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Abstract

Background and purpose—A rapid learning approach has been proposed to extract and apply 

knowledge from routine care data rather than solely relying on clinical trial evidence. To validate 

this in practice we deployed a previously developed decision support system (DSS) in a typical, 

busy clinic for non-small cell lung cancer (NSCLC) patients.

Material and methods—Gender, age, performance status, lung function, lymph node status, 

tumor volume and survival were extracted without review from clinical data sources for lung 

cancer patients. With these data the DSS was tested to predict overall survival.

Results—3919 lung cancer patients were identified with 159 eligible for inclusion, due to 

ineligible histology or stage, non-radical dose, missing tumor volume or survival. The DSS 

successfully identified a good prognosis group and a medium/poor prognosis group (2 year OS 

69% vs. 27/30%, p < 0.001). Stage was less discriminatory (2 year OS 47% for stage I–II vs. 36% 

for stage IIIA–IIIB, p = 0.12) with most good prognosis patients having higher stage disease. The 

DSS predicted a large absolute overall survival benefit (~40%) for a radical dose compared to a 
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non-radical dose in patients with a good prognosis, while no survival benefit of radical 

radiotherapy was predicted for patients with a poor prognosis.

Conclusions—A rapid learning environment is possible with the quality of clinical data 

sufficient to validate a DSS. It uses patient and tumor features to identify prognostic groups in 

whom therapy can be individualized based on predicted outcomes. Especially the survival benefit 

of a radical versus non-radical dose predicted by the DSS for various prognostic groups has 

clinical relevance, but needs to be prospectively validated.
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Lung cancer has a global incidence of 1.6 million with 1.4 million lung cancer deaths per 

year [1]. In the developed world, 85% of cases are non-small cell lung cancer (NSCLC) 

patients and 44% present with non-metastatic disease, for whom primary radical surgery or 

radiotherapy, in combination with chemotherapy, is indicated [2]. The outcome of inoperable 

NSCLC undergoing radical (chemo)radiotherapy is bleak with two-year overall survival (2 

year-OS) rates reported as approximately 50% in early stage (stage I–II) patients [3] and 

25% in locally advanced cancers (stage IIIA–IIIB) [4]. To improve survival, more 

individualized radiotherapy schedules have been proposed with encouraging results [5].

To inform decision making and enable individualized therapy a validated prediction of 

expected outcome is needed for an individual patient. This can be provided via clinical 

decision support systems (DSS) [6]. A rapid learning health-care system, where we can learn 

from each patient to guide practice, has been proposed to extract knowledge, such as a DSS, 

from routine clinical care data rather than solely relying on evidence from clinical trials 

[7,8]. Previous rapid learning work has resulted in a DSS (www.predictcancer.org) which 

can predict overall survival in non-small cell lung cancer patients treated with radical 

(chemo) radiotherapy [9]. This DSS might be used in a clinic as an objective guide to 

individualize treatment, and discussions with patients, according to prognosis.

To validate a DSS, input features and outcome data from the local care population (called 

the clinical cohort in this report) are needed. However capturing and extracting data requires 

significant resources, which limits the acceptance of DSSs and rapid learning in general. If 

successfully extracted, such new data cannot only be used for validation but also to identify 

improvements and to assess clinical relevance by investigating if and how the DSS might 

change local practice.

In this study, we hypothesize that it is possible to deploy a rapid learning environment which 

can be used to validate the above DSS. Our aim is to apply rapid learning in practice, to see 

if this novel approach is feasible in a typical, busy cancer center, to test the limits and areas 

of improvement and to determine the clinical relevance of the DSS.
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Materials and methods

Patients

All lung cancer patients in whom electronic routine care data were available at Liverpool 

and Macarthur Cancer Therapy Centres, Sydney, Australia were selected for consideration 

for the clinical cohort. This is an integrated cancer center which multi-disciplinary treats 

approximately 2000 patients per year with radiotherapy and records data in an oncology 

information system (MOSAIQ, Elekta, Stockholm, Sweden). A previously published [9] 

DSS was learned from a cohort consisting of 322 consecutive lung cancer patients from 

MAASTRO Clinic, The Netherlands using 2-norm support vector machines, using two year 

overall survival, calculated from the start of the RT, as the outcome measure. This cohort is 

called the training cohort in this report. The study was approved by the internal ethics review 

boards of both institutes.

