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Abstract

Introduction—Collecting trial data in a medical environment is at present mostly performed 

manually and therefore time-consuming, prone to errors and often incomplete with the complex 

data considered. Faster and more accurate methods are needed to improve the data quality and to 

shorten data collection times where information is often scattered over multiple data sources. The 

purpose of this study is to investigate the possible benefit of modern data warehouse technology in 

the radiation oncology field.

Material and methods—In this study, a Computer Aided Theragnostics (CAT) data warehouse 

combined with automated tools for feature extraction was benchmarked against the regular manual 

data-collection processes. Two sets of clinical parameters were compiled for non-small cell lung 

cancer (NSCLC) and rectal cancer, using 27 patients per disease. Data collection times and 

inconsistencies were compared between the manual and the automated extraction method.

Results—The average time per case to collect the NSCLC data manually was 10.4 ± 2.1 min and 

4.3 ± 1.1 min when using the automated method (p < 0.001). For rectal cancer, these times were 

13.5 ± 4.1 and 6.8 ± 2.4 min, respectively (p < 0.001). In 3.2% of the data collected for NSCLC 

and 5.3% for rectal cancer, there was a discrepancy between the manual and automated method.

Conclusions—Aggregating multiple data sources in a data warehouse combined with tools for 

extraction of relevant parameters is beneficial for data collection times and offers the ability to 

improve data quality. The initial investments in digitizing the data are expected to be compensated 

due to the flexibility of the data analysis. Furthermore, successive investigations can easily select 

trial candidates and extract new parameters from the existing databases.
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Collecting data in a medical environment for research purposes is time consuming, prone to 

errors and often incomplete when complex data, such as dosimetric data are concerned [1,2]. 
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Faster and more accurate access to medical information is required to improve the data 

quality, shorten data-collection times and reduce cost. Furthermore, conducting trials in 

multiple centres and data-sharing are required in numerous research projects to validate trial 

results, enable the collection of larger datasets of trial patients with a rare disease or to 

conduct in silico trials [1,3–6]. Although the medical community has undertaken numerous 

efforts to digitize its patient and treatment documentation, data are still predominantly 

collected from paper charts. And when data are collected digitally, they are in most cases 

unstructured and distributed over multiple data sources.

With the growing number of diagnostic and therapeutic modalities comes an increasing 

demand for clinical trials to provide the evidence base for these new options and to provide 

guidance to healthcare providers. However, with only around 3% of the adult cancer patients 

included in clinical trials this is a very hard task [7–9]. The use of healthcare information 

systems based on multi-parametric electronic medical record databases (EMR) and data 

mining tools will greatly enhance clinical research in oncology and more specifically in 

radiation oncology and facilitate trials with easy patient selection and improved data quality.

Because data are often scattered and unstructured throughout a medical care organization, 

data warehouse technology is suitable to combine data sources, validate consistency and 

share data with other researchers [10–12]. It can integrate various information systems in the 

healthcare enterprise and offers the ability to have specific data structures/views for different 

investigations, which may deviate from the structure of the operational systems.

Benefits of data warehousing have been described on multiple levels, such as time-saving for 

users, improved quantity and quality of information, informed decision-making, 

improvement of business processes and ultimately support for the accomplishment of 

strategic business objectives [13]. Data warehousing is increasingly used in healthcare to 

provide the tools for decision making and individualizing disease management [14,15]. 

Furthermore, it is essential to facilitate the (translational) research that is needed to develop 

new treatment programmes and support clinical trials (i.e. with quality assurance 

programmes) [16–20].

To this end, we developed a research portal with an industrial partner to integrate the 

essential medical data sources and offer automated data extraction tools for research 

purposes. In this study, we test the performance of this portal with data mining tools against 

the manual collection process for clinical trials. Performance is measured in time expenses 

and data quality to target the hypothesis that these will decrease and improve, respectively, 

by the use of a data warehouse.

