environmental bacterial progenitor species and is integrated into the chromosome of *Acinetobacter* spp. The *bla*_{NDM-1}-bearing Tn125 transposon was likely subsequently built from such *Acinetobacter* spp. and then transferred onto broadhost-range plasmids, followed by horizontal transfer to *Enterobacteriaceae* and *P. aeruginosa*. This hypothesis is supported by a series of genetic features $(4, 5)$ $(4, 5)$ $(4, 5)$, as follows. (i) The $bla_{\text{NDM-1}}$ gene displays a higher GC percentage (62%) than that of the genome of *Acinetobacter* spp. (38% to 42%), arguing in favor of a phylogenetic distance between the progenitor species and *Acinetobacter* spp. (ii) IS*CR21* may have mobilized a fragment encompassing the bla_{NDM-1} gene that displays a similar GC percentage from an unknown bacterial progenitor. (iii) IS*Aba125* has also been identified in *Acinetobacter* species isolates without physical association with the *bla*_{NDM-1} gene and shows a low GC content of 37%, consistent with a possible *Acinetobacter* species origin [\(4,](#page-5-3) [5\)](#page-5-4).

A critical step in the dissemination process of the bla_{NDM-1} gene is the mobility of the Tn*125* transposon in *Acinetobacter* spp. According to its genetic structure, it was presumed that Tn*125* can move through transposition. Transposition is a catalytic process, driven by an element-specific transposase. During this process,

Accepted manuscript posted online 26 September 2016

Address correspondence to Laurent Poirel, laurent.poirel@unifr.ch.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Received 10 August 2016 Returned for modification 28 August 2016 Accepted 14 September 2016

Citation Bontron S, Nordmann P, Poirel L. 2016. Transposition of Tn*125* encoding the NDM-1 carbapenemase in *Acinetobacter baumannii*. Antimicrob Agents Chemother 60:7245–7251. [doi:10.1128/AAC.01755-16.](http://dx.doi.org/10.1128/AAC.01755-16)

FIG 1 Transposition of Tn*125*. (A) Schematic representation of transposon Tn*125*. The total size is 10,099 bp. The ORFs are represented by arrows, and the lengths are to scale. The two IS*Aba125* elements bracketing Tn*125* are indicated in green, each with the transposase (*tnp*) gene and the IRL and IRR inverted repeats. The *bla*_{NDM-1} gene is in red, the *ble*_{MBL} gene is in blue, and the 7 other ORFs are in dark gray; the ISCR21 and the *ori*IS (circle) are in light gray. The GC content (%) for each of the following fragments is indicated: 37% for each IS*Aba125* (nucleotides 1 to 1087 and 9013 to 10099), 65% for the sequence encompassing *bla*_{NDM-1} to *ori*IS, and 32% for Δ*pac*. (B) Characterization of four Tn125 transposition events in *A. baumannii* CIP70.10 and Ab17978 (*recA* mutant) strains. The duplicated 3-bp target sites are underlined. The surrounding 50 nucleotides, upstream and downstream of each transposon insertion, are shown. In *A. baumannii* CIP70.10, transposon Tn*125* transposed between ORFs designated No1 (encoding proteins deposited under accession no. [CRL92855.1](http://www.ncbi.nlm.nih.gov/protein/CRL92855.1) and [CRL92856.1\)](http://www.ncbi.nlm.nih.gov/protein/CRL92856.1) or an ORF designated No2 (encoding an outer membrane protein A precursor [accession no. [CRL95910.1\)](http://www.ncbi.nlm.nih.gov/protein/CRL95910.1); in *A. baumannii* Ab17978 (*recA* mutant), transposon Tn*125* transposed in the ORF designated No1 (encoding a hypothetical protein [accession no. [AKQ26110.1\]](http://www.ncbi.nlm.nih.gov/protein/AKQ26110.1)) or in the ORF designated No2 (encoding a CinA-like protein [accession no. [KNZ37258.1\]](https://www.ncbi.nlm.nih.gov/protein/KNZ37258.1)).

the transposase generates a short direct repeat flanking the transposon in the target DNA, corresponding to a signature of the transposition event [\(10\)](#page-5-9). Alternative mechanisms for Tn*125* transfer might involve nonhomologous recombination or cointegration. Here, we show that the Tn*125* transposon can efficiently transpose in *A. baumannii* and that the transposition frequency is not influenced by temperature changes or antibiotic pressure.

MATERIALS AND METHODS

Strains. Transposition experiments were performed in *A. baumannii* CIP70.10 and Ab17978 (*recA*::Km) [\(14\)](#page-6-0) reference strains. Plasmids were constructed in *Escherichia coli* TOP10 (Invitrogen).

