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Recent findings have identified Escherichia coli strains that are pan-�-lactam susceptible (PBL-S) but piperacillin-tazobactam
resistant (TZP-R) in vitro. We assessed the in vivo significance of this resistance profile in a neutropenic murine pneumonia
model using humanized exposures of TZP with 18 clinical E. coli isolates, 8 TZP-S/PBL-S and 10 genotypically confirmed TZP-
R/PBL-S. Despite phenotypically and genotypically defined resistance, TZP displayed efficacy against these isolates. Additional
studies are required to define the clinical implications of these TZP-R/PBL-S strains.

Piperacillin-tazobactam (TZP) is one of the most widely used
empirical antimicrobials due to its broad spectrum of activity

against Gram-negative bacteria, including Escherichia coli. Conse-
quently, the susceptibility of this agent continues to erode, as a
recent surveillance study demonstrated that 9% of E. coli strains
are nonsusceptible to TZP; albeit, not all strains demonstrated
identical phenotypic resistance patterns to other antibiotics (1).
More specifically, we identified a subset of E. coli strains that are
susceptible to pan-�-lactam (PBL-S) (i.e., all cephalosporins,
monobactams, and carbapenems) but resistant to TZP (TZP-R)
(1). Additional molecular studies on these isolates revealed that
TZP-R is associated with deleted or dysfunctional porins, as ex-
hibited by significantly lower expression of both ompC and ompF
(2). Since the insidious nature of this resistance profile may result
in poor clinical outcomes, considering the predominant use of
this agent in the hospital setting, we assessed the in vivo signifi-

cance of this TZP-R profile in an immunocompromised murine
model using humanized exposures of TZP (3).

Eighteen clinical isolates of E. coli, 8 TZP susceptible (TZP-S)/
PBL-S and 10 genotypically confirmed TZP-R/PBL-S, were tested
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TABLE 1 In vitro potency of piperacillin-tazobactam and commercially available antibiotics against each E. coli isolate

E. coli isolate

MIC (�g/ml) fora:

TZP

Antibiotic

FEP CRO CAZ CIP CST ATM ETP IPM MEM TOB

C2-9 512 0.25 0.125 1 �32 0.5 0.25 �0.015 0.125 �0.06 8
C3-23 �2,048 1 �0.06 2 1 1 0.5 0.03 0.125 �0.06 1
C6-25 2,048 0.5 0.125 1 �32 0.5 0.25 0.03 0.25 �0.06 2
C7-1 256 0.5 �0.06 2 �0.015 1 1 0.125 0.25 �0.06 2
C10-11 �2,048 0.25 �0.06 0.5 �0.015 1 0.125 �0.015 0.25 �0.06 1
C11-14 �2,048 0.5 0.125 1 �0.015 1 0.25 0.06 0.5 �0.06 1
C12-1 512 0.25 0.06 0.5 �0.015 0.5 0.125 �0.015 0.125 �0.06 1
C14-26 �2,048 8 0.5 4 0.5 0.5 1 2 0.5 0.25 2
C18-6 �2,048 0.125 �0.06 0.25 0.03 2 �0.06 �0.015 0.125 �0.06 2
C30-5 256 0.125 �0.06 0.25 �0.015 0.5 0.125 �0.015 0.5 �0.06 8
C1-6 16 �0.06 2 2 0.015 0.5 2 0.03 1 0.06 4
C1-7 4 0.125 �0.06 0.5 8 0.5 �0.06 �0.015 0.25 �0.06 4
C1-23 2 �0.06 �0.06 0.25 �0.015 1 �0.06 �0.015 0.125 �0.06 4
C2-5 4 0.125 0.25 0.5 16 0.5 0.5 �0.015 0.125 �0.06 1
C2-14 2 �0.06 0.125 0.25 0.03 8 0.25 �0.015 0.125 �0.06 2
C2-19 4 �0.06 �0.06 2 �0.015 0.5 2 �0.015 0.125 �0.06 0.5
C2-27 2 �0.06 �0.06 0.125 �0.015 0.5 �0.06 �0.015 0.25 �0.06 2
C3-2 4 0.125 �0.06 0.5 0.06 0.5 0.125 �0.015 0.125 �0.06 2
a TZP, piperacillin-tazobactam; FEP, cefepime; CRO, ceftriaxone; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; ATM, aztreonam; ETP, ertapenem; IPM, imipenem; MEM,
meropenem; TOB, tobramycin.
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in an immunocompromised lung infection model. Preinfection
TZP MICs were determined in triplicate by broth microdilution
according to the 2016 Clinical and Laboratory Standards Institute
guidelines, and the modal MIC was reported (4). Specific-patho-
gen-free female ICR (CD-1) mice weighing 20 to 22 g were ob-
tained from Envigo RMS, Inc. (Indianapolis, IN). The protocol
was reviewed and approved by the Institutional Animal Care and
Use Committee at Hartford Hospital, Hartford, CT. Bacterial col-
onies of a fresh subculture of each isolate were suspended in sterile
normal saline to produce a suspension of �107 CFU/ml. Final
inoculum concentrations were confirmed by plating serial dilu-
tions on Trypticase soy agar with 5% sheep blood (BD Biosci-
ences, Sparks, MD) and incubating overnight at �37°C in ambi-
ent air. Each mouse was intranasally inoculated with 50 �l of the
above-described bacterial suspension. The first TZP dose was ad-
ministered subcutaneously at 2 h postinoculation.

