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Abstract

Sequence labeling for extraction of medical events and their attributes from unstructured text in 

Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It 

has important applications in health informatics including pharmacovigilance and drug 

surveillance. The state of the art supervised machine learning models in this domain are based on 

Conditional Random Fields (CRFs) with features calculated from fixed context windows. In this 

application, we explored recurrent neural network frameworks1 and show that they significantly 

out-performed the CRF models.

1 Introduction

EHRs report patient’s health, medical history and treatments compiled by medical staff at 

hospitals. It is well known that EHR notes contain information about medical events 

including medication, diagnosis (or Indication), and adverse drug events (ADEs) etc. A 

medical event in this context can be described as a change in patient’s medical status. 

Identifying these events in a structured manner has many important clinical applications 

such as discovery of abnormally high rate of adverse reaction events to a particular drug, 

surveillance of drug efficacy, etc. In this paper we treat EHR clinical event detection as a 

task of sequence labeling.

Sequence labeling in the context of machine learning refers to the task of learning to predict 

a label for each data-point in a sequence of data-points. This learning framework has wide 

applications in many disciplines such as genomics, intrusion detection, natural language 

processing, speech recognition etc. However, sequence labeling in EHRs is a challenging 

task. Unlike text in the open domain, EHR notes are frequently noisy, containing incomplete 

sentences, phrases and irregular use of language. In addition, EHR notes incorporate 

abundant abbreviations, rich medical jargons, and their variations, which make recognizing 

semantically similar patterns in EHR notes difficult. Additionally, different events exhibit 

different patterns and possess different prevalences. For example, while a medication 

comprises of at most a few words of a noun, an ADE (e.g., “has not felt back to his normal 

1RNN Code is available at https://github.com/abhyudaynj/birnn-bionlp
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self”) may vary to comprise of a significant part of a sentence. While medication 

information is frequently described in EHRs, ADEs are typically rare events.

Rule-based and learning-based approaches have been developed to identify and extract 

information from EHR notes (Haerian et al., 2012), (Xu et al., 2010), (Friedman et al., 

1994), (Aronson, 2001), (Polepalli Ramesh et al., 2014). Learning-based approaches use 

sequence labeling algorithms like Conditional Random Fields (Lafferty et al., 2001), Hidden 

Markov Models (Collier et al., 2000), and Max-entropy Markov Models (McCallum et al., 

2000). One major drawback of these graphical models is that the label prediction at any time 

point only depends on its data instance and the immediate neighboring labels.

While this approach performs well in learning the distribution of the output labels, it has 

some limitations. One major limitation is that it is not designed to learn from dependencies 

which lie in the surrounding but not quite immediate neighborhood. Therefore, the feature 

vectors have to be explicitly modeled to include the surrounding contextual information. 

Traditionally, bag of words representation of surrounding context has shown reasonably 

good performance. However, the information contained in the bag of words vector is very 

sensitive to context window size. If the context window is too short, it will not include all the 

information. On the other hand if the context window is too large, it will compress the vital 

information with other irrelevant words. Usually a way to tackle this problem is to try 

different context window sizes and use the one that gives the highest validation performance. 

However, this method cannot be easily applied to our task, because different medical events 

like medication, diagnosis or adverse drug reaction require different context window sizes. 

For example, while a medication can be determined by a context of two or three words 

containing the drug name, an adverse drug reaction would require the context of the entire 

sentence. As an example, this is a sentence from one of the EHRs, “The follow-up needle 

biopsy results were consistent with bronchiolitis obliterans, which was likely due to the 

Bleomycin component of his ABVD chemo”. In this sentence, the true labels are Adverse 
Drug Event(ADE) for “bronchiolitis obliterans” and Drugname for “ABVD chemo”. 

However the ADE, “bronchiolitis obliterans” could be misslabeled as just another disease or 

symptom, if the entire sentence is not taken into context.

Recent advancements in Recurrent Neural Networks (RNNs) have opened up new avenues 

of research in sequence labeling. Traditionally, recurrent neural networks have been hard to 

train through Back-Propagation, because learning long term dependencies using simple 

recurrent neurons lead to problems like exploding or vanishing gradients (Bengio et al., 

1994), (Hochreiter et al., 2001). Recent approaches have modified the simple neuron 

structure in order to learn dependencies over longer intervals more efficiently. In this study, 

we evaluate the performance of two such neural networks, namely, Long Short Term 

Memory (LSTM) and Gated Recurrent Units (GRU).

