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CONSPECTUS

RNA polymerase II (Pol II) is an essential enzyme that catalyzes transcription with high efficiency 

and fidelity in eukaryotic cells. During transcription elongation, Pol II catalyzes the nucleotide 

addition cycle (NAC) to synthesize messenger RNA using DNA as the template. The transitions 

between the states of the NAC require conformational changes of both the protein and nucleotides. 

Although X-ray structures are available for most of these states, the dynamics of the transitions 

between states are largely unknown. Molecular dynamics (MD) simulations can predict structure-

based molecular details and shed light on the mechanisms of these dynamic transitions. However, 

the employment of MD simulations on a macromolecule (tens to hundreds of nanoseconds) such 

as Pol II is challenging due to the difficulty of reaching biologically relevant timescales (tens of 

microseconds or even longer). To overcome this challenge, kinetic network models (KNMs) such 

as Markov State Models (MSMs) have become a popular approach to assess long-timescale 

conformational changes using many short MD simulations.

We describe here our application of KNMs to characterize the molecular mechanisms of the NAC 

of Pol II. First, we introduce the general background of MSMs and further explain the procedures 

for the construction and validation of MSMs by providing some technical details. Next, we give an 

outline of our previous studies in which we applied MSMs to investigate the individual steps of the 

NAC, including translocation and pyrophosphate ion release. We make a summary of the major 

findings for each of these MSM applications. Furthermore, we describe in detail how to build the 

structural models, the procedures to generate conformations for seeding MD simulations and the 

parameters used to construct MSMs for each of the application we present. Finally, in order to 

study the overall NAC, we combine the individual steps of the NAC into a five-state KNM based 

on a non-branched Brownian ratchet scheme to explain the single-molecule optical tweezers 

experimental data. In the description of the KNM application, we explicitly write out the 

underlying assumptions of the five-state KNM and discuss the open questions and future studies 
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that can help us refine the KNMs. The studies we discuss in the review complement experimental 

observations and provide molecular mechanisms for the transcription elongation cycle. In the long 

term, incorporation of sequence-dependent kinetic parameters into KNMs has a great potential for 

identifying error-prone sequences and predicting transcription dynamics in genome-wide 

transcriptomes.

Graphical abstract

1. INTRODUCTION

RNA polymerase II (Pol II) is the eukaryotic enzyme that is responsible for transcribing the 

genetic information encoded in DNA into messenger RNA (mRNA). With the assistance of 

various transcription factors, Pol II can catalyze gene transcription efficiently and 

accurately1–3. In the stable Pol II elongation complex (EC), the incoming double-stranded 

DNA (dsDNA) unwinds in the downstream region, and the template DNA strand enters the 

active site to form a hybrid with the nascent mRNA; the non-template DNA strand makes a 

~90° turn near the active site, and the unwound DNA region forms the transcription bubble. 

The non-template DNA strand re-anneals with the template DNA strand to form the exiting 

dsDNA in the upstream region1,2 (Figure 1a).

During transcription elongation, the Pol II EC catalyzes the nucleotide addition cycle (NAC) 

to add nucleoside triphosphate (NTP) to the growing mRNA strand1,4 (Figure 1b). In 

general, the NAC can be described by six states, most of which have been captured by X-ray 

crystallographic studies5–12. Initially, Pol II is in the post-translocation state, which is 

characterized by an empty active site and open trigger loop (TL) (State I)5. The substrate 

NTP diffuses into the enzyme and binds in a non-catalytic preinsertion state (State II)6,7,13. 

If the incoming NTP matches the template DNA, the TL closes beneath the active site (State 

III)8. Next, Pol II catalyzes RNA incorporation, and the pyrophosphate ion (PPi) exits the 

enzyme (State IV). The TL then opens, and the EC enters the pre-translocation state (State 

V)9. Finally, to begin another round of the NAC, the EC translocates by one base pair from 

the pre- to post-translocation state to free the active site1,2. During elongation, RNA 

misincorporation occasionally occurs, and to maintain fidelity, Pol II backtracks (State VI) 

to remove the misincorporated nucleotide either by intrinsic cleavage or with the aid of 

transcription factor IIS (TFIIS)10–12. Although X-ray crystallographic studies are essential to 

understanding the structural basis of transcription, crystal structures are static and thus do 

not reveal the underlying dynamics.