Methods and materials

The Computer Aided Theragnostics (CAT) research portal

Together with Siemens Knowledge Solutions (Malvern, PA, USA) we developed a 

Computer Aided Theragnostics (CAT) research portal. It extracts medical data from the 

connected systems via a synchronization manager (sync manager) and stores the data 

centrally in a data warehouse. The operational, patient-centric structure is converted into a 
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disease-centric structure suitable for research. In our radiotherapy department, the sync 

manager extracts data from various sources: (1) the electronic medical record (EMR), which 

is either a structured or unstructured database, (2) the RT picture archiving communication 

system (PACS), consisting of diagnostic imaging and treatment DICOM RT data such as the 

treatment plans (RTPLAN), predicted 3D dose matrices (3D-RTDOSE), delineations 

(RTSTRUCT) and digitally reconstructed radiographs used for setup verification 

(RTIMAGE), and (3) the Record and Verify system (R&V) containing the actual delivered 

treatment parameters.

The CAT research portal currently has four core user functionalities (Fig. 1). The first 

module is the query builder, which is a tool for the visual creation and execution of queries 

as well as viewing the query results and exporting them in XML format. An integrated data-

browser (second module) is available where individual cases can be reviewed. Thirdly, the 

system offers an electronic case report form (eCRF) module. This enables researchers to use 

the system for clinical trials. The module is built in such a way that case report forms can be 

pre-populated with data extracted from the clinical databases acquired during the sync 

procedure. The fourth module is a private data-store for researchers to upload parameters of 

interest not collected by either eCRFs or clinical systems.

In addition to the EMR, PACS and R&V systems, our department designed custom-made, 

fully automated workflows in a framework called DIGITrans (http://www.mistir.info/?

q=digitrans). DIGITrans offers a user interface and background services for data generation, 

extraction and transportation for both clinical and research purposes. During daily clinical 

practice, 2D dose-guided radiotherapy workflows are present [21], while for research users, 

workflows are defined to extract parameters from for instance dose–volume histograms 

(DVH) and store the results as DICOM-objects in the PACS system. These workflows are 

DICOM-driven and can convert, validate and transfer DICOM objects throughout the entire 

department and can easily be adapted to support new parameters or modalities. Parameters 

of interest are stored in a structured database. Currently, DVH parameters such as mean lung 

dose (MLD), structure volumes and different volume and dose parameters are stored in a 

separate structured database. A similar extraction is done from PET scans to derive and store 

standardized uptake values (SUV).

The current data management process

The current trial data management process in our institute is largely manual and when data 

are acquired electronically still the case report forms have to be filled in manually. Currently, 

a list of patients and the parameters that need to be collected is supplied to the data manager, 

who will then identify from which system or document the data need to be extracted. Next, 

the data are collected manually from each system or chart. The data are noted in an 

electronic document such as Microsoft Excel, Access or in an electronic case report form 

(eCRF). Data are collected using the Good Clinical Practice (GCP) guidelines as a reference 

[22,23].

Collection of some of the parameters mentioned requires domain and application specialists. 

For these parameters, the data managers do not collect data (e.g. DVH or SUV parameters, 

which require recalculation), but the collection is done separately by radiation technologists.
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Experimental setup

Two hypothetical trials with representative sets of parameters were defined for non-small 

cell lung cancer (NSCLC) and rectal cancer (Table 1). Next, a comparison was made 

between the manual data collection process and the automatic data warehouse based method. 

The datasets were heterogeneous so that data had to be collected from the paper charts 

(manually) or EMR (automatically), the R&V system and XiO/TrueD (manually) or the 

PACS. For the measurements, the parameter sets were split into two groups; (1) the “lookup” 

group (chart/EMR and R&V) and (2) the “recalculation” group (XiO/TrueD and PACS).

The manual recalculation of DVH parameters was conducted with the treatment planning 

system (TPS) XiO (CMS Software, Elekta, XiO 4.34.02, St. Louis, MO), using the plans 

available on the TPS system. For the manual recalculation of SUV values we used the 

commercially available TrueD software (TrueD VC50, Siemens Medical, Erlangen, 

Germany). The PET images were re-imported and volumes of interest (VOIs) were created 

again to retrieve the SUV data.