Timely identification of new drug toxicities is an unresolved clinical and public health 

problem, costing people’s lives and billions of US dollars. In this study, we empirically 

evaluated LSTM and GRU on EHR notes, focusing on the clinically important task of 

detecting medication, diagnosis, and adverse drug event. To our knowledge, we are the first 

group reporting the uses of RNN frameworks for information extraction in EHR notes.
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2 Related Work

Medication and ADE detection is an important NLP task in biomedicine. Related existing 

NLP approaches can be grouped into knowledge or rule-based, supervised machine learning, 

and hybrid approaches. For example, Hazlehurst et al. (2005) developed MediClass, a 

knowledge-based system that deploys a set of domain-specific logical rules for medical 

concept extraction. Wang et al. (2015), Humphreys et.al. (1993) and others map EHR notes 

to medical concepts to an external knowledge resource using hybrid rule-based and syntactic 

parsing approaches. Gurulingappa et al. (2010) detect two medical entities (disease and 

adverse events) in a corpus of annotated Medline abstracts. In contrast, our work uses a 

corpus of actual medical notes and detects additional events and attributes.

Rochefort et al. (2015) developed document classifiers to classify whether a clinical note 

contains deep venous thromboembolisms and pulmonary embolism. Haerian et al. (2012) 

applied distance supervision to identify terms (e.g., including “suicidal”, “self harm”, and 

“diphenhydramine overdose”) associated with suicide events. Zuofeng Li et al. (2010) 

extracted medication information using CRFs.

Many named entity recognition systems in the biomedical domain have been driven by the 

Shared tasks of BioNLP (Kim et al., 2009), BioCreAtivE (Hirschman et al., 2005) i2b2 

shared NLP tasks (Li et al., 2009) and ShARe/CLEF evaluation tasks (Pradhan et al., 2014). 

The best performing clinical NLP systems for named entity recognition includes Tang et al 

(2013) which applied CRF and structured SVM.

Neural Network models like Convolutional Neural Networks and Recurrent Neural 

Networks (LSTM, GRU) have recently been been successfully used to tackle various 

sequence labeling problems in NLP. Collobert (2011) used Convolutional Neural Network 

for sequence labeling problems like POS tagging, NER etc. Later, Huang et al. (2015) 

achieved comparable or better scores using bi-directional LSTM based models.

3 Dataset

The annotated corpus contains 780 English EHR notes or 613,593 word tokens (an average 

of 786 words per note) from cancer patients who have been diagnosed with hematological 

malignancy. Each note was annotated by at least two annotators with inter-annotator 

agreement of 0.93 kappa. The annotated events and attributes and their instances in the 

annotated corpus are shown in Table 1.

The annotated events can be broadly divided into two groups, Medication, and Disease. The 

Medication group contains Drugname, Dosage, Frequency, Duration and Route. It 

corresponds to information about medication events and their attributes. The attributes 

(Route, Frequency, Dosage, and Duration) of a medication (Drug name) occur less 

frequently than the Drugname tag itself, because few EHRs report complete attributes of an 

event.

The Disease group contains events related to diseases (ADE, Indication, Other SSD) and 

their attributes (Severity). An injury or disease can be labeled as ADE, Indication, or Other 
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SSD depending on the semantic context. It is marked as ADE if it is the side effect of a drug. 

It is marked as Indication if it is being diagnosed currently by the doctor and a medication 

has been prescribed for it. Any sign, symptom or disease that does not fall into the 

aforementioned two categories is labeled as Other SSD. Other SSD is the most common 

label in our corpus, because it is frequently used to label conditions in the past history of the 

patient.

For each note, we removed special characters that do not serve as punctuation and then split 

the note into sentences using regular expressions.

4 Methods

4.1 Long Short Term Memory

Long Short Term Memory Networks (Hochreiter and Schmidhuber, 1997) are a type of 

Recurrent Neural Networks (RNNs). RNNs are modifications of feed-forward neural 

networks with recurrent connections. In a typical NN, the neuron output at time t is given 

by:

(1)

Where Wi is the weight matrix, bi is the bias term and σ is the sigmoid activation function. 