Molecular dynamics (MD) simulation is an essential tool for modeling the dynamics of 

biomolecules by considering actual atomic interactions. Therefore, MD has great potential to 
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elucidate the molecular mechanism of Pol II transcription14–17. For example, we performed 

MD simulations that provided molecular insight into the role of TL in nucleotide selection 

by identifying the atomic interactions between NTP and the closed TL14. Moreover, we 

analyzed the MD conformations of Pol II with a complete transcription bubble and predicted 

that the secondary channel is the major route for NTP diffusion into the enzyme15.

Although MD simulations have great capacity for elucidating structure-based molecular 

details, one major challenge to their application to large systems, such as Pol II, is achieving 

biologically relevant timescales (Figure 2a). MD simulations for Pol II are usually limited to 

tens to hundreds of nanoseconds; however, the transition between states in the NAC occurs 

on the order of tens of microseconds or even longer. Thus, there exists a timescale gap 

between MD simulations and essential conformational changes. The Markov State Model 

(MSM), a type of kinetic network model (KNM), has recently become a popular approach to 

bridge the timescale gap18–31. Our group has successfully applied MSM to study various 

biological systems32–41.

Here, we describe our application of KNMs to characterize the molecular mechanism 

underlying Pol II transcription elongation. First, we introduce the basic concepts underlying 

MSMs, followed by an illustration of the construction and validation of MSMs. Then, we 

review our previous work on the elucidation of the individual steps of the NAC as well as the 

overall NAC transcription dynamics39–42. Finally, we provide a discussion and future 

perspectives.

2. SIMULATING LONG-TIMESCALE DYNAMICS OF BIOMOLECULES

2.1. Markov State Model Theory

The construction of MSMs using automatic algorithms24–28,37,43 can facilitate the 

examination of long-timescale dynamic processes via a number of short MD simulations 

that reach local equilibrium (Figure 2b)18–31. The basic concept of MSM is to partition the 

conformational space into a number of metastable states, and fast motions are integrated out 

by discretizing time in units of τ (lag time) (Figures 2b–c). If τ is long enough to allow full 

relaxation within each state, the model becomes Markovian, i.e., the probability for the 

system to visit a given state at time t+τ depends only on its current position at t. Under this 

condition, the long-timescale dynamics can be obtained by propagating the transition 

probability matrix, 

(1)

where  is the state population vector at time , and , the element of , denotes 

the transition probability from state i to state j after a lag time of τ. Specifically,  can be 

generated by counting transitions between pairs of states at τ from many short MD 

simulations.
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2.2. Construction and validation of Markov State Models

To construct MSMs, we first divide MD conformations into a large number of clusters or 

microstates according to their structural similarity (Figure 2c). This step is often performed 

by geometric clustering algorithms26,27,44 such as K-centers and K-means. Root mean 

square deviation (RMSD) between pairs of conformations is a popular choice of the distance 

metric for clustering. In practice, one may need some physical understanding of the system 

in order to choose an appropriate set of atoms to be included in the RMSD calculations. 

More recently, new algorithms29–31 such as the time-structure based Independent 

Component Analysis (tICA)31, have been developed to identify a set of key tICs that can 

sufficiently describe slowest dynamics of the system, and subsequently distances between 

pairs of conformations can also be computed in the reduced dimensional space containing 

these tICs. The tICA method provides a promising approach to automatically choose metrics 

that can best describe the conformational dynamics of interest. When constructing MSMs 

based on microstates, one assumes that conformations within each microstate are 

structurally similar and thus also kinetically similar. The interplay between length of lag 

time (τ) and number of states is critical to achieve a Markovian model, because shorter lag 

times always require more states to ensure that the system can lose memory within each 

state. To build Markovian models for biomolecules, one often needs thousands of 

microstates, because the lag time is limited by the length of individual short MD 

simulations44. However, when the number of states is too big, statistical errors may become 

dominant. Under this condition, many states only contain one or few conformations each, 

and this may result in substantial uncertainties in the estimated transition probabilities 

between states. Nevertheless, microstate-MSMs are particularly useful for quantitative 

comparisons with experiments44.

As microstate-MSMs containing thousands of states are usually too complicated for gaining 

mechanistic insights, microstates are often coarse grained into fewer macrostates based on 

their kinetic proximity (Figure 2c). Several algorithms such as Hierarchical Nyström 

method25 developed in our group, Perron-cluster cluster analysis (PCCA)45 and its improved 

version (PCCA+)46, Bayesian agglomerative clustering engine47, and the most probable 

paths algorithm48 can perform this task. Number of macrostates can be determined by 

searching for the leading and stable gap in the implied timescales, while physical insights 

sometimes may also help for complicated biological systems. Macrostate-models 

(containing a few states) are often non-Markovian and thus are not suitable for computing 

any quantitative properties. In this regard, all reported quantitative properties of macrostates 

should be computed based on the validated microstate-MSMs39,49. Even so, the applications 

of macrostates can still greatly help the visualization of conformational dynamics, and 

facilitate the interpretation of molecular mechanisms of biological processes.