To match the clinical cohort to the training cohort the following inclusion and exclusion 

criteria were applied. Inclusion: non-small cell lung cancer; stage I–IIIB; prescribed 

radiation dose 4500 cGy or higher with at least one fraction of radiotherapy administered. 

Exclusion: small cell lung cancer, stage IV, prescribed radiation less than 4500 cGy. Two 

additional criteria were applied to the clinical cohort: no missing data for the outcome 

feature (2 year-OS) and the tumor volume (the sum of local and regional gross tumor 

volume in cubic centimeters). The first is needed to validate the DSS, the second is the most 

sensitive feature of the DSS for which imputation was deemed too unreliable. Missing data 

were allowed for the other DSS input features being gender, ECOG performance status, 

forced expiratory volume in 1 s (FEV1), number of positive lymph node stations on a PET 

scan (PLNS); these were imputed before validation (see below).

Data sources and extraction of the clinical cohort

The oncology information system and treatment planning system (XiO, Elekta, Stockholm, 

Sweden) were used as the data sources for the clinical cohort. From the treatment planning 

system a custom bulk export script was used to extract all CT-delineated structures and their 

volume as DICOM objects which were stored in an open source java-based PACS 

(DCM4CHEE) [10]. An open source java-based data integration platform (Kettle, Pentaho, 

Orlando, FL, USA) was used to extract and store the relevant features as statements on 

patients in the form of triples (e.g., Patient1-hasGenderMale) to allow maximal flexibility in 

the data model [11].

Data quality, missing data and imputation

Data found in the clinical data sources were assumed to be correct and complete. No review 

or update of clinical sources was performed. The underlying hypothesis is that the amount of 

data will compensate sufficiently for any data quality issues that may or may not be present. 

The quality of the data extraction process was checked via spot crosschecks with the source 

systems and with a spreadsheet from previous work that contained data manually collected 

on a subset of patients. No errors were found.
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Clinical data sources often have missing data elements. In this study these were imputed 

using a Bayesian network. Such a network can leverage existing data to infer missing data 

(e.g., a N0 stage patient is likely to have zero positive lymph nodes on a PET scan) [12]. 

This network was learned from the training cohort (Hugin Researcher, Hugin Expert, 

Aalborg, Denmark) and used to impute ECOG performance status, FEV1 and PLNS.

Estimating DSS performance and statistical considerations

The DSS was implemented and validated in Matlab (Mathworks, Natick, MA, USA). After 

imputation of missing data elements, the predicted 2 year-OS in the clinical cohort was 

compared with actual outcome. The predictive performance of the DSS was assessed in 

terms of discrimination and calibration [13]. Discrimination between those reaching and 

those not reaching two year survival was tested using the area-under-the-curve (AUC) of the 

receiver operating characteristic curve and the Matthews correlation coefficient at 50% 

predicted probability of survival. From previous work, cut-offs in terms of survival 

probability were defined to divide the training cohort into three prognostic groups (poor, 

medium and good prognosis consisting of 25%, 50% and 25% of patients respectively). The 

same cut-offs were applied to the clinical cohort and the difference in survival of the three 

prognostic groups was tested using Kaplan–Meier survival curves and a logrank test. 

Calibration refers to the agreement between observed outcomes and predictions and was 

assessed using a calibration plot with the same three prognostic groups.[14] A significance 

level of 0.05 was used with a Bonferroni–Holm correction for multiple comparisons between 

the two cohorts and between multiple survival curves.

Role of the funding source

All funding sources were public and had no role in any of the following areas: study design; 

collection, analysis, and interpretation of data; writing of the report; decision to submit the 

paper for publication.