Commercially available TZP (Premier Pro Rx, lot AI9Z/11)
was solubilized in normal saline immediately prior to dosing. A
pharmacokinetic study was conducted to confirm a TZP dosing
regimen that would provide in vivo murine drug exposure similar
to 4.5 g every 6 h (q6h) in humans, quantified by the free time
above MIC from 0 to 24 h (fT � MIC) (5, 6). A protein binding
value of 20% was used for humans and mice (5, 7, 8). Prior to dose
administration, one group of mice (n � 6) for each bacterial iso-
late was euthanized, and the lungs were excised and harvested to
assess the initial CFU burden. Lungs from one group each of con-
trol (vehicle-dosed) and TZP-treated mice infected with TZP-R/
PBL-S or TZP-S/PBL-S E. coli were harvested and processed for
quantitative culture after 24 h of treatment. Dilutions of the lung
homogenates were plated on Trypticase soy agar with 5% sheep
blood and incubated overnight at �37°C. Efficacy was calculated
as the change in bacterial density (�log10 numbers of CFU)
obtained in the TZP-treated mice after 24 h relative to the 0-h
untreated controls for the E. coli isolates. MICs of the E. coli or-
ganisms isolated from the lungs postinfection were assessed to
reconfirm the phenotypic profile of the isolates.

TZP MICs for TZP-S/PBL-S isolates (n � 8) ranged from 2 to
16 �g/ml. TZP MICs for TZP-R/PBL-S isolates (n � 10) ranged
from 256 to �2,048 �g/ml. MICs of the E. coli isolates against TZP
and other commercially available agents are displayed in Table 1.
The confirmatory pharmacokinetic study, similar to a previously
published humanized TZP 4.5-g q6h regimen, displayed fT �
MIC values comparable to those of humans (Table 2) (5, 6).

At 0 h, TZP-R/PBL-S and TZP-S/PBL-S initial bacterial densi-
ties were 6.97 � 0.16 and 6.99 � 0.29 (mean � standard devia-
tion) log CFU, respectively, in the lungs of untreated controls. At
24 h, the TZP-R/PBL-S and TZP-S/PBL-S isolates reached 9.25 �
0.20 and 9.05 � 0.68 log CFU growth, respectively. The human-

ized TZP regimen achieved a �2-log kill against 5 TZP-S/PBL-S
isolates and a �1-log kill against the remaining 3 isolates (Fig. 1).
Despite the TZP-R phenotype, humanized dosing of TZP resulted
in a �2-log kill against 2 TZP-R/PBL-S isolates (MIC �2,048
�g/ml), a �1-log kill against 6 isolates, and stasis against the re-
maining 2 isolates (Fig. 1). Repeat MICs of the recovered TZP-R
isolates posttreatment revealed similar preexposure values.

Previously conducted in vivo murine studies demonstrated
that 40% to 50% fT � MIC is required to demonstrate TZP effi-
cacy (9). However, here, we demonstrate that humanized expo-
sures of TZP result in substantive in vivo killing against highly in
vitro-resistant organisms where the fT � MIC corresponds to 0%.
Thus, this study reveals overt discordance between the in vitro
resistance profile and in vivo efficacy of human TZP exposures
against this novel TZP-R/PBL-S phenotypic profile. These obser-
vations combined with the recovery of TZP-R isolates with MICs
similar to those of pretreatment values suggest reduced in vivo
expression of this phenotype.

This paradox has been reported among �-lactams against
Gram-negative organisms (10–13). It has been proposed that the
rapid hydrolysis of antimicrobials within the in vitro setting may
be due to the unnatural accumulation of enzymes, resulting in
resistant phenotypes (13, 14). Since genotypic profiling of these
isolates revealed that TZP resistance was associated with deleted or
dysfunctional porins secondary to frameshifts, insertions, and de-
letions, albeit in the background of TEM-1 and testing negative for
TEM or SHV extended-spectrum �-lactamases, KPC, NDM, IMP,
VIM, OXA-48, and CTX-M, it appears that this previously noted
enzymatic explanation does not fully elucidate the mechanism(s)
for the discordance observed in the current study (2). Interest-
ingly, other possibilities for this in vitro-in vivo discordance may
result from alterations in resistance expression, as observed in
pandemic ST131-H30 E. coli or NDM-1-producing E. coli, where
the acquisition of resistant mechanisms potentially reduces the
fitness/virulence of these organisms (15, 16). Given these collec-
tive findings regarding the TZP-R strain, i.e., the potential for
multiple mechanisms to explain our observed in vitro-in vivo dis-

FIG 1 Reduction in bacterial density of TZP-R/PBL-S and TZP-S/PBL-S E.
coli (EC) isolates over 24 h after administration of TZP.

TABLE 2 Comparison of %fT � MIC values achieved with piperacillin-
tazobactam at each MIC in humans and mice receiving the humanized
regimen

Drug Species

%fT � MIC for MIC (�g/ml) of:

4 8 16 32 64 128 256

TZPa Mouseb 85.00 75.00 61.67 45.00 28.33 13.33 6.67
Humanc 83.33 70.00 56.67 43.33 28.33 13.33 0.00

a Piperacillin-tazobactam (8:1).
b Dosing regimen: 500 mg/kg (0 h), 100 mg/kg (0.25 h), 200 mg/kg (2.5 h), 75 mg/kg
(5 h) q6h.
c Dosing regimen: 4.5 g q6h, 30-min infusion.
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cordance, the prevalence of E. coli as an infecting pathogen, and
extensive use of TZP in the clinical setting, additional investiga-
tions are warranted to evaluate the clinical implications of this
TZP-R/PBL-S phenotype.
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