To choose an appropriate lag time  that can render the model Markovian, one often 

examines the implied timescale , which can be calculated as

(2)
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where  is the kth eigenvalue of the transition matrix at lag time . Each implied 

timescale describes an aggregate transition between two subsets of states. When the model is 

Markovian, its predicted implied timescales  should become invariant with the lag time 
50.

MSMs can be validated by the Chapman-Kolmogorov test20, which examines if time 

evolutions of state populations predicted by an MSM (Equation (1)) are consistent with 

those directly obtained from MD simulations. A derivation of this test, where one examines 

probabilities for the system to remain in a certain state rather than state populations, is also 

widely adopted in validating MSMs20 (Figure 2e).

2.3 Computing Thermodynamic and Kinetic Properties from Markov State Models

Useful quantities could be acquired from validated MSMs such as equilibrium populations 

of states, ensemble averages of particular observables, mean first passage times (MFPTs) 

between pairs of states, and dominant transition pathways from the initial to the final state 

(obtained from the transition path theory51).

3. APPLICATIONS

The characterization of the dynamic transition between functional states is essential to 

understanding Pol II transcription elongation. We have used MSMs to study the individual 

steps in the NAC (Figure 1b): translocation39 and PPi release40. Furthermore, we have 

combined the individual steps to construct a five-state KNM to study the overall NAC42. In 

this section, we present these results as examples of the application of KNMs to predict the 

dynamics of Pol II transcription elongation.

3.1 Dynamics of translocation

Pol II translocation describes the reversible dynamic process by which Pol II moves by one 

register from the pre- to the post-translocation state to free the active site or the reverse 

process (Figure 1b). Translocation is also a necessary step to establish Pol II at a new stage 

to allow the next round of the NAC. We used MSMs based on MD simulations to investigate 

the underlying molecular mechanism of Pol II translocation39. In general, the result supports 

a Brownian ratchet model: Pol II can oscillate between pre- and post-translocation state via a 

Brownian motion driven by thermal energy. On one hand, NTP binding and incorporation 

can act as the pawl in this Brownian ratchet that biases Pol II movement to favor the forward 

(pre- to post-translocation) direction. On the other hand, RNA transcript hydrolysis and 

pyrophosphorolysis may work as the pawl to bias movement of Pol II in the reverse 

direction. Moreover, two intermediates were identified, and the bridge helix (BH) was 

shown to interact with nucleotides to facilitate the process.

We built the structural models of Pol II in the pre- and post-translocation states based on 

available crystal structures (see reference39 for details). Initial pathways connecting pre- and 

post-translocation states were generated using the modified Climber algorithm39,52. We note 

that the string method53 is another method of providing good initial pathways. 

Representative conformations were selected from these initial pathways to perform two 

rounds of unbiased MD simulations at 310K using the amber03 force field54. The 
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aggregated simulation time reaches ~2,500ns, and the second round of MD simulations 

(1,600ns in total) were used to build MSMs. In particular, we split MD conformations into 

microstates by performing two independent k-center clusterings using RMSD as the distance 

metric. As the motion of transition nucleotide (TN) is directly related to translocation, the 

first clustering was performed based on the RMSD of TN after the alignment of the whole 

Pol II. To capture how Pol II responds to the translocation of RNA/DNA, we also performed 

a second clustering based on the RMSDs of nucleotides as well as BH and TL. We then 

combined these sets of clusters, and removed the empty ones to obtain the final model 

containing 976 microstates. For visualizing the translocation mechanisms, we further 

lumped these microstates into four metastable states.

Our MSMs revealed that Pol II oscillates between the pre- (S1) and post-translocation (S4) 

states, through two intermediate states (S2 and S3) (Figure 3a). MFPT calculations 

demonstrated that the transition between S1 and S2 is the rate-limiting step (~20 μs) and 

states S2~S4 could form a wide flat energy basin (Figure 3). We also found pre- and post-

translocation states coexist and both of them are populated, which is consistent with 

experimental observations55,56.