Plasmid construction. For pTOPO-Tn*125*, the Tn*125* transposon was amplified from *A. baumannii* strain JH [\(8\)](#page-5-7) together with 98 bp and 99 bp of the flanking genomic sequences present in upstream and downstream Tn125, respectively, with primers JHorfTn125-HindIII-F (5'-gatgat aagcttTCAGCAATAAATTTGTCACCAGC-3') and JHorfTn125-XbaI-R (5'-gatgattctagaCAAGCTGCTCAAGTTAAAGATCG-3') (the HindIII and XbaI restriction sites are underlined, and the uppercase letters correspond to the open reading frame [ORF] identified in strain JH). This amplicon was subcloned into the HindIII and XbaI restriction sites of the pCR-BluntII-TOPO plasmid (Invitrogen). The integrity of both ISAba125 elements and of bla_{NDM-1} was confirmed by sequencing. pTOPO-zeodel-Tn*125* was derived from pTOPO-Tn*125*, in which a frameshift in the zeocin resistance gene was generated by digestion at the unique *Fse*I site, blunting, and self-ligation. The resulting zeocin resistance protein lacks the 32 C-terminal amino acids. For the pTOPO-shuttle-Tn*125* plasmid, the *A. baumannii*-specific origin of replication was amplified from pWH1266 (a kind gift from P. Higgins) and subcloned into pTOPO-Tn*125* between the BsrGI and HindIII restriction sites. Plasmid pTOPO-shuttle-Tn*125* replicates in *E. coli*, from which it can be selected with 50 μ g/ml zeocin, 100 μ g/ml ampicillin, 25 μ g/ml kanamycin, or 0.5 µg/ml imipenem (IPM), in *A. baumannii* CIP70.10, from which it can be selected with 25 μ g/ml kanamycin, 200 μ g/ml zeocin, or 1 g/ml IPM, and finally in *A. baumannii* Ab17978 *recA*::Km, from which it

can be selected with 10 μ g/ml zeocin or 1 μ g/ml IPM. Full sequences of the Tn*125* plasmids are available upon request.

Transposition assays. One-hundred-nanogram amounts of pTOPO-Tn*125* or pTOPO-zeodel-Tn*125* suicide plasmids were electroporated into 25 µl of electrocompetent *A. baumannii* cells with a MicroPulser (Bio-Rad). The bacteria were resuspended in 2 ml LB and incubated for 1 h 30 min at 37°C with agitation. A total of 100 μ l was plated onto LB agar plates supplemented with $1 \mu g/ml$ IPM to select the transposition events. The transformation efficiency was determined with the highly similar pTOPO-shuttle-Tn*125* plasmid (replicating in *A. baumannii*), which was electroporated and processed in parallel to the suicide plasmids. The transposition frequencies were calculated by dividing the number of transposition events by the number of transformed cells. Experiments were done in triplicate. The same procedure was used to address the effect antibiotics has on transposition, but cells were incubated for 3 h at 37°C after electroporation with the following antibiotics: the glycopeptide bleomycin (1 μ g/ml and 5 μ g/ml) (Molekula) or zeocin (4 μ g/ml and 8 μ g/ ml), the fluoroquinolone ciprofloxacin (0.05 μ g/ml and 1 μ g/ml) (Sigma-Aldrich), the aminoglycoside kanamycin (1.5 μ g/ml and 3 μ g/ml) (Roth; ThermoFisher Scientific), and the carbapenem imipenem $(0.125 \mu g/ml)$ and 0.25 μ g/ml) (Mylan). The MIC of bleomycin for Tn125-containing CIP70.10 was 10 μ g/ml, while it was <1 μ g/ml for the parental CIP70.10 strain.

Molecular characterization of transposition events. The presence of the full-length Tn125 was confirmed by the amplification in 5' of a 925-bp fragment spanning from ISAba125 to bla_{NDM-1} with primers 125-F (5'-ACACCATTAGAGAAATTTGC-3') and NDM-R (5'-CGGAATGGC TCATCACGATC-3') and in 3' of a 1,326-bp fragment spanning from *Δpac* to IS*Aba125* with primers dpac-F (5'-CAACTGTGAGTCCTTTAC TGAC-3') and 125-R (5'-GCAAATTTCTCTAATGGTGT-3'). The integration sites of the transposition events were characterized by shotgun cloning. Total genomic DNA was digested with EcoRV and ligated into the EcoRV-digested and dephosphorylated pBSKS-kanR vector. The libraries were electroporated into *E. coli* TOP10 and plated onto LB agar containing 1 mg/liter IPM to select for $bla_{\mathrm{NDM-1}}$ -positive clones, which were sequenced with the primer IS125tpase_NORF-R (5'-CTCACGATA

TABLE 1 Transposition frequencies of Tn*125* in *A. baumannii* CIP70.10

^a In experiment 1, the bacteria were incubated for 1 h 30 min at 37°C after electroporation and then plated on 1-mg/liter imipenem-containing plates. In experiment 2, the bacteria were incubated for 3 h at 37°C with the indicated concentration of bleomycin.

^b pTOPO-Tn*125* or pTOPO-zeodel-Tn*125* was transformed as the donor of Tn*125*. The transposition frequencies are expressed as the number of transposition events relative to the number of cells transformed. Experiments were performed in triplicate. Values in parentheses are standard deviations.

GATCGTACTAGG-3') to identify the genomic sequence upstream of Tn*125*. For each transposition event, a primer was designed to amplify a fragment spanning from the 3' end of Tn125 to the genomic sequence downstream of Tn*125*. These PCR amplicons were sequenced with primer IS125tpase-CORF-F (5'-CATGTCACTGAATACTCGTCC-3').