For the automatic recalculated parameters, a query was defined once using the CAT research 

portal and the result was exported in XML format. From this query result, the original 

CT/PET images, structures and dose were sent from the PACS to the DIGITrans workflows 

to automatically extract the DVH and SUV data.

Furthermore, data quality was evaluated for all experiments by scoring discrepancies 

between both the CAT and current manual process. To decide which method was correct, 

each deviation was looked up again in its reference system or validated by another observer.

The primary end-point of the experiment was data collection time. For the sample size 

calculation, we hypothesized a difference of 3 min with a standard deviation of 3 min using 

a paired t-test. We wanted to achieve a power of 0.99 and an α = 0.01. Based on these 

assumptions, the sample size was determined at n = 27. The secondary end-point of data 

quality was evaluated by comparing the output from the CAT method against the first human 

observer. The output of the human observer was validated by a second human observer and 

inconsistencies were resolved by a third look-up. The third look-up was not taken into 

account in the data collection time measurements. After these comparisons between 

observers, a GCP compliant collected data-set was acquired and this set was also compared 

against the CAT method.

Results

In Fig. 2, the average data collection times for NSCLC (a) and rectum cancer (b) are shown 

for the manual versus the CAT groups. The figure shows the distinction between the data 

that were looked up (in the EMR and R&V) and recalculated (from PACS/TPS data). On 

average, the total collection time for the manual method for the individual NSCLC cases was 

10.4 ± 2.1 min while for the CAT method this was 4.3 ± 1.1 min (p < 0.001). For rectal 

cancer, this was 13.5 ± 4.1 min for the manual collection and 6.8 ± 2.4 min for the CAT 

method (p < 0.001) (Table 2).

Roelofs et al. Page 4

Radiother Oncol. Author manuscript; available in PMC 2016 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The main difference between the manual and automatic collection times for both the 

NSCLC and rectum cases was caused by the lookup parameters. The data warehouse offered 

one central interface where all parameters were present, while the manual method required 

the data managers to gather and analyse the paper charts.

For the NSCLC cases there was a difference between manual and automated collection times 

of the DVH parameters. This was caused by the fact that the V5 and V20 are not used in 

daily clinical practice and their DVHs needed to be recalculated in the TPS.

For the rectal cancer cases there was a difference compared to the NSCLC cases with respect 

to the collection time of recalculated parameters. This difference was mainly caused by the 

extraction of the SUVmean and SUVmax. In the manual method, VOIs needed to be re-drawn 

for all cases because the used system did not support import from structures or back-uped 

data. As can be seen in Fig. 2b (SUV data), the standard deviation is very large (± 3.0 min). 

This is due to the effect that in some cases the auto-segmentation delineated neighbouring 

organs such as the bladder and contours needed to be edited manually. To determine the 

data-quality, we compared the SUV parameters with the newly generated structure-set.

There was no difference found in the extraction of DVH parameters between both methods, 

however, the extraction took significantly longer when compared to the NSCLC extraction. 

This was because in daily clinical practice the bladder is normally not delineated and 

therefore not available for both methods and was delineated in the TPS. The time needed for 

the bladder delineation was taken into account for both methods and therefore there is no 

difference between both methods for this extraction.

Manual data collection was performed according to GCP guidelines. This means that data 

are collected by two observers and then validated. After validation between observers, we 

found that in the NSCLC set there was a mismatch between manually collected data and 

automatic in 3.2% of all different parameters collected. The mismatch before validation for 

NSCLC was 10.3%. Using the GCP collection process thus resolved 69% of the initial 

mismatches.

We found a particular bad concordance between observers for the manual collection of the 

overall treatment time in days. This was due to the fact that some observers erroneously 

recalculated the data while others looked it up in the R&V system. This interpretation 

difference explained most of the drop of mismatching data after validation. The remaining 

differences could be explained primarily by a mismatch between DVH parameters. We 

found that in most cases the DVH parameters that mismatched before validation were based 

on a different treatment plan than actually used for treatment or were calculated on a wrong 

volume. The V5 and V20 were defined using LungLeft+LungRight–PTV(s) volumes while the 

MLD had to be calculated on LungLeft+LungRight–GTV(s) volumes. Before validation, the 

V5 and V20 were in some cases extracted from the DVH from which the MLD is calculated. 