In an RNN, the output of the neuron at time t − 1 is fed back into the neuron. The new 

activation function now becomes:

(2)

Since these RNNs use the previous outputs as recurrent connections, their current output 

depends on the previous states. This property remembers previous information about the 

sequence, making them useful for sequence labeling tasks. RNNs can be trained through 

back-propagation through time. Bengio et al. (1994) showed that learning long term 

dependencies in recurrent neural networks through gradient decent is difficult. This is 

mainly because the back-propagating error can frequently “blow-up” or explode which 

makes convergence infeasible, or it can vanish which renders the network incapable of 

learning long term dependencies (Hochreiter et al., 2001).

In contrast, LSTM networks were proposed as solutions for the vanishing gradient problem 

and were designed to efficiently learn long term dependencies. LSTMs accomplish this by 

keeping an internal state that represents the memory cell of the LSTM neuron. This internal 

state can only be read and written through gates which control the information flowing 

through the cell state. The updates of various gates can be computed as:

(3)
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(4)

(5)

Here it, ft and ot denote input, forget and output gate respectively. The forget and input gate 

determine the contributions of the previous output and the current input, in the new cell state 

ct. The output gate controls how much of ct is exposed as the output. The new cell state ct 

and the output ht can be calculated as follows:

(6)

(7)

The cell state stores relevant information from the previous time-steps. It can only be 

modified in an additive fashion via the input and forget gates. Simplistically, this can be 

viewed as allowing the error to flow back through the cell state unchecked till it back 

propagates to the time-step that added the relevant information. This nature allows LSTM to 

learn long term dependencies.

We use LSTM cells in the Neural Network setup shown in figure 1. Here xk,yk are the input 

word, and the predicted label for the kth word in the sentence. The embedding layer contains 

the word vector mapping from words to dense n-dimensional vector representations. We 

initialize the embedding layer at the start of the training with word vectors calculated on the 

larger data corpus described in section 4.4. This ensures that words which are not seen 

frequently in the labeled data corpus still have a reasonable vector representation. This step 

is necessary because our unlabeled corpus is much larger than the labeled one.

The words are mapped into their corresponding vector representations and fed into the 

LSTM layer. The LSTM layer consists of two LSTM chains, one propagating in the forward 

direction and other in the backward direction. We concatenate the output from the two 

chains to form a combined representation of the word and its context. This concatenated 

vector is then fed into a feed-forward neuron with Softmax activation function. The Softmax 

activation function normalizes the outputs to produce probability like outputs for each label 

type j as follows:

(8)
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Here lt and ut are the label and the concatenated vector for each time step t. The most likely 

label at each word position is selected. The entire network is trained through back-

propagation. The embedding vectors are also updated based on the back-propagated errors.

4.2 Gated Recurrent Units

Gated Recurrent Unit (GRU) is another type of recurrent neural network which was recently 

proposed for the purposes of Machine Translation by Cho et. al. (2014). Similar to LSTMs, 

Gated Recurrent Units also have an additive mechanism to update the cell state, with the 

current update. However, GRUs have a different mechanism to create the update. The 

candidate activation  is computed based on the previous cell state and the current input.

(9)

Here rt is the reset gate and it controls the use of previous cell state while calculating the 

input activation. The reset gate itself is also computed based on the previous cell activation 

ht−1 and the current candidate activation.

(10)

The current cell state or activation is a linear combination of previous cell activation and the 

candidate activation.

(11)

Here, zt is the update gate which decides how much contribution the candidate activation and 

the previous cell state should have in the cell activation. The update gate is computed using 

the following equation:

(12)

Gated recurrent units have some fundamental differences with LSTM. For example, there is 

no mechanism like the output gate which controls the exposure of the cell activation, instead 

the entire current cell activation is used as output. The mechanisms for using the previous 

output for the calculation of the current activation are also very different. Recent 

experiments (Chung et al., 2014), (Jozefowicz et al., 2015) comparing both these 

architectures have shown GRUs to have comparable or sometimes better performance than 

LSTM in several tasks with long term dependencies.