Structural analysis of the four metastable states provided the molecular details of Pol II 

translocation. In the intermediate state S2, the backbone of the RNA:DNA hybrid has 

reached its final position, as in the post-translocation (S4) state. However, the TN lags 

behind and forms key stacking interactions with the BH residue Y836. The π-stacking 

interaction between the TN and Y836 can lower the energy barrier of translocation. In the 

intermediate state S3, the TN crosses over the BH and approaches its final canonical i+1 

position. These intermediates are consistent with the X-ray crystal structures of 

intermediates trapped by α-amanitin or DNA damage57–60.

We also observed that the central region of the BH is very flexible and it can bend as much 

as 10Å toward the active site to facilitate translocation (Figures 2a–b in reference39). For the 

transition from S1 to S2, BH bending aids the translocation of the RNA:DNA hybrid. In S2 

and S3, the BH residues Y836 and T831 facilitate TN translocation. Our MSM suggests that 

Pol II can oscillate between the pre- and post-translocation conformations until the incoming 

NTP stabilizes the post-translocation state. These results provide atomic details about 

translocation and support a Brownian ratchet mechanism.

3.2 Dynamics of PPi release

PPi is the byproduct of NTP incorporation, and the release of PPi is a prerequisite for the 

continuation of the NAC (Figures 1b and 4a). We constructed MSMs based on MD 

simulations, suggesting that PPi release along the secondary channel follows a four-state 

hopping model in Pol II (Figures 4b–c)40. This PPi release process is further coupled with 

the TL tip motion.

The simulation model for Pol II in complex with PPi was built based on the crystal 

structures of Pol II bound to NTP (see reference40 for details) (Figure 4b). Initial pathways 

for PPi release were first generated from steered MD simulations. Afterwards, representative 

conformations along the pathways were selected to seed unbiased MD simulations at 310K 
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and 1bar using amber03 force field54 with regenerating the partial charges of (Mg-PPi)2−. 

MD simulations with an aggregated time of >700ns were used to build a 274 microstate 

MSM via a k-center clustering based on the RMSD of the PPi after the structural alignment 

of BH. To facilitate the comprehension of the release mechanism, we further applied the 

PCCA+ algorithm46 to lump these microstates into 4 macrostates.

Our MSMs demonstrate that PPi adopts a hopping model to jump from the active site to the 

funnel. Within each hopping site, several positively charged amino acids form stable 

interactions with PPi and assist its release (Figure 4c). Interestingly, four of the positively 

charged residues are conserved among eukaryotes, and two are conserved between both 

eukaryotes and prokaryotes (Figure 3c in reference40), indicating the biological significance 

of these residues during evolution. This study also demonstrated the correlation between TL 

motion and PPi release. The dynamics of the TL tip help PPi exit from the active site via the 

interaction between TL and PPi; once PPi is outside the active site, its release can assist the 

initial opening of TL by inducing conformational changes of TL tip.

In addition to Pol II, we have also studied PPi release in bacterial RNA polymerase41, and a 

simpler two-state model was elucidated. The different number of states between yeast and 

bacteria are due to differences in protein surface layout: positively charged residues are 

located separately in yeast but are continuously distributed in bacteria. Also different from 

Pol II, we found the PPi release in a bacterial RNA polymerase is only coupled with the side 

chain rotation of a TL residue R1239, but cannot induce any substantial conformational 

changes of the TL backbone. In this regard, the application of MSMs has provided deeper 

insights into the structural features that influence the dynamics of PPi release in different 

systems41.

3.3 Five-state KNM of the overall Pol II NAC

In addition to focusing on a single step of the NAC, we have recently built a KNM that 

describes the overall NAC by combining all the transitions among states I~V42 (Figure 5a). 

After fitting to the single-molecule experiments61, our KNM provides explanations to two 

slow steps during Pol II elongation, as identified by the single-molecule experiment61 

(Figure 5a).

In this work, we included five states in the KNM and assigned individual rates for each of 

the forward and backward transitions (Figure 5a). Based on the five-state scheme with the 

population vector defined as Π=(PIPIIPIIIPIVPV)T, we formulated the following master 

equation:

(3)

with the transition rate matrix M shown in Figure 5b. By solving Equation (3) at the steady 

state under42, we derived the elongation rate. Fitting the elongation rate to single-molecule 

optical tweezers experimental data in the pause-free region61 yielded the transition rates. 

These results suggested that one slow step corresponds to the TL opening prior to 
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translocation, while the other slow step may be explained by two possible scenarios: TL 

closing upon NTP binding or a pre-catalytic conformational adjustment of the active site 

(Figure 5a). Accurate determination of the intrinsic properties of NTP binding could 

improve the understanding of elongation dynamics.