Determination of the AT and GC contents and pictogram of the target site consensus. For the 27 transposition events characterized, the relative frequencies of each A and T, and G and C, for the region extending from 50 nucleotides upstream to 50 nucleotides downstream from the duplicated 3-bp target site were calculated and plotted onto a graph. The pictures of the relative frequencies of the bases at each position were generated with the Pictogram program [\(http://genes.mit.edu/pictogram](http://genes.mit.edu/pictogram.html) [.html\)](http://genes.mit.edu/pictogram.html).

Detection of IS*Aba125* **in** *Acinetobacter***species strains.** Strains were screened by PCR with primers Tn125-F (5'-TGTATATTTCTGTGAC CCAC-3') and Tn125-R (5'-GAAGGCGAATTCAAACATGAGGTGC-3'). A 255-bp product was amplified in the presence of IS*Aba125*.

RESULTS

Transposition of Tn*125* **in** *A. baumannii***.** To address the transposition of Tn*125* in *A. baumannii*, the suicide plasmid pTOPO-Tn*125* was transformed as the donor for the transposon in two *A. baumannii* recipient strains, CIP70.10 (*recA* wild type) and Ab17978 (*recA* mutant) [\(14\)](#page-6-0). The pTOPO-Tn*125* plasmid contains the entire Tn*125* transposon, together with the flanking chromosomal sequences present in the Tn*125*-positive *A. baumannii* isolate JH (98 and 99 bp upstream and downstream of the transposon, respectively) [\(8\)](#page-5-7). Four imipenem-resistant clones, two in *A. baumannii* CIP70.10 and two in *A. baumannii* Ab17978, were stepwise characterized as follows. First, they were tested for the loss of kanamycin and zeocin resistance markers, confirming that the donor plasmid did not integrate into the genome. Second, the presence of the full-length transposon Tn*125* and the absence of the flanking sequences present in the donor plasmid were confirmed by PCR. Third, the genomic sequences flanking Tn*125* were characterized in order to map the transposition sites and analyze the target site duplication. As shown in [Fig. 1B,](#page-1-0) for each of the four studied clones, the entire Tn*125* transposed into distinct loci of the *A. baumannii* chromosome. A 3-bp target site duplication was present in each case. Transposition of Tn*125* conferred resistance to cephalosporins and carbapenems, with MIC values of ceftazidime, imipenem, and meropenem being 256, 32, and $>$ 32 µg/ml, respectively.

Transposition frequencies. The transposition frequencies measured with pTOPO-Tn*125* and pTOPO-zeodel-Tn*125* as donors were 4.5 \times 10⁻⁴ (\pm 0.5 \times 10⁻⁴) and 5.7 \times 10⁻⁴ (\pm 0.9 \times 10⁻⁴) per transformed cell, respectively [\(Table 1,](#page-2-0) experiment 1). The frequencies with both donor plasmids were in the same range, excluding the potential influence of the zeocin marker gene, which confers resistance to the same class of molecules (bleomycin) as the *ble*_{MBL} gene. Since the source of dissemination of the *bla*_{NDM-1} gene is likely the environment, in particularly in Asia [\(15,](#page-6-1) [16\)](#page-6-2), where a variety of antibiotics has been widely identified [\(17,](#page-6-3) [18\)](#page-6-4) and where temperature changes might influence the transposition frequency [\(19,](#page-6-5) [20\)](#page-6-6), corresponding experiments were conducted. Incubation for 3 h with 1 or 5 μ g/ml bleomycin, a glycopeptide antibiotic used as an antitumor agent, did not influence the transposition rate of Tn*125* [\(Table 1,](#page-2-0) experiment 2). Similarly, the transposition rate was not influenced by incubation for 3 h at different temperatures (25°C, 30°C, 37°C, or 44°C) or by the presence of subinhibitory concentrations of structurally nonrelated antibiotics, such as fluoroquinolone (ciprofloxacin), aminoglycoside (kanamycin), glycopeptide (zeocin), and carbapenem (imipenem) (data not shown).

Target site specificity. In order to determine a consensus target site for Tn*125* transposition, 25 additional independent transposition events, in 25 independent isolates, were characterized in *A. baumannii* CIP70.10. Among the transposition events, 19 occurred within open reading frames (ORFs), 8 in direct orientation and 11 in reverse orientation compared to the disrupted ORF, and 8 outside of ORFs. For each transposition event, a systematic 3-bp duplication of the target site was evidenced [\(Fig. 2A\)](#page-3-0). To further characterize the features of the target site, the surrounding genomic sequences of the 27 transposition events were aligned, from 50 bp upstream up to 50 bp downstream of Tn*125*. The mean AT content for the regions distal to the duplicated target site, from -50 to -4 bp and from $+4$ to $+50$ bp relative to it, was 72% on both sides [\(Fig. 2B,](#page-3-0) upper graph). Around the duplicated target site, the AT content increased, with 100% at positions -3 and $+3$ and 83% to 90% at positions -2 , -1 , $+1$, and $+2$ [\(Fig. 2B,](#page-3-0) lower graph). By analysis of the nucleotide composition, the -3 position was found to be predominantly an A (69%), and the 3 position was found to be predominantly a $T(72%)$ [\(Fig. 2C\)](#page-3-0). At the duplicated target site positions, named here c1, c2, and c3, the AT content was lower (38% to 62%) (Fig. $2B$, lower graph). At c1, A, T, C, and G were equally represented (24% to 28%), while G was underrepresented at c2 (10% versus 38%, 24%, and 28% for A, T, and C, respectively) and predominant at c3 (48% versus 21%, 17%, and 14% for A, T, and C, respectively) [\(Fig. 2C\)](#page-3-0). Further analysis of sequences flanking 74 IS*Aba125* elements retrieved from GenBank confirmed the consensus derived from the analysis of Tn*125* transposition events [\(Fig. 2D\)](#page-3-0). In conclusion, the target site specificity of Tn*125* was driven mainly both by the 3 bp surrounding the duplicated target site, being AT rich and reaching