We use GRU with the same Neural Network structure as shown in Figure 1 by replacing the 

LSTM nodes with GRU. The embedding layer used here is also initialized in a similar 

fashion as the LSTM network.
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4.3 The Baseline System

CRFs have been widely used for sequence labeling tasks in NLP. CRFs model the complex 

dependence of the outputs in a sequence using Probabilistic Graphical Models. Probabilistic 

Graphical Models represent relationships between variables through a product of factors 

where each factor is only influenced by a smaller subset of the variables. A particular 

factorization of the variables provides a specific set of independence relations enforced on 

the data. Unlike Hidden Markov Models which model the joint p(x, y), CRFs model the 

posterior probability p(y|x) directly. The conditional can be written as a product of factors as 

follows:

(13)

Here Z is the partition function used for normalization, ψt are the local factor functions.

CRFs are fed the word inputs and their corresponding skip-gram word embedding (section 

4.4). To compare CRFs with RNN, we add extra context feature for each word. This is done 

because our aim is to show that RNNs perform better than CRFs using context windows. 

This extra feature consists of two vectors that are bag of words representation of the 

sentence sections before and after the word respectively. We add this feature to explicitly 

provide a mechanism that is somewhat similar to the surrounding context that is generated in 

a Bi-directional RNN as shown in Figure 1. This CRF model is referred to as CRF-context 

in our paper. We also evaluate a CRF-nocontext model, which trains a CRF without the 

context features.

The tagging scheme used with both CRF models is BIO (Begin, Inside and Outside). We did 

not use the more detailed BILOU scheme (Begin, Inside, Last, Outside, Unit) due to data 

sparsity in some of the rarer labels.

4.4 Skip-Gram Word Embeddings

We use skip-gram word embeddings trained through a shallow neural network as shown by 

Mikolov et al., (2013) to initialize the embedding layer of the RNNs. This embedding is also 

used in the baseline CRF model as a feature. The embeddings are trained on a large 

unlabeled biomedical dataset, compiled from three sources, the English Wikipedia, an 

unlabeled EHR corpus, and PubMed Open Access articles. The English Wikipedia consists 

of text extracted from all the articles of English Wikipedia 2015. The unlabeled EHR corpus 

contains 99,700 electronic health record notes. PubMed Open Access articles are obtained 

by extracting the raw text from all openly available PubMed articles. This combined raw text 

corpus contains more than 3 billion word tokens. We convert all words to lowercase and use 

a context window of 10 words to train a 200 dimensional skip gram word embedding.

5 Experiments and Evaluation Metrics

For each word, the models were trained to predict either one of the nine medically relevant 

tags described in section 3, or the Outside label. The CRF tagger was run in two modes. The 
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first mode (CRF– nocontext) used only the current word and its corresponding skip-gram 

representation. The second mode (CRF– context) used the extra context feature described in 

section 4.3. The extra features are basically the bag of words representation of the preceding 

and following sections of the sentence. The first mode was used to compare the performance 

of CRF and RNN models when using the same input data. It also serves as a method of 

contrasting with CRF’s performance when context features are explicitly added. CRF Tagger 

uses L-BFGS optimizer with L2- regularization.

The RNN frameworks are trained on sentence level and document level. The sentence level 

neural networks are fed only one sentence at a time. This means that the LSTM and GRU 

states are only preserved and propagated within a sentence. The networks cell states are re-

initialized before each sentence. The document level neural networks are fed one document 

at a time, so they can learn context cues that reside outside of the sentence boundary. We use 

100 dimensional hidden layer for each directional RNN chain. Since we use bi-directional 

LSTMs and GRUs, this essentially amounts to a 200 dimensional recurrent hidden layer. 

The hidden layer activation functions for both RNN models are tanh. Output of this hidden 

layer is fed into a Soft-max output layer which emits probabilities for each of the nine 

medical labels and the Outside label. We use categorical cross entropy as the objective 

function. Similar to the CRF implementation, the Neural Net cost function also contains an 

L2-regularization component. We also use dropout (Srivastava et al., 2014) as an additional 

measure to avoid over-fitting. Fifty percent dropout is used to manipulate the inputs to the 

RNN and the Softmax layer. We use AdaGrad (Duchi et al., 2011) to optimize the network 

cost.