Results

Data extraction & imputation

In total 3919 patients (1995–2013) were identified as lung cancer patients of which 1301 had 

known stage I–IIIB NSCLC with 419 known to have received radical radiotherapy (>4500 

cGy). Ultimately 159 patients were eligible for inclusion in the clinical cohort. In Fig. 1 a 

diagram is given which shows the reasons for exclusion of patients. Since tumor volume was 

only recorded after the introduction of 3D treatment planning and 2 year-OS had to be 

known, the clinical cohort only included patients treated between September 2002 and 

August 2011. The characteristics of the clinical and training cohort are given in Table 1. The 

clinical cohort had statistically significant larger tumor volumes. Staging and lung function 

where somewhat different compared to the training cohort, but these did not reach statistical 

significance. The clinical cohort also had significant missing data for PLNS (100% missing) 

and FEV1 (60%). Interestingly the Bayesian network imputed a worse general condition 

(poorer ECOG and lower FEV1) for patients with lower stage disease than for patients with 

higher stage disease (not shown).
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DSS performance

The AUC of the DSS in the clinical cohort was 0.69, which is lower than the AUC found in 

the training cohort (AUC 0.75). The receiver operating curve showed that the DSS 

performed better in the clinical cohort at higher operating points (medium-good prognosis,) 

than at lower operating points (poor prognosis). The Matthews correlation coefficient at 50% 

predicted survival was 0.35 with false negatives the main limit of the model at this operating 

point.

The Kaplan–Meier curves for the good, medium and poor prognosis group are given in Fig. 

2(top). This shows that a good prognosis group was successfully identified (2 year-OS 69%, 

p < 0.001), but that the survival difference between the medium and poor prognosis group (2 

year-OS 30% and 27%, p = NS) could not be reproduced in the clinical cohort. More than 

half of the good prognosis group consisted of stage IIIA–IIIB patients. Compared to the 

training cohort, the clinical cohort had fewer patients in the poor prognosis group (25% vs. 

12%).

Fig. 2(bottom) shows that TNM stage I–II and IIIA–IIIB could also discriminate between a 

good (2 year OS 47%) and poor prognosis group (2 year OS 36%), but that discrimination 

was not as good as the DSS and did not reach statistical significance (p = 0.12).

The calibration plot is given in Fig. 3. The calibration was not different from ideal in the 

medium prognosis group, but survival was higher than predicted in the poor and good 

prognosis groups.

In Fig. 4 the Kaplan–Meier survival curves are given of patients treated to a radical dose vs. 

a non-radical dose for the good and poor prognosis groups. In both groups the patients 

receiving a radical radiation dose are seen to have a better survival than those not receiving a 

radical dose. This effect is more pronounced in the good prognosis group than in the poor 

prognosis group.

Discussion

Rapid learning has been proposed as a framework whereby “routinely collected real-time 

clinical data drive the process of scientific discovery, which becomes a natural outgrowth of 

patient care.” [8,15]. In this study, we have demonstrated a practical application of these 

ideas. We deployed a rapid leaning environment in which clinical data were extracted and 

used to validate DSS, itself learned on clinical data from another center in another country. 

We believe that achieving interoperability and leveraging data from many centers will be 

necessary to achieve sufficient data volume and variety for valuable knowledge extraction.

The Achilles heel of rapid learning is data quality. Unlike data from prospective trials, 

clinical data have errors, bias and are often missing. This might lead to a “garbage in 

garbage out” qualification of the knowledge gained in rapid learning and might prevent one 

from answering even the most basic questions. This study demonstrates that the situation is 

not that bleak. Clinical data from “front-line” physicians are at least able to successfully 

validate a DSS that can identify patients who are more likely to survive than others (Fig. 2).
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We used the data ‘as is’ without any effort to improve the quality of the data. This was 

deliberate, as it is not feasible to do this for the large number of patients in a busy clinic. 

This can be viewed as both a weakness and a strength of this study. The weakness is that the 

underlying assumption of data gaps and errors being random may not be valid. The strength 

is that this study shows that even from routine clinical data with no quality checks there is 

something to learn.

Starting from close to 4000 patients, 419 patients were identified who met the basic 

inclusion criteria and only 159 were included in the clinical cohort, which is sobering given 

the mild criteria applied in this study, although this “rapid learning” inclusion is still much 

higher than the number of patients in clinical trials which is estimated to be 2–3% in 

Australia [16]. Fig. 1 shows that besides the histology and staging distribution, both of 

which were in line with expected levels [2], only a minority of patients with non-metastatic 

disease were treated with a radical dose. Such insights and the ability to detect variations in 

local practice are an important feature of a rapid learning environment.