FIG 2 Target site preferences of Tn*125*. (A) Molecular characterization of 27 transposition events of Tn*125* in *A. baumannii* CIP70.10 (two of them are the same as in [Fig. 1B\)](#page-1-0). For each of them, the duplicated 3-bp target site is underlined. The surrounding 50 nucleotides upstream and downstream of the target sites are shown. (B) The 27 transposition sites of [Fig. 2A](#page-3-0) were aligned, and the percentages of AT and GC at each position, from 50 nucleotides upstream to 50 nucleotides downstream of the target site, are shown on the graph. The 3 bp of the duplicated target site, named here c1, c2, and c3, are highlighted by a black bar. The AT percentages of regions spanning positions -50 to -4 and positions $+4$ to $+50$ and those of the region spanning positions -3 to $+3$ are indicated in the upper and lower graphs, respectively. (C) Pictogram showing the relative frequencies of each A, T, C, and G at the target site, deduced from the 27 experimental transposition events shown in panel A. (D) Pictogram showing the relative frequencies of each A, T, C, and G at the target site, deduced from 74 IS*Aba125* elements retrieved from GenBank (see [Table 3](#page-4-0) for references).

96% to 99% A or T at positions -3 and $+3$, and by the duplicated 3-bp target site itself, which was GC enriched, with a strong bias for nucleotide G at the position c3.

Distribution of IS*Aba125* **in** *Acinetobacter* **spp.** In order to

evaluate the distribution of IS*Aba125*, its occurrence was evaluated among 17 *A. baumannii* and 16 *Acinetobacter* species clinical isolates. These strains were negative for the *bla*_{NDM-1} gene, and some of them carried previously characterized resistance genes to

^a A. baumannii is the clinically most important species.

*b bla*_{OXA} genes encode carbapenem-hydrolyzing class D oxacillinases, *bla*_{TEM-1} and *bla*_{SCO-1} encode penicillinases, *bla*_{VEB-1a} and *bla*_{PER-2} encode extended-spectrum betalactamases (ESBLs), $bla_{\rm IMP-4}$ and $bla_{\rm GES-14}$ encode carbapenemases, and $armA$ encodes a 16S rRNA methylase. oE, overexpression. *c* Collection, personal laboratory collection.

broad-spectrum β-lactams. ISAba125 was detected in 21 out of 33 strains [\(Table 2\)](#page-4-1). In addition, the locations of 74 IS*Aba125* elements found in genomic sequences of 8 *A. baumannii* strains deposited in GenBank were mapped with respect to their target sites. Half of the IS*Aba125* elements were located within ORFs. For 6 of them, the IRR of ISAba125, which provides a -35 box promoter element orientated toward the flanking DNA, was found in proximity (less than 100 bp) of the ATG start codon of the adjacent

^a Sequences were retrieved from 8 *A. baumannii* complete genome sequences deposited in GenBank.

^b Number of IS*Aba125* copies found in each strain.

^c Among IS*Aba125* intergenic copies, those copies where the distance between the end of the IRR (which provides a 35 box promoter element) and the ATG of the following ORF was less than 100 bp.

^d Ten single IS*Aba125* elements and 1 composite transposon made of 2 IS*Aba125* copies.

ORFs [\(Table 3\)](#page-4-0). In conclusion, IS*Aba125* was detected in more than half of the *Acinetobacter* species clinical isolates tested and potentially contributed to the genetic plasticity of those strains, either by disrupting ORFs or by potentially bringing promoter sequences to chromosomal genes.

DISCUSSION

This study actually corresponds to the first experimental demonstration of the functionality of the bla_{NDM-1} -carrying Tn125 transposon. The ability of Tn*125* to transpose in *A. baumannii* sustains the following model: *A. baumannii* is an intermediate reservoir for the bla_{NDM-1} gene and may contribute to further dissemination of the *bla*_{NDM-1} gene among species. Indeed, environmental *A*. *baumannii* is originally likely in close contact with a still unknown progenitor of the $bla_{\text{NDM-1}}$ gene or with disseminated $bla_{\text{NDM-1}}$ positive bacteria [\(15\)](#page-6-1). It could then transfer resistance genes to *Enterobacteriaceae* in the environment or in humans.