We use ten-fold cross validation to calculate the performance metric for each model. The 

dataset is divided at the note level. We separate out 10 % of the training set to form the 

validation set. This validation set is used to evaluate the different parameter combinations 

for CRF and RNN models. We employ early stopping to terminate the training run if the 

validation error increases consistently. We use a maximum of 40 epochs to train each 

network. The batch sizes used were kept constant at 128 for sentence level RNNs and 16 for 

document level RNNs.

We report micro-averaged recall, precision and f-score. We use exact phrase matching to 

calculate the evaluation score for our experiments. Each phrase labeled by the learned 

models is considered a true positive only if it matches the exact true boundary of the phrase 

and correctly labels all the words in the phrase.

We use CRFsuite (Okazaki, 2007) for implementing the CRF tagger. We use Lasagne to 

setup the Neural Net framework. Lasagne2 is a machine learning library focused towards 

neural networks that is build on top of Theano (Bergstra et al., 2010).

2https://github.com/Lasagne/Lasagne
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6 Results

Table 2 shows the micro averaged scores for each method. All RNN models significantly 

outperform the baseline (CRF-context). Compared to the baseline system, our best system 

(GRU-document) improved the recall (0.8126), precision (0.7938) and F-score (0.8031) by 

19%, 2% and 11 % respectively. Clearly the improvement in recall contributes more to the 

overall increase in system performance. The performance of different RNN models is almost 

similar, except for the GRU model which exhibits an F-score improvement of at least one 

percentage point over the rest.

The changes (gain or loss) in label wise F-score for each RNN model relative to the baseline 

CRF-context method are plotted in Figure 2. GRU-document exhibits the highest gain 

overall in six of the nine tags: indication or diagnosis, route, duration, severity, drug name, 

and other SSD. For indication, its gain is about 0.19, a near 50% increase over the baseline. 

While the overall system performance of GRU-sentence, LSTM-sentence and LSTM-

document are very similar, they do exhibit somewhat varied performance for different labels. 

The sentence level models clearly outperform the document level RNNs (both GRU and 

LSTM) for ADE and Dosage. Additionally, GRU sentence model shows the highest gain in 

ADE f-score.

Figure 3 shows the word level confusion matrix of different models for each label. Each cell 

shows the percentage of word tokens in row label i that were classified as column label j. 
The consistent increase of diagonal entries of RNN models for all ten labels, indicates an 

increase in the overall system accuracy when compared to the baseline. The most densely 

populated column in this figure is the Outside column, which denotes percentage of words 

that were erroneously labeled as Outside.

Figure 4 shows the change in average F-scores for each method with changing percentage of 

training data used. The setup for training, development and test data is kept the same as the 

ten-fold cross validation setup mentioned in Section 5. Only the training data is randomly 

down-sampled to achieve the reduced training data size. The figure shows that Recurrent 

Neural Network models perform better than traditional CRF models even with smaller 

training data sizes.

7 Discussion

We already discussed in the previous section how improved recall seems to be the major 

reason behind improvements in the RNN F-score. This trend can be observed in Figure 3 

where RNN models lead to significant decreases in confusion values present in Outside 
column.

Further examination of Figure 3 shows two major sources of error in the CRF systems. The 

largest source of error is caused by confusing the relevant medical words as Outside (false 

negatives) and vice versa (false positives). The extent of false positives is not clear from 

Figure 3, but can be estimated if one takes into account that even a 1 % confusion in the 

Outside row represents about 5000 words. The second largest source of error is the 
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confusion among ADE, Indication and Other SSD labels. As we discuss in the following 

paragraphs, RNNs manage to significantly reduce both these type of errors.

The large improvement in recall of all labels for RNN models seems to suggest that RNNs 

are able to recognize a larger set of relevant patterns than CRF baselines. This supports our 

hypothesis that learning dependencies with variable context ranges is crucial for our task of 

medical information extraction from EHR notes. This is also evident from the reduced 

confusion among ADE, Indication and Other SSD. Since these tags share a common 

vocabulary of Sign, Symptom and Disease Names, identifying the underlying word or 

phrase is not enough to distinguish between the three. Use of relevant patterns from 

surrounding context is often needed as a discriminative cue. Consequently, ADE, Indication 
confusion values in the Other SSD column for RNNs exhibit significant decreases when 

compared to CRF-nocontext and CRF-context. We also see large improvements in detecting 

Duration, Frequency and Severity. The vocabulary of these labels often lack specific medical 

jargon terms. Examples of these labels include “seven days”, “one week” for duration, 

“some”, “small”, “no significant” for severity and “as needed”, “twice daily” for frequency. 

