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In moderate-to-severe asthma, adding an inhaled long-acting β2-adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS)
provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1),
ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of
many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth
muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced
genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be
produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular
basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the con-
cept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed,
GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands
that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target
tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be
suboptimal due to low β2-adrenoceptor density or biased β2-adrenoceptor signalling. Strategies to overcome these limitations
include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design
of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for
therapeutic benefit to be maximized.

Abbreviations
AHR, airways hyperreactivity; AP-1, activator protein 1; ASM, airways smooth muscle; C/EBP, CCAAT-enhancer binding
protein; COPD, chronic obstructive pulmonary disease; CRE, cAMP response element; GR, glucocorticoid receptor; GRE,
glucocorticoid response element; HBE, human bronchial epithelial; HRV, human rhinovirus; ICS, inhaled corticosteroid;
LABA, long-acting β2-adrenoceptor agonist; PEPCK, phosphoenolpyruvate carboxykinase; PKA, protein kinase A
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Introduction
In 1994, a clinical study was published that fundamentally
transformed the treatment algorithm for the management
of asthma (Greening et al., 1994). The salient finding was that
asthmatic subjects who were symptomatic despite mainte-
nance therapy with a standard dose of the inhaled corticoste-
roid (ICS), beclomethasone dipropionate, were controlled by
the addition of the long-acting β2-adrenoceptor agonist
(LABA), salmeterol, but not by increasing the dose of ICS
(Greening et al., 1994). The clinical superiority of an ICS
and LABA in combination relative to ICS alone, irrespective
of dose, was subsequently and independently corroborated
using several outcome measures including, symptom score,
lung function, use of rescue medication and exacerbation fre-
quency (Pauwels et al., 1997; Shrewsbury et al., 2000; O’Byrne
et al., 2001; Frois et al., 2009; Ducharme et al., 2010a;
Ducharme et al., 2010b; Sears, 2011). Today, ICS/LABA combi-
nation therapies are entrenched in all national and interna-
tional asthma treatment guidelines and are a recommended
option for patients whose symptoms remain uncontrolled
by ICS monotherapy (www.ginasthma.org). Furthermore, pa-
tients with chronic obstructive pulmonary disease (COPD),
who present with a high level of inflammation and suffer fre-
quent exacerbations, may also respondmore favourably to an
ICS/LABA combination therapy relative to a LABA alone
(Celli et al., 2008; Nannini et al., 2013; Kew et al., 2014).

Despite these clinical data, a mechanistic basis for the su-
periority of ICS/LABA combination therapies remains un-
clear. In 2008, we reviewed ways that LABAs and ICSs may
interact to deliver superior clinical outcomes in asthma and
COPD (Giembycz et al., 2008). In particular, we discussed ev-
idence that LABAs, in addition to directly improving airway
calibre, may enhance the anti-inflammatory activity of ICSs
(Giembycz et al., 2008). Furthermore, as glucocorticoids act
via the glucocorticoid receptor (GR; gene NR3C1) (Newton,
2000; Clark and Belvisi, 2012), a transcription factor, we ar-
gued that LABAs enhance GR-dependent gene expression
above themaximum level achievable by ICS alone (Giembycz
et al., 2008). However, like other cAMP-elevating agents
(Mayr and Montminy, 2001; Sands and Palmer, 2008), LABAs
also have a major impact on gene expression, and this

necessitates refinement of our original hypothesis. While
the LABA-induced transcriptome is not, per se, anti-
inflammatory, the ability of ICSs to enhance the expression
of LABA-inducible genes may be clinically relevant. Thus,
the therapeutic activity of ICS/LABA combination therapies
will reflect the ability of each component to promote gene ex-
pression alone, as well as to enhance, or modify, gene expres-
sion produced by its respective companion.

ICS/LABA interactions

Non-interacting, independent effects of
glucocorticoids and LABAs
Multiple mechanisms could account for the clinical efficacy
of ICS/LABA combination therapies. Perhaps the most
straightforward is that LABAs and ICSs each elicit a collection
of independent, non-interacting responses that combine ad-
ditively to provide clinical benefit (Figure 1A). At a basic level,
this is illustrated by the ability of LABAs and ICSs to promote
bronchoprotection and suppress inflammation respectively
(Johnson, 2004). However, as LABAs lack anti-inflammatory
activity in asthma, additivity is unlikely to account for their
superiority when they are combined with an ICS.

Additive effects of glucocorticoids and LABAs
Independent, additive effectsmay occur for any response that
is regulated by both a glucocorticoid and a LABA (Figure 1B).
Induction of the dual-specificity phosphatase, DUSP1, which
inactivates MAPKs (Abraham and Clark, 2006), provides an
example (Figure 1B). DUSP1 mRNA is rapidly and transiently
induced by LABAs and other cAMP-elevating agents (Burgun
et al., 2000; Kaur et al., 2008; Korhonen et al., 2013). Similarly,
GR binding sites in the DUSP1 promoter allow glucocorticoids
to induce, or transactivate, DUSP1 transcription (Johansson-
Haque et al., 2008; Shipp et al., 2010; Tchen et al., 2010). This
mediates inhibition of MAPK signalling and inflammatory
gene expression (Kassel et al., 2001; Lasa et al., 2002; Abraham
et al., 2006; Issa et al., 2007; Shah et al., 2014). However, LABAs
and glucocorticoids independently promote DUSP1mRNA ex-
pression, and their effects combine in an essentially additive
manner (Kaur et al., 2008; Manetsch et al., 2012; Manetsch
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et al., 2013; BinMahfouz et al., 2015). Similar effects may also
be observed in respect of the repression of inflammatory gene
expression (see below). Thus, responses induced by LABAs
and glucocorticoids can overlap (Figure 1B), but may result in
simple additivity (Figure 1B and 2A).

However, glucocorticoids and LABAs activate their cog-
nate receptors to produce adverse effects in off- and on-target
tissues. These could be exaggerated by combination therapies
and is, again, illustrated by DUSP1. Thus, osteoblast prolifer-
ation and the restoration, or maintenance, of bone mass in-
volve ERK, and the up-regulation of DUSP1, by inactivating
ERK, may promote osteopaenia (Horsch et al., 2007). Such ef-
fects may be relevant in patients taking high dose combina-
tion therapy, where systemic exposure is likely.