The transposase directly influences the choice of the target site, with a preference for GC- or AT-rich DNA domains, local DNA structure, degree of supercoiling, replication or transcription level, and chromosome or plasmid location [\(10\)](#page-5-9). The target site of Tn*125* was AT rich when the 3 bp surrounding the duplicated target site was considered, reaching 99% A and 96% T at positions 3 and 3, respectively, and was enriched in GC within the 3-bp target site, which is duplicated upon transposition, with a strong preference for G at c3 [\(Fig. 2\)](#page-3-0). In *A. baumannii* clinical isolates, the same features are present in the chromosomal regions flanking the Tn*125* and Tn*aphA6* composite transposons, the most recently identified being composed of the *aphA6* aminoglycoside resistance gene surrounded by two IS*Aba125* elements [\(8,](#page-5-7) [21\)](#page-6-19). The preference for AT-rich regions, previously observed for IS*Aba1* [\(22\)](#page-6-20), is consistent with the *Acinetobacter* species origin of IS*Aba125*, whose genome is AT rich (58 to 62%). The frequencies of transposition of Tn*125* observed here were several orders of magnitude higher than, for example, those of the Tn*2006* composite transposon and the IS*Aba1* and IS*1999* elements [\(22,](#page-6-20) [23\)](#page-6-21); unfortunately, these values are difficult to compare due to different experimental setups.

Two ISs were previously shown to be functional for transposition in *A. baumannii*, namely, IS*Aba825* (IS*982* family) [\(24\)](#page-6-22) and IS*Aba1* (IS*4* family) [\(22,](#page-6-20) [25\)](#page-6-23). Here, we experimentally demonstrated the functionality of IS*Aba125* (IS*30* family). Consistent with its ability to transpose, IS*Aba125*was described in association with increased resistance levels to β-lactams in *Acinetobacter* spp., for example, through duplication of the *bla*_{OXA-58} carbapenemase gene [\(26\)](#page-6-24), disruption of the *carO* gene encoding an outer membrane protein acting in synergy with other resistance mech-anisms [\(27\)](#page-6-25), or insertion upstream of the bla_{ADC} cephalosporinase gene [\(28\)](#page-6-26). In the sequenced genomes of strains listed in [Table 3,](#page-4-0) IS*Aba125* was found upstream of the *ampC* gene in strain ACICU [\(29\)](#page-6-16) or flanking the *aphA6* gene conferring resistance to amikacin in strain BJAB0715 [\(30\)](#page-6-17).

IS*Aba125* was present in more than half of the clinical isolates tested [\(Table 2\)](#page-4-1). In a parallel study, analysis of 131 *Acinetobacter* spp. revealed that 5 strains had 1 copy, 34 strains had few (2 to 9) copies, 12 strains exhibited numerous (≥ 10) copies, and 80 strains contained no copy of IS*Aba125* [\(31\)](#page-6-27). This high frequency and high copy number of IS*Aba125* in *Acinetobacter* spp. are indicative of frequent transposition events, lateral gene transfer within *Acinetobacter* spp., a replicative mechanism of transposition (as shown for the IS*30* family), and the capacity of IS*Aba125* to expand within genomes, a general feature of ISs [\(9\)](#page-5-8). Taken together, these characteristics are suggestive of an evolutionary role of IS*Aba125* customized for *Acinetobacter* spp., as proposed for IS*Aba1* in *A. baumannii* [\(32,](#page-6-28) [33\)](#page-6-7).

This work demonstrates the ability of the $bla_{\text{NDM-1}}$ -carrying Tn*125* transposon to transpose in *A. baumannii*. It underlines the importance of *A. baumannii*, which has been considered for years as playing a minor role in medical microbiology. *A. baumannii* is likely in close contact in the environment with the (still unknown) natural progenitor of the $bla_{\rm NDM-1}$ gene and may play a key role in the spread of the $bla_{\text{NDM-1}}$ gene to clinically relevant bacterial species, in particular members of the *Enterobacteriaceae*.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation (project FNS-31003A_163432) and by the University of Fribourg.

FUNDING INFORMATION

This work was funded by University of Fribourg. This work was funded by Swiss National Science Foundation (FNS-31003A_163432).