This work provides a critical link between the overall transcription elongation process and 

the individual steps of the NAC, thus enabling investigations of how the local structural and 

dynamic perturbations that occur in a single transition affect the overall elongation kinetics.

4. DISCUSSION AND PERSPECTIVES

We will conduct further studies of other critical conformational changes during the NAC, 

such as the TL motions and backtracking. TL undergoes conformational changes and plays 

important roles in Pol II transcription elongation8,14 (Figure 1b). We aim to construct MSMs 

to elucidate the mechanisms of TL motions. Also of interest is backtracking, which is a 

crucial process for maintaining the high accuracy of transcription by Pol II11. There are two 

hypotheses for backtracking: the concerted model (RNA backtracking is concurrent with the 

movement of DNA)5 and the stepwise model (RNA fraying occurs prior to the DNA 

movement)12. We will apply MSMs to decipher the backtracking mechanism and reveal how 

Pol II can detect mismatched nucleotides to promote backtracking. Moreover, the effects of 

DNA damage or backbone heterogeneity on Pol II transcription in molecular detail will be 

of interest59,60,62–65. In addition, it will be interesting to investigate the thermodynamics and 

kinetics of NTP loading, and how NTP loading couples with translocation. Our previous 

work on translocation was conducted using a minimum scaffold of the Pol II elongation 

complex39. Recently, the crystal structure with a full transcription bubble was resolved66,67. 

This structure could provide a structural basis for investigating Pol II translocation and 

backtracking by considering the effect of the base pairs that break and reform at the two 

edges of the transcription bubble. Finally, we also plan to incorporate the backtracking state 

in our KNM so that it can take into account the proofreading process and its impact on 

transcriptional dynamics.

Recent studies have demonstrated that transcription errors do not occur at random sites but 

occur preferentially in specific sequence motifs68,69. Therefore, in the long term, a KNM 

containing DNA sequence dependent transition rates could be applied to pinpoint hot-spot 

sequence motifs of Pol II transcription, thus providing a mechanistic link between the 

structural-mechanics of Pol II fidelity and error-prone sequences of the transcriptome. These 

studies could open up a new perspective in understanding human diseases and aging 

problems related to transcription fidelity.
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Figure 1. Structure of the Pol II elongation complex and the NAC
(a) Left: cut-view of Pol II EC. Right: close-up of the active site in the post-translocation 

state. (b) Schematic representation of the six states of the Pol II NAC.
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Figure 2. General background of MSMs
(a) Timescale gap between atomistic MD simulations and experiments. (b) Sampling of the 

free energy landscape by conventional MD simulations initiated from different 

conformations, with each individual simulation labeled by a line (figure adapted with 

permission from ref.24. Copyright (2009) National Academy of Sciences, USA.). (c) 

“Splitting and lumping” algorithm to construct MSMs (figure adapted with permission from 

ref.28. Copyright (2009) Elsevier.). (d) Implied timescale plot (figure adapted with 

permission from ref.38. Copyright (2015) Jiang et al.). (e) Validation of MSMs by testing the 

residence probability (figure adapted with permission from ref.38. Copyright (2015) Jiang et 
al.).
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Figure 3. Pol II translocation elucidated by MSMs
(a) Four metastable states identified by MSMs. The TN (orange), Y836 (purple) and T831 

(grey) are shown. (b) Schematic free energy profile of translocation. The transition between 

S1 and S2 has the highest energy barrier (rate-limiting step, as shown in (a)). The cartoon 

representations of the states indicate that the translocation of the RNA:DNA hybrid (red and 

blue) is asynchronous with the translocation of the TN (orange). The population of each 

state is also displayed.
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Figure 4. Pol II PPi release elucidated by MSMs
(a) Schematic representation of the PPi release process. (b) Pol II structural model used to 

study PPi (orange spheres) release along the secondary channel (yellow dotted lines). (c) PPi 

release follows a four-state hopping model. The residues interacting with PPi at each 

hopping site are labeled. The population of each metastable state is shown as a percentage.
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Figure 5. Elucidation of the overall dynamics of the NAC by KNM
(a) A five-state KNM provides explanations to the two slow steps in transcriptional 

elongation: slow step 1 is assigned to the TL opening, whereas two scenarios are possible for 

the slow step 2: TL closing (model A: II to III) or pre-catalytic conformational 

rearrangement (model B: III to IV). The lower left panel shows the transition rates between 

states. The state definition here is consistent with that in Figure 1, but the backtracking state 

is not included in this model. (b) The transition rate matrix for the five-state KNM.
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