Opposing effects of glucocorticoids and LABAs
A further example of interaction is where responses induced
by one component of an ICS/LABA combination therapy
are diminished by the other. In cell-based assays, using airway
smooth muscle (ASM) and either transformed or primary

bronchial epithelial cells, LABAs induce, and/or potentiate,
the expression of certain inflammatory genes, including IL6,
CXCL5 andCXCL8, and these effects are suppressed by gluco-
corticoids (Ammit et al., 2000; Korn et al., 2001; Ammit et al.,
2002; Faisy et al., 2002; Edwards et al., 2007; Holden et al.,
2010). Likewise, expression of TRPV1 receptors and several
GPCRs that mediate inflammatory responses or broncho-
constriction are up-regulated by β2-adrenoceptor agonists
and down-regulated by glucocorticoids (Katsunuma et al.,
1999;Mak et al., 2000; Faisy et al., 2004; Liu et al., 2015). Thus,
in airway diseases, many undesirable effects of LABAs are
attenuated by glucocorticoids. Conversely, it is also possible
that desirable effects elicited by one component of an
ICS/LABA therapy could be attenuated with the combination.

Synergistic induction of gene expression by
glucocorticoids and LABAs
Clinical data in asthma suggest that ICSs and LABAs can in-
teract in a synergistic manner, such that outcome measures,
including improved lung function or reduced exacerbation

Figure 1
Additive and/or synergistic effector responses induced by LABAs and glucocorticoids (GCs). A. LABAs and GCs may each induce a set of responses
(sets A and B respectively) that do not interact. The net effect of a LABA/GC combination treatment would be the sum of the responses produced
by each drug alone (A + B). B. While LABAs and GCs each induce a set of responses (sets A and B respectively), a number of these responses may be
modulated by both LABAs and GCs. In these situations, where A ∩ B, there may be no interaction between each response, and the net effect is one
of simple additivity. This is shown for a hypothetical gene (gene X) that was induced by LABA or GC. In this situation, the overall effect is the sum of
the responses produced by each drug (A + B). Alternatively, responses in the overlap region, A ∩ B, may show interaction between the two drugs.
This is shown for a hypothetical gene, gene Y, which is modestly induced by maximally effective concentrations of a LABA and by a GC, but
together, there is a large induction of gene expression. As this is greater than the sum of the components, this can be described as synergy. In this
situation, the overall effect of each drug is greater than the simple sum of A + B.
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frequency produced by the two drugs in combination, are su-
perior to the sum of their individual effects. Indeed, LABAs
enhance ICS efficacy and lead to asthma control, whereas in-
creasing the dose of ICSmay not (Frois et al., 2009; Ducharme
et al., 2010a; Ducharme et al., 2010b). While rationalization
of these data requires that ICSs and LABAs interact in a way
that cannot be reproduced by merely increasing the dose of
ICS (Giembycz et al., 2008; Newton et al., 2010b), descriptions
of such interactions have been inconsistent. Nevertheless, an
increasing number of responses are expressed in a synergistic
manner when a glucocorticoid is combined with a LABA.
One example is induction of the regulator of G-protein signal-
ling, RGS2 (Holden et al., 2011; Holden et al., 2014) (Figure 2A).
Thus, in ASM and bronchial epithelial cells, RGS2 mRNA and
protein are elevated by LABAs, and other cAMP-elevating
agents, as well as by glucocorticoids (Pepperl et al., 1998;
Tsingotjidou et al., 2002; Wang et al., 2004; Chivers et al.,
2006; Holden et al., 2011; Holden et al., 2014). In combination,
the response to maximally effective concentrations of LABA
and glucocorticoid produces profound synergy at the level of
both RGS2 mRNA and protein (Figures 2A and 3A–B) (Holden
et al., 2011; Greer et al., 2013; Moodley et al., 2013; Holden
et al., 2014; BinMahfouz et al., 2015; Joshi et al., 2015b). Thus,

the level of RGS2 expression achieved by maximally effective
concentrations of LABA plus glucocorticoid is considerably
greater than the simple sum of the responses produced by each
component alone (Figures 2A and 3A–B). Functionally, RGS2 is
a GTPase-activating protein that terminates signalling from
GPCRs that signal via Gq (Heximer, 2004; Kimple et al., 2009)
(Figure 3C). Such receptors include those mediating ASM
contraction and pulmonary leukocyte recruitment. Thus, by
reducing Gq-dependent signalling, RGS2 expression should
be beneficial in asthma and COPD. Indeed, up-regulation of
RGS2 in mice is bronchoprotective, whereas RGS2-deficiency
promotes airways hyperreactivity (AHR), mucin expression
and airways remodelling (Holden et al., 2011; Xie et al., 2012;
Liu et al., 2013; Jiang et al., 2014). Thus, the synergy that is
achieved by LABAs and glucocorticoids at inducing RGS2
expression not only provides some explanation for the thera-
peutic activity of ICS/LABA combination therapies, but the
relatively modest response to glucocorticoid alone clearly illus-
trates why this effectmay not be achieved by simply increasing
the dose of ICS (Figure 3).