After the validation between observers, the remaining 3.2% mismatching parameters 

indicate the true mismatch between both methods. We found that in more than 90% of these 

cases the automatic method retrieved the correct data.
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For the rectal cancer set we observed similar results. We observed data differences in 8.8% 

of all data collected. Again, we saw a bad concordance of the overall treatment time between 

the manual and automatic method. The other deviations were mainly found in the 

recalculation of SUV parameters. The cause for the deviation could be found in the 

implementation differences between the automated mining tool and the PET analysis 

software.

In the PET analysis software, a threshold is calculated by taking into account the signal-to-

background ratio calculated as Threshold = 0.7813 * (SUVmaxTumour/

SUVmeanBackground)−0.299. This threshold is then used to draw the contour on the PET and all 

the voxels with an SUV above the threshold are used to calculate the SUVmean. The 

automated method however uses the exported contour to calculate the mean SUV from all 

the voxels within the exported contour. Due to interpolation and inaccuracy of the contour 

the SUVmean of the automated method was lower than with the analysis software. This 

problem was compensated to search the contours for the background contours, calculate the 

threshold and use the threshold in the same way as the PET analysis tool. This explained 

31% of the mismatches.

The remaining data inconsistencies were either human error(s), for example in one case we 

found a different total delivered dose, or were caused by erroneous DICOM objects.

Discussion

Our results show that using a data-warehouse shortens data-collection times significantly 

and can be of help to improve data quality because data in the CAT data warehouse are 

captured from all clinical reference systems and validated before storage in the warehouse. 

Especially the use of the in-house developed mining tools support easy extraction or 

recalculation of parameters of interest (e.g. V20, V5, SUVmean and SUVmax) and eliminates 

manual steps. However, as the results show with the extraction of the SUV parameters great 

care must be taken when using these kinds of tools in an automated way. It is very important 

to carefully validate and approve them before extensive research use.

The strength of the CAT data warehouse is that it can combine, validate and present data 

from distributed databases in a uniform way. Furthermore, the system is designed to have an 

external interface to share data among other institutes. Data are easily accessible for 

researchers via a web-interface with several extra options such as a patient browser and a 

query builder. Occasionally, expert knowledge is necessary to maintain the system, because 

of interoperability issues due to updates of source systems.

When looking at the manual data collection process we have found that there was a large 

inter-observer variability. This explains most of the data inconsistencies between the 

automated and manual collection methods. Strict guidelines such as GCP [22,23] are of 

great importance to ensure data quality. We found that the collection by two observers and 

the monitoring and validation are vital for data quality because it resolves conflicts between 

observers. From previous studies [24,25] it can be concluded that, by using intelligent free-

text searching/mining and machine learning technique approaches to retrieve the data in a 
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data warehouse, data can automatically be validated and true data values can be identified. 

Retrieving this data manually can introduce inconsistencies or missing data, which we have 

seen in some cases in this study. This is confirmed by Prokosch and Ganslandt [16] who 

mention in their second challenge that electronic data capture for trials provides significant 

benefits over manual collection. One other advantage is the possibility to include realtime 

patient outcome data, for instance by directly linking to a national registry or including 

properly captured patient-reported outcome [26,27].

Using the research portal for trial data collection with eCRFs using extracted data from local 

databases, could possibly be a better start of the data collection and even replace the first 

observer. The electronically captured data could then immediately be validated by the 

monitor. By using this approach the data collection time can be minimized. Although pre-

population of data can induce data capturing problems as mentioned by Kush et al. [2] this 

can be solved by the requirement that the responsible eCRF reporter verifies all pre-

populated data. This can be embedded in the user interface workflow. New technologies 

such as developed by Rao et al. [24] can be used to validate data at the synchronization 

process delivering high quality data to the user who only needs to validate the data for the 

clinical trial.