Missing data led to a large reduction in the number of eligible patients as well as required 

imputation in the eligible patients (Table 1). A relatively easy way to avoid missing data is 

the use of naming conventions [17]. Other data elements such as FEV1, ECOG status and 

PLNS are often implicitly known based on the available free text information, but significant 

extra time is required to document these data in a structured manner. For these novel data 

capture or data transfer methods may be considered. Some of these missing data are 

unavoidable due to patients treated before the era of CT simulation or too recently for the 

outcome. These reasons are clearly time dependent which raises the concern that, due to the 

inevitable correlation of time with practice, this exclusion is biased. There is some evidence 

that this is true. The clinical cohort contained mostly patients from 2006 to 2011 as earlier 

patients had often tumor volume missing and later patients did not have enough follow-up. 

In a validation analysis (not shown) these later patients (2011–2013) were more often stage I 

patients and less often stage IIIB patients perhaps indicating early diagnoses and/or other 

changes in practice over time. Another possibility of bias is the staging method. As the 

training cohort came from 2002 to 2006 and the clinical cohort primarily from 2006 to 2011 

and they came from different institutes it cannot be excluded that the more recent clinical 

cohort was differently and more correctly staged due to more modern staging methods 

and/or that the institutes used different staging methods with one of the two perhaps 

superior. As an example, Table 1 shows that the training cohort had 42% stage IIIB patients 

versus 28% in the clinical cohort. It cannot be excluded that in the training cohort inferior 

staging methods where used and that part of these stage IIIB patients are in fact stage IV 

patients that were incorrectly staged. There are no straightforward answers to the problem of 

biased and biased-missing data. But having more patients from a wide range of eras and 

institutions in combination with domain expertise will help in detecting bias. Bayesian 

methods are probably the best way of modeling bias [18] and, for instance, can be used to 

model the probability that the staging is correct depending on the staging method used.

A method for imputation is needed as missing data are unavoidable. In previous work we 

showed that Bayesian networks are excellent to handle missing data [12]. The observation 

that the Bayesian network imputed a better general condition (low ECOG and high FEV1) 
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for higher stage patients may be explained by the selection of lower stage patients in good 

general condition for surgery. This may also explain that stage is not a very good predictor 

of survival in inoperable patients as was observed previously [19] and can also be seen in 

Fig. 2(bottom). This point is further emphasized by the observation that most patients in the 

good prognosis group were stage IIIA–IIIB patients. Although it seems better than mean 

imputation, the imputation of the Bayesian Network is still far from perfect. In a validation 

analysis (results not shown) the imputed ECOG status and FEV1 were compared to patients 

with observed ECOG and FEV1. As it is based on the training cohort, the Bayesian Network 

has a strong preference for the most common ECOG status (ECOG 1) of the training cohort 

and predicts a low FEV1 in stage I patients which is not observed in the clinical cohort. In 

future work learning better and more extensive networks based on more patients may make 

this imputation more generalizable and better.

We applied a DSS that was learned from a completely independent training cohort and can 

predict survival in non-small lung cancer patients. The DSS had a reasonable discriminatory 

performance in the clinical cohort and was able to identify patients with a good prognosis 

but could not discriminate between a medium and poor prognosis. The observed AUC (0.69) 

is better than physician predicted outcomes (AUC 0.56) as was recently shown in a 

prospective study [20].

The cut-off for radical radiation in this study was taken as 45 Gy based on the idea that such 

a dose was intended to be radical at the time it was given. However one could question if a 

different cut-off such as 60 Gy, which currently has the highest level of evidence, would not 

have been better. To check this, a validation analysis (not shown) was done after including 

only patients with 60 Gy or more in the clinical cohort. This did not change any of the 

conclusions which might be a result of the rather flat dose–response curve if one assumes 

that a biological equivalent dose of 70 Gy is needed to control 50% of the tumor [21] and 

that a dose of 60 Gy in once-daily fractions has a biological equivalence of less than 50 Gy.