Other genes with anti-inflammatory potential, including
the surface marker, CD200 and CRISPLD2, are also synergisti-
cally up-regulated by glucocorticoid/LABA combinations

Figure 2
Patterns of mRNA expression induced by LABAs and GCs. A. Overview real-time PCR data showing the effect of maximally effective concentrations
of LABA (10 nM, formoterol) and GC (1 μM, dexamethasone) on the mRNA expression of various genes in human bronchial epithelial, BEAS-2B,
cells. Experimental data from BinMahfouz et al. (2015) represent expression of the indicated gene/GAPDH expressed as fold of untreated (at 1 h)
plotted as a mean. B. A maximally effective concentration of LABA (indacaterol, 100 nM) enhanced the activation of a simple 2 × GRE reporter
induced by GC (fluticasone furoate) (upper panel). Luciferase data expressed as fold of untreated are plotted as means. Data are taken from Joshi
et al. (2015b). Alternatively (lower panel), BEAS-2B cells were harvested for RNA and gene expression of CDKN1C and GAPDH analysed by real-
time PCR. Data for CDKN1C/GAPDH expressed as fold of untreated are plotted as means.
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(Moodley et al., 2013; BinMahfouz et al., 2015; Joshi et al.,
2015b) (Figure 2A). CD200 is a transmembrane glycoprotein
expressed on haematopoietic and non-haematopoietic
cells, which by binding its cognate receptor, CD200R, on
alveolar macrophages, down-regulates cytokine production
(Snelgrove et al., 2008). This interaction also suppresses
AHR in a murine model of allergic asthma (Vaine and

Soberman, 2014; Lauzon-Joset et al., 2015). Similarly, the
secreted protein, CRISPLD2, attenuates gene toll-like
receptor-4-mediated, pro-inflammatory signalling by binding
and inactivating lipopolysaccharide/lipid A (Wang et al.,
2009; Himes et al., 2014; Vasarhelyi et al., 2014).

The widespread changes in gene expression produced by
cAMP and glucocorticoids will also promote expression of

Figure 3
RGS2 expression is synergistically induced by LABA and GC. A. BEAS-2B cells were treated with: in the left panel, GC alone (budeosnide, 1 μM),
LABA alone (formoterol, 10 nM) or the indicated concentrations of GC (budesonide) in the presence of LABA (formoterol, 10 nM); in the right
panel, LABA alone (formoterol, 10 nM), GC alone (budeosnide, 300 nM) or the indicated concentrations of LABA (formoterol) in the presence
of GC (budesonide, 300 nM). After 2 h, the cells were harvested for RNA and real-time PCR analysis of RGS2 and GAPDHmRNA. Data, normalized
as RGS2/GAPDH, are expressed as a percentage of the LABA (formoterol, 10 nM) alone and are plotted as means. Data are derived from experi-
ments in Holden et al. (2014). B Human bronchial epithelial, BEAS-2B, cells were treated with LABA (salmeterol, 100 nM) and GC (dexamethasone,
1 μM) for the times indicated prior to western blot analysis of RGS2 and GAPDH. Data are expressed as RGS2/GAPDH and plotted as means ± SEM.
Data are derived from experiments in Holden et al. (2014). C. Schematic showing possible roles for RGS2 in reducing ‘pro-asthma’ responses.
Agonists/activators of GPCRs that couple via Gq lead to phospholipase Cβ activation and the production of inositol(1,4,5)trisphosphate (IP3)
and DAG. This increases [Ca2+]c and activates protein kinase C (PKC) to promote ASM contraction, mucus secretion, release of inflammatory
mediators, cytokines and other pro-asthma responses. RGS2 is a GTPase activating protein that enhances the GTP hydrolysis of Gαq and thereby
inactivates signalling by Gq. HDM = house dust mite.
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adverse-effect genes (Gonzales et al., 2002; Wade et al., 2006).
In cell-based experiments, cAMP-elevating stimuli, including
LABAs, synergize with glucocorticoids to up-regulate expres-
sion of pyruvate dehydrogenase kinase, isoform 4 (gene
PDK4) and phosphoenolpyruvate carboxykinase (PEPCK,
gene PCK2), which encode proteins involved in glucose and
carbohydrate metabolism (Hanson and Reshef, 1997;
Jitrapakdee, 2012; Oh et al., 2013; Joshi et al., 2015b). This
illustrates a concern that combination therapies enhance
known glucocorticoid-induced adverse effects (Schacke
et al., 2002). Furthermore, such data highlight the potential
advantage of selecting each component of an ICS/LABA
combination therapy to maximally induce the expression of
clinically beneficial genes, in relevant target tissues, over
those genes responsible for adverse effects.

Patterns of cooperatively regulated gene
expression
The superiority of ICS/LABA combination therapy requires
each component to contribute to overall clinical efficacy in
a way that is more than simple additivity (Giembycz et al.,
2008). In this respect, three, possibly four, general patterns
of glucocorticoid/LABA-dependent gene expression can be
envisaged. (i) As shown by RGS2 and CD200, there are genes
whose expression are primarily induced by the LABA, but are
not, or are only modestly induced, by the glucocorticoid.
However, in combination, the glucocorticoid enhances,
and/or prolongs, expression induced by the LABA (Figure 2A)
(Holden et al., 2011; Holden et al., 2014; BinMahfouz et al.,
2015; Joshi et al., 2015b). (ii) There are genes inducedby gluco-
corticoids, which are either not, or are only minimally, in-
duced by the LABA, yet show LABA-dependent enhancement
of the glucocorticoid response (Figure 2A). Luciferase expres-
sion froma simple, albeit artificial, 2 × glucocorticoid response
element (GRE)-dependent reporter provides a good example
(Figure 2B) (Kaur et al., 2008; Joshi et al., 2015b). Similarly,
the cell cycle kinase inhibitor, CDKN1C (aka p57KIP2), and
the metabolic gene, PDK4, show this pattern of regulation in
BEAS-2B cells (Figure 2B) (Kaur et al., 2008; Rider et al., 2011;
Joshi et al., 2015b; Rider et al., 2015b). Evidence for such
behaviour is also observed functionally. In T-lymphocytes,
LABAs augment GR-mediated apoptosis in a protein kinase A
(PKA)-dependent manner (Ji et al., 2007; Ji et al., 2008), but
are, by themselves, inactive (Pace et al., 2004). Because
glucocorticoid-induced apoptosis may involve GR-mediated
geneexpression (Wu et al., 2013), suchdataare consistentwith
LABAs enhancing glucocorticoid-induced transactivation.
(iii) Genes, such as CRISPLD2, show mRNA expression that is
independently induced by glucocorticoids and LABAs and re-
veal synergism when both drug classes are combined
(Figure 2A) (BinMahfouz et al., 2015; Joshi et al., 2015b).
Within this group is, arguably, a subset of genes (iv), where ex-
pression is induced by a glucocorticoid and LABA in combina-
tion, but not by either component individually (Giembycz
and Newton, 2015). Currently, genes regulated in this way
have not been described.