The CAT research portal is an institute-specific data warehouse that can also be used to 

share data in a privacy-preserving and semantic-interoperable manner using internationally 

accepted data exchange standards and ontologies such as described in an accompanying 

study [28,29], addressing the growing need for standardized data exchange between medical 

centres [1,3,12]. Richesson and Krischer [30] describe that there are currently overlaps, 

challenges and gaps in the standards developed for research and clinical purposes for data 

retrieval at a local scale and data sharing at a global scale. They conclude that data should be 

shared between research and clinics where possible but also that the clinical data will have 

gaps and that the importance of data standards for clinical research is underestimated. In one 

of a series of vision papers by the QUANTEC group, Deasy et al. [31] suggest that data-

sharing and -pooling can raise the quantity as well as the quality of clinical data for data 

mining purposes. We strongly share this belief.

A data warehouse probably reduces cost for the research organization. As can be seen from 

the results from this study, data collection time can be reduced significantly. Although the 

fact that clinical trials usually run for several years the time spent for data collection can be 

reduced by more than 50%, which should translate into a cost reduction of data 

management. However, to set up and maintain systems like this will have financial 

implications. The initial installation is the most expensive part but can be spread over several 

projects in multiple years. The operational cost of a system is dependent on the 

organization's needs and is variable. For example, for typical projects datasets of several 

hundreds of patients are needed [32–35]. It was estimated in one of these studies that 

approximately 45 h of data management can be saved, based on a dataset of 400 patients, 

which is 6–7 min. per case. This is in concordance with our findings.

For the manual collection process, we measured the time to collect the actual data when the 

source data were available in the subsystems (i.e. the treatment plan was available in the 
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TPS). However, in retrospective studies this might not be the case and data might have to be 

restored from back-ups or archives. This additional time has not been taken into account in 

this study because of the fact that the retrieval of data differs heavily for various backup-and-

restore systems. Most often PACS data reside on disks, while the TPS data are archived on 

tape or slow disks. Therefore, including restoration of data would likely increase manual 

recalculation times significantly.

A further benefit of data warehousing is to be expected when considering research and trials 

in the field of Radiomics [36], for instance. This involves the high-throughput extraction of 

large amounts of image features from clinical images. These quantitative imaging features 

are increasingly used in treatment planning and for monitoring patient outcome [37,38]. 

Because this is a rapidly evolving research area, new features are added frequently. 

Therefore, a data warehouse with easily modified data extraction services is likely to be far 

more beneficial when compared to manual data collection.

Conclusions

Information technology solutions such as the CAT data warehouse improve clinical research 

for radiotherapy by reducing the time needed to collect necessary data and by improving the 

quality of the data collected.
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Fig. 1. 
Schematic overview of the CAT data warehouse/research portal. The system synchronizes 

data from clinical data sources and custom services. It is also capable of collecting data for 

trials and data collected for other research purposes. For data export, several modules exist 

in the system and are easily accessible by web-technology (i.e. the patient browser, query 

builder and an electronic case report form XML export).

Roelofs et al. Page 11

Radiother Oncol. Author manuscript; available in PMC 2016 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Average manual versus CAT collection times (in min) for the (a) NSCLC and (b) rectum 

cases. The parameters that were looked up in the EMR and R&V system are displayed in 

medium grey and labelled “Lookup”. In dark grey (labelled “Recalc.”), the parameters are 

shown that were recalculated. The error bars show the standard deviations. For the rectum 

cases, the collection times for SUV data only show the large variability in the contribution to 

the recalculated parameters (in light grey and labelled “SUV”).
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Table 2

Comparison of the total data collection times (mean ± SD in min) for the manual versus the CAT method.

Tumour type Manual (min) CAT (min) p-value

NSCLC 10.4 ± 2.1 4.3 ± 1.2 <0.001

Rectum 13.5 ± 4.1 6.9 ± 2.3 <0.001

Radiother Oncol. Author manuscript; available in PMC 2016 November 22.


	Abstract
	Methods and materials
	The Computer Aided Theragnostics (CAT) research portal
	The current data management process
	Experimental setup

	Results
	Discussion
	Conclusions
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2