In the calibration analysis, we showed that patients in both the good and poor prognosis 

survived longer than predicted (Fig. 3). Possible explanations for the limited performance of 

the DSS are that (a) clinical practice at the Australian centers is different from the 

Netherlands in that patients with comorbidities and suboptimal general condition were more 

likely to be treated with palliative radiotherapy (Fig. 1) and (b) there are confounding 

features not included in the model at the moment due to the limited training set (e.g., 

concurrent chemotherapy, details of palliative care) which have a positive influence on 

survival. Including the Australian cohort in the training set would not only allow the model 

to learn from these patients (e.g., to model the effect of radical vs. non-radical dose) but also 

allow more features to be included without the risk of overfitting due to the increased size of 

the training set. But the addition of the Australian cohort to the training cohort to learn an 

updated DSS would also require another external cohort for its validation. Such a rapid 

learning network that allows addition of diverse datasets from centers worldwide to learn 

new, improve existing and validate DSS is the subject of ongoing research.

The clinical relevance of this work lies in the individualization of therapy. From a guideline 

perspective the inoperable, non-metastatic NSCLC population is homogenous with 
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concurrent chemoradiation as its preferred treatment. However many patients are not 

meeting the highly selective criteria for clinical trials from which guidelines are derived. The 

patient may not be considered fit enough for concurrent chemoradiation or a radical 

radiotherapy dose may be considered too toxic due to the tumor size or location. A DSS 

learned and validated using rapid learning approaches such as presented here, support these 

clinical decisions objectively and can be used to direct resources to the patients that might 

benefit most from them. The good-prognosis patients in whom currently a non-radical dose 

is given, can be expected to especially benefit from advanced technologies such as intensity 

modulated and image guided radiotherapy in order to feasibly treat these patients with a 

radical dose. The comparison given in Figs. 3 and 4 (top) also gives some indication of the 

expected and testable survival benefit: The model predicted two year overall survival is 

about 60% for good prognosis patients if they are given a radical dose (Fig. 3) while the 

clinical cohort suggests that a non-radical dose leads to a survival of only about 20% in good 

prognosis patients (Fig. 4 (top)).

Vice versa, one can question if poor prognosis patients should receive long course 

radiotherapy to a radical dose as the DSS does not predict a survival benefit compared to 

palliative radiotherapy (Figs. 3 and 4 (bottom)). Although rapid learning thus give guidance 

in these often difficult decisions, the use of a DSS and resulting practice changes should be 

rigorously and prospectively tested to validate that these practice changes indeed result in 

better outcomes. This prospective validation is the subject of future work where in a 

randomized seamless Phase II–III design patients will be treated with or without the help of 

a DSS predicting survival (and toxicity based on previous work) with the primary Phase II 

endpoint being a change in practice between the two arms and Phase III the primary 

endpoint overall survival which, if successful, would lead to level I evidence for the use of a 

DSS in these patients.

The previous insights on the clinical relevance and the limitations of the DSS have been 

made possible by the inclusion of data from a site that treats patients differently than the 

cohort from which the DSS was learned. This is a general characteristic of rapid learning. 

Only by combining diverse datasets from a wide variety of patient populations and health 

care practices will the size and diversity of the data be sufficient to perform clinically 

relevant rapid learning. In our rapid learning vision, new data from additional sources and/or 

new patients are used to continuously improve and validate knowledge and change practice.

In future work the rapid learning environment described in this report, will be deployed at 

more hospitals to improve the DSS in the following manner: first this work clearly shows the 

DSS needs a better accuracy and generalizability especially in patients with a poor 

prognosis. Second, to increase its clinical relevance, the DSS should predict both survival 

and quality-of-life affecting toxicities of the various treatments. Third, the DSS should be 

able to handle missing data rather than relying on imputation during pre-processing, as was 

done in the present study. Given these requirements, Bayesian networks seem to be the ideal 

machine learning approach for this type of work [12,22] and learning and validating these is 

the subject of future work.
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Finally the efforts described in this report need to be linked to other rapid learning 

initiatives, such as CancerLinQ of the American Society of Clinical Oncology, to achieve a 

true multi-disciplinary rapid learning environment [23].
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Fig. 1. 
Diagram showing the reduction in the number of eligible patients when applying the 