Such groupings represent extremes of what should be
considered as a continuum of gene expression. Furthermore,
the exact details of expression will depend on multiple exter-
nal factors, including cell line or type and the treatment time.

For example, in bronchial epithelial BEAS-2B and ASM cells,
the glucocorticoid-dependent induction of RGS2 mRNA is
modest (Holden et al., 2011; Holden et al., 2014), whereas in
A549 type II adenocarcinoma cells and primary human bron-
chial epithelial (HBE) cells glucocorticoids promote robust
RGS2 mRNA expression (Chivers et al., 2006; Holden et al.,
2014). Likewise, the patterns of synergy may also differ. In
BEAS-2B and ASM cells, LABA-induced expression of RGS2 is
enhanced and prolonged by glucocorticoids (Holden et al.,
2011; Holden et al., 2014), whereas in primary HBE cells,
LABAs only modestly increased RGS2 expression, yet
significantly enhanced the maximum response achieved by
a glucocorticoid (Holden et al., 2014).

Repression of gene expression by glucocorticoids
and LABAs
The effects of LABAs and glucocorticoids may also extend, in
an apparently additive manner, to the repression of inflamma-
tory genes. These include adhesion molecules, cytokines and
chemokines induced by multiple inflammatory stimuli from
structural cells of the airways (Korn et al., 2001; Pang and Knox,
2001; Silvestri et al., 2001; Spoelstra et al., 2002; Newton et al.,
2010b). In contrast to ASM and epithelial cells (above),
apparently additive repression can also occur for CXCL8
release from cigarette smoke-treated macrophage and neutro-
phils (Sarir et al., 2007; Mortaz et al., 2008). Furthermore,
additive effects of formoterol and budesonide were reported
on the repression of ICAM-1 expression as well as cytokine
and chemokine expression measured following human rhino-
virus (HRV) infection of epithelial cells (Yamaya et al., 2014).
While the mechanistic basis for these effects remains to be
established, it is equally clear that opposing effects, particularly
of the LABA, for example on CXCL8 expression, are observed
in a cell type- and potentially stimulus-dependent manner.

Evidence for synergistic, repressive effects is also avail-
able. Glucocorticoids and LABAs combine to produce more
than an additive repression of TNF-induced CXCL8 release
from human ASM cells (Pang and Knox, 2000), and of various
mediators from airway epithelial cells in response to HRV in-
fection (Edwards et al., 2006; Volonaki et al., 2006; Sarir et al.,
2007; Skevaki et al., 2009). Although glucocorticoids and
LABAs share the ability to recruit histone deacetylases to
inflammatory gene promoters (Ito et al., 2001; Nie et al.,
2005), the molecular mechanism(s) involved in any synergis-
tic repression is unclear. Nevertheless, the glucocorticoid-
dependent repression of many inflammatory genes shows a
requirement for ongoing gene expression, which implies a
role for GR-mediated transactivation (Newton and Holden,
2007; Clark and Belvisi, 2012). Furthermore, genes that ap-
pear to be repressed via mechanisms involving GR-mediated
transactivation show a greater level of repression and a
greater sensitivity (i.e. lower EC50) to glucocorticoid com-
pared with those inflammatory genes where direct GR-
mediated transrepression is implicated (King et al., 2013). In
this context, it is salient that glucocorticoid-mediated repres-
sion can show marked differences in potency and overall re-
pression depending on the inflammatory stimulus and/or
the response measured (Fernandes et al., 1999; Tran et al.,
2005). Such data are consistent with the concept of multiple
mechanisms of glucocorticoid action involving different GR
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effectors that could show differential dependence on GR
transactivation and transrepression. Notwithstanding such
complexity, many glucocorticoid-induced genes, including
DUSP1 and glucocorticoid-induced leucine zipper (gene
TSC22D3), which reduce NF-κB and activator protein 1 (AP-
1)-dependent transcription, are implicated in the repression
of inflammatory gene expression (Newton and Holden, 2007;
Ayroldi and Riccardi, 2009; Clark and Belvisi, 2012). As in-
creased expression of glucocorticoid-inducible genes, for ex-
ample TSC22D3, occurs in the airways of normal individuals
and in asthmatic subjects taking ICS monotherapy (Kelly
et al., 2012; Leigh et al., 2016), clinically relevant roles for GR
transactivation appear to be likely. Furthermore, as these effects
may be enhanced by LABAs, this review focuses on trans-
criptional activation as a mechanism of synergy between glu-
cocorticoids and LABAs that relates to asthma therapy.

LABA-induced responses and
modulation by glucocorticoids

Promotion of bronchoprotection by glucocorticoids
Chronic β2-adrenoceptor agonist exposure can impair
β2-adrenoceptor signalling and functional responsiveness
via mechanisms that are collectively referred to as desensiti-
zation (Lefkowitz, 2007; Vasudevan et al., 2011). However, it
is well established that glucocorticoids offset such effects by
increasing β2-adrenoceptor number, Gs expression and/or
coupling to adenylyl cyclase (Giembycz et al., 2008; Newton
et al., 2010b).

An unanticipated effect of glucocorticoids and LABAs
alone, and in combination, is their ability to protect against
agonist-induced bronchoconstriction via mechanisms that
involve gene expression. For example, the pro-contractile
activity of MAPKs in ASM (Gerthoffer et al., 1997; Hedges
et al., 2000; Dowell et al., 2010; Sakai et al., 2010) should be
countered by a glucocorticoid via the induction of DUSP1
expression (Issa et al., 2007; Kang et al., 2008; Quante et al.,
2008). Indeed, DUSP1�/� mice exhibit enhanced airway con-
tractile responses to ozone and a loss of glucocorticoid pro-
tection (Li et al., 2011). Despite there being no apparent
protection by DUSP1 using chronic ozone exposure in amouse
model of glucocorticoid resistance (Pinart et al., 2014), it is pos-
sible that, by further enhancing DUSP1 expression with a
LABA to increase glucocorticoid-induced DUSP1 expression
(Kaur et al., 2008; Manetsch et al., 2012), protection could have
been re-established. However, such effects remain to be tested.