REFERENCES

- 1. **Nordmann P, Poirel L, Walsh TR, Livermore DM.** 2011. The emerging NDM carbapenemases. Trends Microbiol **19:**588 –595. [http://dx.doi.org](http://dx.doi.org/10.1016/j.tim.2011.09.005) [/10.1016/j.tim.2011.09.005.](http://dx.doi.org/10.1016/j.tim.2011.09.005)
- 2. **Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K,** Walsh TR. 2009. Characterization of a new metallo- β -lactamase gene, bla_{NDM-1}, and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. Antimicrob Agents Chemother **53:**5046 –5054. [http://dx.doi.org/10.1128](http://dx.doi.org/10.1128/AAC.00774-09) [/AAC.00774-09.](http://dx.doi.org/10.1128/AAC.00774-09)
- 3. **Dortet L, Poirel L, Nordmann P.** 2014. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int **2014:**249856. [http://dx.doi.org/10.1155/2014/249856.](http://dx.doi.org/10.1155/2014/249856)
- 4. Bonnin RA, Poirel L, Nordmann P. 2014. New Delhi metallo-βlactamase-producing *Acinetobacter baumannii*: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol **9:**33–41. [http://dx](http://dx.doi.org/10.2217/fmb.13.69) [.doi.org/10.2217/fmb.13.69.](http://dx.doi.org/10.2217/fmb.13.69)
- 5. **Nordmann P, Dortet L, Poirel L.** 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med **18:**263–272. [http://dx.doi](http://dx.doi.org/10.1016/j.molmed.2012.03.003) [.org/10.1016/j.molmed.2012.03.003.](http://dx.doi.org/10.1016/j.molmed.2012.03.003)
- 6. **Potron A, Poirel L, Nordmann P.** 2015. Emerging broad-spectrum resistance in *Pseudomonas aeruginosa* and *Acinetobacter baumannii*: mechanisms and epidemiology. Int J Antimicrob Agents **45:**568 –585. [http://dx](http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001) [.doi.org/10.1016/j.ijantimicag.2015.03.001.](http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001)
- 7. **Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Gottig S, Hunfeld KP, Seifert H, Witte W, Higgins PG.** 2011. Molecular characterization of *bla*_{NDM-1} in an *Acinetobacter baumannii* strain isolated in Germany in 2007. J Antimicrob Chemother **66:**1998 –2001. [http://dx.doi.org/10.1093](http://dx.doi.org/10.1093/jac/dkr256) [/jac/dkr256.](http://dx.doi.org/10.1093/jac/dkr256)
- 8. **Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P.** 2012. Tn125-related acquisition of *bla*_{NDM}-like genes in *Acinetobacter baumannii*. Antimicrob Agents Chemother **56:**1087–1089. [http://dx.doi](http://dx.doi.org/10.1128/AAC.05620-11) [.org/10.1128/AAC.05620-11.](http://dx.doi.org/10.1128/AAC.05620-11)
- 9. **Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M.** 2015. Everyman's guide to bacterial insertion sequences. Microbiol Spectr **3:**MDNA3-0030-2014. [http://dx.doi.org/10.1128/microbiolspec.MDNA3](http://dx.doi.org/10.1128/microbiolspec.MDNA3-0030-2014) [-0030-2014.](http://dx.doi.org/10.1128/microbiolspec.MDNA3-0030-2014)
- 10. **Mahillon J, Chandler M.** 1998. Insertion sequences. Microbiol Mol Biol Rev **62:**725–774.
- 11. **Dortet L, Nordmann P, Poirel L.** 2012. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in *Enterobacteriaceae* and *Acinetobacter baumannii*. Antimicrob Agents Chemother **56:** 1693–1697. [http://dx.doi.org/10.1128/AAC.05583-11.](http://dx.doi.org/10.1128/AAC.05583-11)
- 12. **Toleman MA, Bennett PM, Walsh TR.** 2006. IS*CR* elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev **70:** 296 –316. [http://dx.doi.org/10.1128/MMBR.00048-05.](http://dx.doi.org/10.1128/MMBR.00048-05)
- 13. **Bennett PM.** 2008. Plasmid encoded antibiotic resistance: acquisition and

transfer of antibiotic resistance genes in bacteria. Br J Pharmacol **153**(Suppl 1)**:**S347–S357. [http://dx.doi.org/10.1038/sj.bjp.0707607.](http://dx.doi.org/10.1038/sj.bjp.0707607)