Therefore, they are most likely to be confused with Outside label. This is indeed the case, as 

they have the highest confusion values in the Outside column of CRF-nocontext. Including 

context in CRF improves the performance, but not as much as RNN models which decrease 

the confusion by almost half or more in all cases. For example, GRU-document only 

confuses Frequency as an unlabeled word about 6.1 % of the time as opposed to 31 % and 

19 % for CRF-nocontext and CRF-context respectively.

Document level models benefit by using context from outside the sentence. Since the label 

Indication requires the most use of surrounding context, it is clear that its performance 

would improve by using information from several sentences. Indications are diseases that are 

diagnosed by the medical staff, and the entire picture of the diagnosis is usually distributed 

across multiple sentences. Analysis of ADE is more complicated. Several ADE instances in 

a sentence also contain explicit cues similar to “secondary to” and “caused by”. When 

coupled with Drugnames this is enough to classify the ADE. Sentence level models might 

depend more on these local cues which leads to improved performance. Document models, 

on the other hand, have to recognize patterns from a larger context, using a very small 

dataset (total ADE annotations are just 905) which is quite difficult.

The LSTM-document model does not show the same improvement over the sentence models 

as GRU-document. One possible reason for this might be the simpler recurrence structure of 

GRU neuron as compared to LSTM. Since there are only 780 document sequences in the 

dataset, the GRU model with a smaller number of trainable parameters might learn faster 

than LSTM. It is possible that with a larger dataset, LSTM might perform comparable to or 

better than GRU. However, our experiments with reducing the hidden layer size of LSTM-

document model to control for the number of trainable parameters did not produce any 

significant improvements.

Moreover, figure 4 seems to indicate that there is not much difference between the 

performances of LSTM and GRU with different data sizes. However it is clearly surprising 

that RNN models with a larger number of parameters can still perform better than CRF 
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models on smaller dataset sizes. This might be because the embedding layer, which 

contributes to a very large section of the trainable parameters, is initialized with a suitably 

good estimate using skip-gram word embeddings described in section 4.4.

8 Conclusion

We have shown that RNNs models like LSTM and GRU are valuable tools for extracting 

medical events and attributes from noisy natural language text of EHR notes. We believe that 

the significant improvement provided by gated RNN models is due to their ability to 

remember information across different range of dependencies as and when required. As 

mentioned previously in the introduction, this is very important for our task because 

different labels have different contextual dependencies. CRF models with hand crafted 

features like bag of words representation, use fixed context windows and lose a lot of 

information in the process.

RNNs are excellent in extracting relevant patterns from sequence data. However, they do not 

explicitly enforce constraints or dependencies over the output labels. We believe that adding 

a probabilistic graphical model framework for structured output prediction would further 

improve the performance of our system. This experiment remains as our future work.
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Figure 1. 
Sequence Labeling model for LSTM network
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Figure 2. 
Change in F-score for RNN models with respect to CRF-context (baseline). The values 

below the plotted bars represent the baseline f-scores for each class label.
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Figure 3. 
Heat-maps of Confusion Matrices of each method for the different class Labels. Rows are 

reference and columns are predictions. The value in cell (i, j) denotes the percentage of 

words in label i that were predicted as label j.
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Figure 4. 
Change in F-score for all sentence models with respect to increasing training data size.
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Table 1

Annotation statistics for the corpus.

Labels Annotations Avg. Words/Annotations

ADE 905 1.51

Indication 1988 2.34

Other SSD 26013 2.14

Severity 1928 1.38

Drugname 9917 1.20

Duration 562 2.17

Dosage 3284 2.14

Route 1810 1.14

Frequency 2801 2.35
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Table 2

Cross validated micro-average of Precision, Recall and F-score for all medical tags

Models Recall Precision F-score

CRF-nocontext 0.6562 0.7330 0.6925

CRF-context 0.6806 0.7711 0.7230

LSTM-sentence 0.8024 0.7803 0.7912

GRU-sentence 0.8013 0.7802 0.7906

LSTM-document 0.8050 0.7796 0.7921

GRU-document 0.8126 0.7938 0.8031
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