Similarly, LABAs induce Rgs2 expression in murine airways
to protect against agonist-induced bronchoconstriction
(Holden et al., 2011). Furthermore, analysis of cytosolic free
calcium concentration ([Ca2+]c) as a surrogate of contraction
in human ASM cells shows RGS2 can account for the ability
of a glucocorticoid to prolong LABA-induced broncho-
protection (Holden et al., 2011). The additional finding that
the ICS, budesonide, induces DUSP1 and RGS2 mRNA in vivo
in human airways (Leigh et al., 2016) provides strong evidence
that expression of these genes could attenuate broncho-
constriction in asthma and COPD. Clearly, this would be most
pronounced with ICS/LABA combination therapies, where
the LABA would not only promote direct smooth muscle

relaxation, but also interact additively and synergistically with
the glucocorticoid on DUSP1 and RGS2 expression, respec-
tively (Kaur et al., 2008; Holden et al., 2011; Manetsch et al.,
2012). Such data are consistent with enhanced gene expres-
sion contributing to the clinical superiority of ICS/LABA com-
bination therapies in moderate-to-severe asthma.

Transcriptional activation by LABAs and
modulation by glucocorticoids
Studies from the late 1980s document PKA-dependent phos-
phorylation of cAMP-activated transcription factors, such as
cAMP response element (CRE) binding protein, CREB1 (Mayr
and Montminy, 2001; Sands and Palmer, 2008). At the sim-
plest level, CREB1 binds CRE sites in the promoters of target
genes and, when phosphorylated at Ser133, recruits the co-
activator gene CREB-binding protein to confer transcrip-
tional competency (Chrivia et al., 1993; Mayr andMontminy,
2001). However, glucocorticoids often antagonize cAMP-
dependent transcription (Diaz-Gallardo et al., 2010). Indeed,
in bronchial epithelial cells, activation of CRE-dependent
transcription by LABAs was modestly repressed by glucocorti-
coids (Kaur et al., 2008). Thus, the enhancement of CRE-
dependent transcription, per se, is unlikely to explain how
LABAs and glucocorticoids synergistically induce gene tran-
scription. Indeed, CREB1, acting at conventional CRE sites,
may account for the actions of LABAs on IL6 and CXCL8 ex-
pression and is therefore consistent with repressive effects of
glucocorticoids (Ammit et al., 2002; Yin et al., 2006; Tan et al.,
2007). Conversely, while the proximal promoter region for
RGS2 harbours a simple CRE that binds CREB1 and responds
to cAMP (Song et al., 2010; Xie et al., 2011), this may not ex-
plain synergy with a glucocorticoid. Rather, a putative GR
binding site has been localized to a region within 10 kb of
the mouse Rgs2 transcription start site (So et al., 2008). Thus,
notwithstanding the involvement of other cAMP- and/or
glucocorticoid-activated transcription factors (Mayr and
Montminy, 2001; Chinenov et al., 2014), a simple, but un-
tested, hypothesis is that CREB1/GR interactions at the
RGS2 promoter lead to transcriptional synergy.

CCAAT-enhancer binding factors are cAMP and
glucocorticoid regulated
Many members of the CCAAT-enhancer binding protein
(C/EBP) transcription factor family, including C/EBPα (gene
CEBPA), C/EBPβ (gene CEBPB) and C/EBPδ (gene CEBPD), are
activated and/or induced by cAMP-elevating stimuli, gluco-
corticoids and by pro-inflammatory stimuli (Cardinaux and
Magistretti, 1996; Croniger et al., 1998; Poli, 1998; Vogel
et al., 2004; Tsukada et al., 2011). Thus, CEBPB, a PKA target,
is implicated in the transcriptional activation of genes, such
as IL6 or CXCL8, by inflammatory stimuli, and this could ac-
count for the induction and/or enhancement of their expres-
sion by β2-adrenoceptor agonists (Akira et al., 1990; Mukaida
et al., 1990; Matsusaka et al., 1993; Kunsch et al., 1994;
Trautwein et al., 1994). However, CEBPB expression is also in-
duced by cAMP-dependent activation of CREB1, and this is
partly responsible for up-regulating metabolic genes, such as
PEPCK (Park et al., 1993; Niehof et al., 1997). C/EBPs are also
glucocorticoid-inducible proteins (Park et al., 1990; Baumann
et al., 1991; Cao et al., 1991). For example, CEBPB and CEBPD
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expression is induced by glucocorticoids in bronchial epithe-
lial cells, and up-regulation of CEBPD occurs in the airways of
human subjects following budesonide inhalation (Berg et al.,
2005; Zhang et al., 2007a; Leigh et al., 2016). Thus, while
C/EBPs are implicated in metabolic and inflammatory gene
expression, and controlling proliferation (Nerlov, 2007;
Tsukada et al., 2011), they are also involved in the mainte-
nance of inflammation-induced innate immune genes in the
context of glucocorticoids (Zhang et al., 2007a; Didon et al.,
2011). While such effects could be enhanced by LABAs, it is
unclear whether this would be a desirable outcome in the con-
text of chronic inflammatory diseases, such as asthma or
COPD. Furthermore, CREB1 and CEBPB can synergistically
promote gene transcription (Park et al., 1993; Niehof et al.,
1997; Niehof et al., 2001), an effect that could explain the abil-
ity of glucocorticoids to enhance cAMP-mediated responses
from promoters driven by CREs that act in conjunction with
C/EBP sites. Finally, as C/EBPs can act as pioneer factors to
promote GR-dependent transcription (Grontved et al.,
2013), key roles are likely in respect of the regulation of
glucocorticoid/LABA co-regulated genes. However, the com-
plex relationship between pro-inflammatory, metabolic and
potentially other more desirable effects of CEBP transcription
factors requires careful examination.