- 14. **Aranda J, Bardina C, Beceiro A, Rumbo S, Cabral MP, Barbe J, Bou G.** 2011. *Acinetobacter baumannii* RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol **193:**3740 –3747. [http://dx.doi.org/10.1128/JB.00389-11.](http://dx.doi.org/10.1128/JB.00389-11)
- 15. **Walsh TR, Weeks J, Livermore DM, Toleman MA.** 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis **11:**355–362. [http://dx.doi.org/10.1016/S1473-3099\(11\)](http://dx.doi.org/10.1016/S1473-3099(11)70059-7) [70059-7.](http://dx.doi.org/10.1016/S1473-3099(11)70059-7)
- 16. **Chen Y, Zhou Z, Jiang Y, Yu Y.** 2011. Emergence of NDM-1-producing *Acinetobacter baumannii* in China. J Antimicrob Chemother **66:**1255– 1259. [http://dx.doi.org/10.1093/jac/dkr082.](http://dx.doi.org/10.1093/jac/dkr082)
- 17. **Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Iyer RV, Sundblad-Tonderski K, Stalsby-Lundborg C.** 2010. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health **10:**414. [http://dx.doi.org/10.1186/1471](http://dx.doi.org/10.1186/1471-2458-10-414) [-2458-10-414.](http://dx.doi.org/10.1186/1471-2458-10-414)
- 18. **Fick J, Soderstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DG.** 2009. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem **28:**2522–2527. [http://dx](http://dx.doi.org/10.1897/09-073.1) [.doi.org/10.1897/09-073.1.](http://dx.doi.org/10.1897/09-073.1)
- 19. **Nagel M, Reuter T, Jansen A, Szekat C, Bierbaum G.** 2011. Influence of ciprofloxacin and vancomycin on mutation rate and transposition of IS*256* in *Staphylococcus aureus*. Int J Med Microbiol **301:**229 –236. [http:](http://dx.doi.org/10.1016/j.ijmm.2010.08.021) [//dx.doi.org/10.1016/j.ijmm.2010.08.021.](http://dx.doi.org/10.1016/j.ijmm.2010.08.021)
- 20. **Ohtsubo Y, Genka H, Komatsu H, Nagata Y, Tsuda M.** 2005. Hightemperature-induced transposition of insertion elements in *Burkholderia multivorans* ATCC 17616. Appl Environ Microbiol **71:**1822–1828. [http:](http://dx.doi.org/10.1128/AEM.71.4.1822-1828.2005) [//dx.doi.org/10.1128/AEM.71.4.1822-1828.2005.](http://dx.doi.org/10.1128/AEM.71.4.1822-1828.2005)
- 21. **Hamidian M, Holt KE, Pickard D, Dougan G, Hall RM.** 2014. A GC1 *Acinetobacter baumannii* isolate carrying AbaR3 and the aminoglycoside resistance transposon Tn*aphA6* in a conjugative plasmid. J Antimicrob Chemother **69:**955–958. [http://dx.doi.org/10.1093/jac/dkt454.](http://dx.doi.org/10.1093/jac/dkt454)
- 22. **Mugnier PD, Poirel L, Nordmann P.** 2009. Functional analysis of insertion sequence IS*Aba1*, responsible for genomic plasticity of *Acinetobacter baumannii*. J Bacteriol **191:**2414 –2418. [http://dx.doi.org/10](http://dx.doi.org/10.1128/JB.01258-08) [.1128/JB.01258-08.](http://dx.doi.org/10.1128/JB.01258-08)
- 23. **Aubert D, Naas T, Heritier C, Poirel L, Nordmann P.** 2006. Functional characterization of IS*1999*, an IS*4* family element involved in mobilization and expression of β -lactam resistance genes. J Bacteriol 188:6506-6514. [http://dx.doi.org/10.1128/JB.00375-06.](http://dx.doi.org/10.1128/JB.00375-06)
- 24. **Ravasi P, Limansky AS, Rodriguez RE, Viale AM, Mussi MA.** 2011. IS*Aba825*, a functional insertion sequence modulating genomic plasticity and *bla*OXA-58 expression in *Acinetobacter baumannii*. Antimicrob Agents Chemother **55:**917–920. [http://dx.doi.org/10.1128/AAC.00491-10.](http://dx.doi.org/10.1128/AAC.00491-10)
- 25. **Kuo HY, Chang KC, Liu CC, Tang CY, Peng JH, Lu CW, Tu CC, Liou ML.** 2014. Insertion sequence transposition determines imipenem resistance in *Acinetobacter baumannii*. Microb Drug Resist **20:**410 –415. [http:](http://dx.doi.org/10.1089/mdr.2014.0004) [//dx.doi.org/10.1089/mdr.2014.0004.](http://dx.doi.org/10.1089/mdr.2014.0004)
- 26. **Evans BA, Hamouda A, Towner KJ, Amyes SG.** 2010. Novel genetic context ofmultiple *bla*OXA-58 genesin*Acinetobacter* genospecies 3. JAntimicrobChemother **65:**1586 –1588. [http://dx.doi.org/10.1093/jac/dkq180.](http://dx.doi.org/10.1093/jac/dkq180)
- 27. **Mussi MA, Limansky AS, Viale AM.** 2005. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of *Acinetobacter baumannii*: natural insertional inactivation of a gene encoding a member of a novel family of β -barrel outer membrane proteins. Antimicrob Agents Chemother **49:**1432–1440. [http://dx.doi.org/10.1128/AAC.49](http://dx.doi.org/10.1128/AAC.49.4.1432-1440.2005) [.4.1432-1440.2005.](http://dx.doi.org/10.1128/AAC.49.4.1432-1440.2005)
- 28. **Lopes BS, Amyes SG.** 2012. Role of IS*Aba1* and IS*Aba125* in governing the expression of bla_{ADC} in clinically relevant *Acinetobacter baumannii* strains resistant to cephalosporins. J Med Microbiol **61:**1103–1108. [http://dx.doi](http://dx.doi.org/10.1099/jmm.0.044156-0) [.org/10.1099/jmm.0.044156-0.](http://dx.doi.org/10.1099/jmm.0.044156-0)