inclusion and exclusion criteria (histology, stage and radical RT) and when excluding 

patients with missing data elements (2 year survival and tumor volume). A total of 3919 had 

a diagnosis of lung cancer in the source system, of these 159 were eligible for inclusion in 

the clinical cohort. Green indicates patients meeting the inclusion criteria or having a known 

data element, red patients were excluded because of an exclusion criteria. Gray indicates 

patients in which a criteria or data element was unknown. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
Top: Kaplan–Meier curves of the clinical cohort (including censored survival data so 

numbers are higher than Table 1) stratified by good, medium and poor prognostic score from 

the training cohort [9]. The two year overall survival for these three groups were 69%, 27% 

and 30% respectively. The separation between the good and medium/bad prognosis group 

was highly significant (p < 0.001). More than half of the good prognosis group comprised 

advanced stage patients (20 stage I, 10 stage II, 27 stage IIIA and 10 stage IIIB patients). 

Unlike what was found in previous work, the medium and poor prognosis group of the 

clinical cohort did not show a significant difference in survival. Bottom: Kaplan–Meier 

curves of the clinical cohort including censored survival data stratified by TNM stage. The 

difference between stage I–II and stage IIIA–IIIB did not reach significance (2 year-OS 47% 

vs. 36%, p = 0.12). p-Values corrected for multiple comparisons using Bonferroni–Holm.
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Fig. 3. 
Calibration plot of the DSS for the clinical cohort using three prognosis groups. Each point 

represents the predicted and observed probability for the group. The error bar is the 95% 

confidence interval. On the axis the number of survivors and non-survivors are shown per 

2% interval predicted probability. The calibration curve of the medium prognosis group is 

not different from the ideal curve, in the good and poor prognosis group a higher than 

predicted survival is observed.
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Fig. 4. 
Kaplan–Meier curves of the patients treated with a radical vs. those treated with a non-

radical radiation dose. Top: good prognosis patients. Bottom: poor prognosis patients.

Dekker et al. Page 14

Radiother Oncol. Author manuscript; available in PMC 2016 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dekker et al. Page 15

Table 1

Patient characteristics.

Training cohort Clinical cohort

Site Netherlands Australia

# Patients 322 159

Age (years)
Gender

Mean ± SD 69 ± 10 68 ± 11 p = NS

Male 249 (77%) 113 (71%) p = NS

Female 73 (23%) 46 (29%) p = NS

Stage

I 73 (23%) 26 (16%) p = NS

II 29 (9%) 26 (16%) p = NS

IIIA 81 (25%) 62 (39%) p = NS

IIIB 134 (42%) 45 (28%) p = NS

Missing 5 (2%)
0
a
 (0%)

ECOG

0 94 (29%) 49 (31%) p = NS

1 169 (53%) 72 (45%) p = NS

≥2 52 (16%) 13 (8%) p = NS

Missing 7 (2%) 25 (16%)

FEV1 (%)

Mean ± SD 70 ± 24 77 ± 20 p = NS

Missing 48 (15%) 95 (60%)

Tumor volume (cc)

Mean ± SD 106 ±113 161 ± 147 p < 0.001

Median 77 106

Missing 36 (11%)
0
a
 (0%)

PLNS

0 143 (44%) N/A

1 59 (18%) N/A

2 44 (14%) N/A

3 31 (10%) N/A

≥4 30 (9%) N/A

Missing 15 (5%)
159

b
 (100%)

2 year OS

Yes 103 (32%) 58 (36%) p = NS

No 219 (68%) 101 (64%) p = NS

Missing 0 (0%)
0
a
 (0%)

ECOG: Performance status as defined by Eastern Cooperative Oncology Group; FEV1: forced expiratory volume in 1 s; tumor volume = gross 
tumor volume of the primary tumor and involved nodes; PLNS = number of positive lymph node stations on a PET scan; 2 year OS = two year 
overall survival after the start of radiotherapy. p-Values corrected for multiple comparisons using Bonferroni–Holm.

a
Patients with missing data were excluded from the clinical cohort.
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b
Is not recorded in routine clinical practice in the Australian center.
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