Modulation of gene expression by
glucocorticoids and the effect of LABAs

Transrepression and transactivation in the
anti-inflammatory effects of glucocorticoids
To understand how LABAs enhance the therapeutic activity
of glucocorticoids, it is pertinent to consider mechanisms
by which glucocorticoids act in diseases such as asthma.
Glucocorticoids suppress various indices of inflammation,
and their clinical efficacy in mild-to-moderate asthma relies
on the ability to reduce inflammatory gene expression (Rhen
and Cidlowski, 2005; Barnes, 2008). However, how glucocor-
ticoids operate at a molecular level to exert repression of
inflammatory gene expression remains controversial, and
there are currently three main possibilities (Clark and Belvisi,
2012). One mechanism, often referred to as ‘transrepression’,
is where activated GR undergoes nuclear translocation to in-
teract with and inhibit those transcription factors (NF-κB,
AP-1) responsible for driving inflammatory gene transcrip-
tion (De Bosscher et al., 2003; Sundahl et al., 2015). In this
scenario, GR may not directly bind DNA, but is tethered via
the inflammatory transcription factor to recruit repressive
factors, including histone deacetylases, which reduce gene
transcription (Ito et al., 2000; Ito et al., 2006; Hua et al.,
2016a). In a second mechanism of transrepression, GR binds
DNA at negative GRE sites to inhibit gene transcription of in-
flammatory and other genes that are potentially associated
with side effects (Surjit et al., 2011; Hua et al., 2016b). This ef-
fect appears to involve monomeric GR, which binds DNA
sites with a lower affinity than GR dimers at conventional
positive GREs (Hudson et al., 2013).

A third mechanism of action involves the repression of
gene expression via GR-dependent transactivation. Initial ev-
idence for this comes from long-standing observations that

the repressive effects of glucocorticoids on the expression of
inflammatory genes, including cyclooxygenase 2 (gene
PTGS2), CXCL8, inducible gene NOS2 and GM-CSF (gene
CSF2) (Ristimaki et al., 1996; Newton et al., 1998; Chang
et al., 2001; Korhonen et al., 2002; Chivers et al., 2006; Newton
et al., 2010a), are largely prevented by inhibitors of transcrip-
tion and translation (Newton, 2000; Stellato, 2004; Newton
and Holden, 2007; Clark and Belvisi, 2012). In this model,
ligand-bound GR behaves as a positive transcriptional activa-
tor to induce expression of anti-inflammatory genes. Indeed,
direct GR-mediated induction of the NF-κB inhibitor, IκBα
(gene NFKBIA), has been suggested to mediate glucocorticoid-
induced gene repression (Auphan et al., 1995; Scheinman
et al., 1995). Similarly, DUSP1 is glucocorticoid-induced and in-
hibits MAPK activity (Kassel et al., 2001; Lasa et al., 2002). This
may affect multiple MAPK-dependent processes, including ac-
tivation of inflammatory transcription factors, such as AP-1
and NF-κB, mRNA stability and protein expression of inflam-
matory genes (Lasa et al., 2001; Abraham et al., 2006; Furst
et al., 2007; Issa et al., 2007; Diefenbacher et al., 2008; Kang
et al., 2008; King et al., 2009a; Shah et al., 2014). Likewise,
TSC22D3 expression is increased by glucocorticoids in HBE
cells, ASM, mast cells and macrophage, as well as in asthmatic
patients taking ICS (Berrebi et al., 2003; Godot et al., 2006;
Eddleston et al., 2007; Kelly et al., 2012). As TSC22D3 represses
NF-κB and AP-1-dependent transcription, roles in limiting in-
flammatory gene expression and inflammation are also im-
plied (Mittelstadt and Ashwell, 2001; Di Marco et al., 2007;
Eddleston et al., 2007; Ayroldi and Riccardi, 2009).

The relevance of GR-mediated transactivation is increas-
ingly suggested by the range of glucocorticoid-induced effec-
tor genes [e.g. CD200, CRISPLD2, DUSP1, NFKBIA, RGS2 and
TSC22D3; (Newton et al., 2010b)] that have now been identi-
fied. Importantly, many of these effector genes are up-
regulated by LABA and/or glucocorticoids in primary human
ASM cells (Misior et al., 2009). Furthermore, the fact that the
expression of many such genes is increased in the human
airways following budesonide inhalation, as well as in COPD
patients taking inhaled fluticasone propionate/salmeterol,
supports the concept that such effects are therapeutically
relevant and may be enhanced in the presence of a LABA
(Kelly et al., 2012; Lee et al., 2016; Leigh et al., 2016).

Co-operation between GR and inflammatory
transcription factors to maintain repression
Many glucocorticoid-induced genes are also involved in the
normal regulatory processes that control inflammatory sig-
nalling and gene expression (Newton, 2014). In this regard,
A20 (gene TNFAIP3) (Altonsy et al., 2014) and IRAK-M (gene
IRAK3) (Miyata et al., 2015) are informative. These genes are
NF-κB-dependent. This allows their expression to be rapidly
induced by inflammatory stimuli and, thereby, provides neg-
ative feedback control of NF-κB-dependent gene expression.
However, rather than agonist-bound GR causing repression
of these genes, as is routinely established for other NF-κB-
dependent inflammatory genes (De Bosscher et al., 2003),
there is a robust, positive, transcriptional cooperativity be-
tween NF-κB and GR that leads to enhanced TNFAIP3 and
IRAK3 expression (Altonsy et al., 2014; Miyata et al., 2015).
Such positive NF-κB/GR interactions, which have been
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previously demonstrated (Hofmann and Schmitz, 2002),
provide a mechanism by which glucocorticoids enhance
gene expression in the context of an inflammatory stimulus
and are remarkably common (Kadiyala et al., 2016). Thus, by
increasing (or at least maintaining) feedback control by
TNFAIP3 and IRAK3, positive interactions between GR and
NF-κB may play important anti-inflammatory roles (Altonsy
et al., 2014; Newton, 2014; Miyata et al., 2015). Similarly, ex-
pression of the NF-κB inhibitor, NFKBIA, is glucocorticoid-
induced and is up-regulated by inflammatory stimuli acting
via NF-κB to reduce NF-κB signalling (Le Bail et al., 1993;
Auphan et al., 1995; Scheinman et al., 1995). Likewise, while
DUSP1 and the mRNA destabilizing protein, tristetraprolin
(gene ZFP36), are rapidly and highly induced by pro-
inflammatory stimuli to provide negative regulation ofMAPK
pathways, or AUUUA-containingmRNAs, such as IL6, CXCL8
or CSF2, they are also up-regulated by glucocorticoids
(Abraham et al., 2006; Smoak and Cidlowski, 2006; King
et al., 2009b; Prabhala and Ammit, 2015). Such data are con-
sistent with AP-1 also co-operating with GR at composite ele-
ments containing both AP-1 and GR binding sites (So et al.,
2007). Furthermore, transcription factors, including AP-1,
may modify the local chromatin structure, for example by
co-operating with GR to displace nucleosomes, and thereby
play key roles in enhancing GR access and action at responsive
promoters (Biddie et al., 2011; He et al., 2013). Thus, an
emerging principle is that glucocorticoid-bound GR co-
operates with core inflammatory transcription factors to pro-
mote expression of regulatory genes andmaintain, or enhance,
inhibition of inflammatory signalling and gene expression.