- 29. **Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, Bonnal RJ, Sicheritz-Ponten T, De Bellis G, Visca P, Cassone A, Carattoli A.** 2008. Whole-genome pyrosequencing of an epidemic multidrugresistant *Acinetobacter baumannii*strain belonging to the European clone II group. Antimicrob Agents Chemother **52:**2616 –2625. [http://dx.doi.org](http://dx.doi.org/10.1128/AAC.01643-07) [/10.1128/AAC.01643-07.](http://dx.doi.org/10.1128/AAC.01643-07)
- 30. **Zhu L, Yan Z, Zhang Z, Zhou Q, Zhou J, Wakeland EK, Fang X, Xuan Z, Shen D, Li QZ.** 2013. Complete genome analysis of three *Acinetobacter baumannii* clinical isolates in China for insight into the diversification of drug resistance elements. PLoS One **8:**e66584. [http://dx.doi.org/10.1371](http://dx.doi.org/10.1371/journal.pone.0066584) [/journal.pone.0066584.](http://dx.doi.org/10.1371/journal.pone.0066584)
- 31. **Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P.** 2014. Origin in *Acinetobacter guillouiae* and dissemination of the aminoglycosidemodifying enzyme Aph(3=)-VI. mBio **5:**e01972-14. [http://dx.doi.org/10](http://dx.doi.org/10.1128/mBio.01972-14) [.1128/mBio.01972-14.](http://dx.doi.org/10.1128/mBio.01972-14)
- 32. **Segal H, Garny S, Elisha BG.** 2005. Is IS(ABA-1) customized for *Acinetobacter*? FEMS Microbiol Lett **243:**425–429. [http://dx.doi.org/10.1016/j](http://dx.doi.org/10.1016/j.femsle.2005.01.005) [.femsle.2005.01.005.](http://dx.doi.org/10.1016/j.femsle.2005.01.005)
- 33. **Heritier C, Poirel L, Nordmann P.** 2006. Cephalosporinase overexpression resulting from insertion of IS*Aba1* in *Acinetobacter baumannii*. Clin Microbiol Infect **12:**123–130. [http://dx.doi.org/10.1111/j.1469-0691](http://dx.doi.org/10.1111/j.1469-0691.2005.01320.x) [.2005.01320.x.](http://dx.doi.org/10.1111/j.1469-0691.2005.01320.x)
- 34. **Mugnier PD, Poirel L, Naas T, Nordmann P.** 2010. Worldwide dissemination of the $bla_{\rm OXA\text{-}23}$ carbapenemase gene of $Acinetobacter$ $baumannii.$ Emerg Infect Dis **16:**35–40. [http://dx.doi.org/10.3201/eid1601.090852.](http://dx.doi.org/10.3201/eid1601.090852)
- 35. **Figueiredo S, Poirel L, Papa A, Koulourida V, Nordmann P.** 2009. Overexpression of the naturally occurring *bla*_{OXA-51} gene in *Acinetobacter baumannii* mediated by novel insertion sequence IS*Aba9*. Antimicrob Agents Chemother **53:**4045–4047. [http://dx.doi.org/10.1128](http://dx.doi.org/10.1128/AAC.00292-09) [/AAC.00292-09.](http://dx.doi.org/10.1128/AAC.00292-09)
- 36. **Poirel L, Corvec S, Rapoport M, Mugnier P, Petroni A, Pasteran F, Faccone D, Galas M, Drugeon H, Cattoir V, Nordmann P.** 2007. Identification of the novel narrow-spectrum β-lactamase SCO-1 in Acin*etobacter* spp. from Argentina. Antimicrob Agents Chemother **51:**2179 – 2184. [http://dx.doi.org/10.1128/AAC.01600-06.](http://dx.doi.org/10.1128/AAC.01600-06)
- 37. **Figueiredo S, Bonnin RA, Poirel L, Duranteau J, Nordmann P.** 2012. Identification of the naturally occurring genes encoding carbapenemhydrolysing oxacillinases from *Acinetobacter haemolyticus*, *Acinetobacter johnsonii*, and *Acinetobacter calcoaceticus*. Clin Microbiol Infect **18:**907– 913. [http://dx.doi.org/10.1111/j.1469-0691.2011.03708.x.](http://dx.doi.org/10.1111/j.1469-0691.2011.03708.x)
- 38. **Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T.** 2014. Dissemination of 16S rRNA methylase ArmA-producing *Acinetobacter baumannii* and emergence of OXA-72 carbapenemase coproducers in Japan. Antimicrob Agents Chemother **58:**2916 –2920. [http://dx.doi.org](http://dx.doi.org/10.1128/AAC.01212-13) [/10.1128/AAC.01212-13.](http://dx.doi.org/10.1128/AAC.01212-13)
- 39. **Ou HY, Kuang SN, He X, Molgora BM, Ewing PJ, Deng Z, Osby M, Chen W, Xu HH.** 2015. Complete genome sequence of hypervirulent and outbreak-associated *Acinetobacter baumannii* strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors. Sci Rep **5:**8643. [http://dx.doi.org/10.1038/srep08643.](http://dx.doi.org/10.1038/srep08643)
- 40. **Merino M, Poza M, Roca I, Barba MJ, Sousa MD, Vila J, Bou G.** 2014. Nosocomial outbreak of a multiresistant *Acinetobacter baumannii* expressing OXA-23 carbapenemase in Spain. Microb Drug Resist **20:**259 – 263. [http://dx.doi.org/10.1089/mdr.2013.0127.](http://dx.doi.org/10.1089/mdr.2013.0127)
- 41. **Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF.** 2015. A multidrug resistance plasmid contains the molecular switch for type VI secretion in *Acinetobacter baumannii*. Proc Natl Acad SciUSA **112:**9442–9447. [http://dx.doi.org/10.1073/pnas.1502966112.](http://dx.doi.org/10.1073/pnas.1502966112)
- 42. **Chen CC, Lin YC, Sheng WH, Chen YC, Chang SC, Hsia KC, Liao MH, Li SY.** 2011. Genome sequence of a dominant, multidrug-resistant *Acinetobacter baumannii* strain, TCDC-AB0715. J Bacteriol **193:**2361–2362. [http://dx.doi.org/10.1128/JB.00244-11.](http://dx.doi.org/10.1128/JB.00244-11)