GR-dependent transactivation is enhanced by
LABAs
The exact contribution of direct, GR-mediated
transrepression in the anti-inflammatory effects of glucocor-
ticoids is currently unclear. While some studies fail to show
the presence of GR at repressed genes and others report the
widespread presence of negative GREs (So et al., 2008; Reddy
et al., 2009; Surjit et al., 2011; Kadiyala et al., 2016), it is also
plausible that both transrepression and transactivation play
important roles in the glucocorticoid-dependent repression
of inflammatory gene expression (King et al., 2013). However,
while we are unaware of data reporting enhancement of GR-
mediated transrepression, whether via tethering or nGRE
mechanisms, by LABAs, there is unequivocal evidence that
LABAs can augment glucocorticoid-dependent transcription
(Giembycz et al., 2008; Newton et al., 2010b) (Figure 2).

In HBE BEAS-2B cells and primary human ASM cells, sim-
ple GRE-dependent transcription is synergistically enhanced
by the co-administration of agonists that increase cAMP
(Kaur et al., 2008; Wilson et al., 2009; Greer et al., 2013;
Moodley et al., 2013; Joshi et al., 2015b). Thus, LABAs, such
as salmeterol or formoterol, which alone have no obvious ef-
fect on a simple 2 × GRE-driven luciferase reporter, increase
by 2–3 fold the maximum effect (Emax; Box 1) of a glucocorti-
coid (Figure 2B). Similarly, any given level of response to glu-
cocorticoid is achieved at a lower concentration in the
presence of a LABA, which is therefore glucocorticoid-sparing
(Figure 2B) (Giembycz et al., 2008). Significantly, this effect is
reproduced with real genes, including CDKN1C (Figure 2B)

(Joshi et al., 2015b), and occurs in primary cells (Kaur et al.,
2008; Wilson et al., 2009; Moodley et al., 2013). Given roles
for CDKN1C in cell cycle control (Samuelsson et al., 1999),
and possibly the regulation of c-Jun N-terminal kinases
(Chang et al., 2003), these synergistic and steroid-sparing in-
teractions may translate into enhanced therapeutic effects.

Box 1 – Glossary of Pharmacodynamic
Terms
Affinity. (aka the equilibrium association constant): The
tenacity to which a ligand binds to a receptor.
Arithmetically, it is the molar concentration of ligand
that at equilibrium binds to 50% of the receptor
population and is equal to the reciprocal of the
equilibrium dissociation constant, KA.
Biased Agonism. Receptors can couple to multiple
signalling pathways. Biased agonism is a term that
describes ligand-dependent selectivity whereby a given
ligand stabilizes a particular receptor conformation to
preferentially activate certain downstream signalling
pathways relative to others.
Intrinsic Efficacy. A term used to quantify the ability of
an agonist to produce response. It is solely an agonist-
dependent parameter. However, response is also dependent
upon receptor number and efficiency of receptor-effector
coupling, which are furnished by a tissue. Thus, the
efficacy of an agonist to produce response in a given tissue
is the product of intrinsic efficacy and receptor number.
Law of Mass Action. A law that states the rate of a
simple reaction is proportional to the concentration
(mass) of initial reactants. It was originally used to
explain chemical reactions, but has been applied to
pharmacology because in many cases an agonist interacts
with a receptor in a simple, reversible manner. Thus,
[A] + [R] ↔ [AR], where [A], [R] and [AR] are the
concentrations of agonist, receptor and agonist-receptor
complexes respectively.
MaximumResponse (Emax). The response produced by
a maximally effective concentration of an agonist. For a
full agonist Emax = Em whereas Emax < Em for a partial
agonist.
Receptor Reserve. (aka spare receptors). A term used to
describe a system where an agonist produces the
maximum tissue response by activating only a fraction of
the total receptor population. In such systems, all
receptors will be bound and activated by the agonist, but
the stimulus produced by only a fraction of the receptor
population is sufficient to produce the maximum
response. The remaining receptors will produce stimulus
that is surplus to requirement and constitute a ‘reserve’
or are said to be ‘spare’. The KA/EC50 ratio is a measure of
receptor reserve; the greater this ratio, the larger is the
receptor reserve and the occupation of fewer receptors is
required to elicit a particular level of response.
System Maximum (Em). A term that refers to the
maximum pharmacological response that can be
produced in a given system. Typically, a response
equivalent to the Em is produced by full agonists.
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Mechanisms underlying enhanced
GR-mediated transactivation by LABAs
How LABAs enhance glucocorticoid-dependent transcription
is subject to considerable debate. Data from the 1990s re-
vealed that the cAMP-PKA pathway could enhance
GR-mediated transcription (Rangarajan et al., 1992; Gruol
and Altschmied, 1993; Nordeen et al., 1993; Zhang et al.,
1993). At that time, there was a lack of clarity as to the
mechanism(s) of action. Some studies suggested enhanced
GR DNA binding, increased GR expression and/or the ability
of LABA to prevent the loss of GR that occurs following gluco-
corticoid exposure (Dong et al., 1989; Rangarajan et al., 1992;
Korn et al., 1998). Conversely, other investigators showed no
effect onGR expression, ligand binding, nuclear translocation
orGRDNAbinding (Gruol andAltschmied, 1993;Moyeret al.,
1993; Zhang et al., 1993). More recently, such controversy has
been perpetuated with claims that LABAs may enhance GR
translocation to the nucleus (Eickelberg et al., 1999; Roth
et al., 2002; Usmani et al., 2005; Mortaz et al., 2008), along
with reports that this does not occur (Loven et al., 2007; Rider
et al., 2015a). Intriguingly, the LABA, formoterol, was reported
to increase GR DNA binding by low-dose budesonide in spu-
tum macrophages from mild asthmatics and COPD patients
(Essilfie-Quaye et al., 2011; Haque et al., 2013). Furthermore,

the ability of formoterol to restore impaired GR activity in
U937 cells treated with combined IL2/IL4 was explained by
an effect on GR phosphorylation that was mediated by the
protein phosphatase, PP2A (Kobayashi et al., 2012). However,
this was neither blocked by the β2-adrenoceptor antagonist,
ICI 118551, nor mimicked by forskolin, which raises ques-
tions over mechanism. Conversely, enhancement of gluco-
corticoid action by a PDE4 inhibitor was shown not to
involve altered GR translocation (Grundy et al., 2016).

In considering mechanisms underlying the ability of
LABAs, or the cAMP pathway, to enhance GR activity, the pos-
sibility of cell- and system-dependent effects cannot be ig-
nored (Rider et al., 2015b). Nevertheless, it is clear that,
within a given system, the expression of some
glucocorticoid-induced genes are not enhanced by LABAs,
whereas others show either additivity or synergy (Kaur et al.,
2008; BinMahfouz et al., 2015; Rider et al., 2015b). Such ob-
servations correspondingly require explanations that allow
for gene-specific enhancements, rather than generic mecha-
nisms that should produce global changes in GR-mediated
gene expression (Giembycz et al., 2008; Newton et al., 2010b)
(Table 1). Using a simple GRE reporter in BEAS-2B cells,
LABAs enhance transcription in the absence of any change
in the potency, affinity or efficacy of the GR agonist (Joshi

Table 1
LABA-dependent mechanisms of enhancing GR-mediated gene transcription

Possible mechanism of
LABA action

Effect on GR-mediated gene expression
Predicted nature of the expected
effect on GR-mediated gene expressionGeneral Gene-specific

Enhanced ligand affinity for GR Yes No Leftward-shift in the concentration–response curve for
all responses.

Enhanced GR expression Yes No Leftward shift in the concentration–response curves
for all responses that were occurring at the system
maximum (Em; Box 1). For responses below the system
maximum, Emax would increase until the system
maximum was reached.

Enhanced GR translocation Yes No Leftward shift in the concentration–response curves for
all responses that were occurring at the system maximum.
For responses below the system maximum, Emax would
increase until the system maximum was reached.

Enhanced DNA binding of GR Yes Yes Enhanced DNA binding by GR could result in global
effects on gene expression. Alternatively, LABA-induced
enhancements in GR binding could be gene specific.

Phosphorylation/other
modification of GR

Yes Yes Changes in GR phosphorylation, or other
modification, have the capacity to affect all, or
just a specific group, of GR responsive genes.

Phosphorylation/modification
of transcriptional apparatus

Yes Yes Changes in phosphorylation, or other modification, of
any part of the transcriptional apparatus have the
capacity to affect all, or just a specific group, of GR
responses genes.

Interaction with
cAMP-activated TF

No Yes Genes with binding sites for other transcriptional
activators will have the potential for interaction with
GR, if GR is also recruited to this same promoter.

Activation/induction of a
co-activator or repression/
inactivation/degradation of a
co-repressor

Yes Yes Activation or repression of coactivator, or
co-repressors may have effects on all or a population
of GR regulated genes. Alternatively, gene-dependent
requirement for a co-activator or repressor could
allow gene-specific regulation by a LABA
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et al., 2015b) (Box 1). As this effect is mimicked by forskolin
and other cAMP-elevating agents, and is blocked by a selec-
tive inhibitor of PKA (Kaur et al., 2008; Wilson et al., 2009;
Moodley et al., 2013; BinMahfouz et al., 2015), these data sug-
gest that activation of the canonical cAMP signalling cascade
augments the transcriptional competency of liganded GR
and, therefore, the magnitude of GR-mediated gene expres-
sion. This concept is consistent with findings that transcrip-
tional co-activators involved in GR-mediated transcriptional
responses are PKA substrates and provides a mechanism for
gene-dependent enhancements (Rowan et al., 2000;
Constantinescu et al., 2004; Hoang et al., 2004; Fenne et al.,
2008). As noted above, CEBP family members are
glucocorticoid-induced and up-regulated by PKA-dependent
processes (Yeagley and Quinn, 2005). Thus, the presence of
CEBP sites or, alternatively, co-localization with CREs or other
factors including co-activators could all produce transcrip-
tional synergies at target genes.

Optimizing ICS/LABA combination
therapy by exploiting
pharmacodynamics

Potential for biased agonism
Early concepts of drug action assumed an agonist-bound re-
ceptor existed in a single conformation and that the magni-
tude of response was due to the strength of signal. However,
we now know that a GPCR does not exist in a single,
static conformation, and, consequently, the intrinsic efficacy
(Box 1) of a ligand can be response-specific depending on the
particular coupling, or transducer, involved (Figure 4). In-
deed, GPCRs adopt multiple, interchangeable conformations
(or activation states) that are differentially stabilized in an
agonist-dependent manner (Spengler et al., 1993; Pantaloni
et al., 1996; Onaran and Costa, 1997; Liu et al., 2012). This
leads to the concept of biased agonism (also known as

Figure 4
Biased agonism at the pituitary adenylate cyclase-activating polypeptide type I (PAC1) receptor. Schematic representation of data taken from
Spengler et al. (1993) where the PAC1 receptor was over-expressed in LLC PK1 porcine kidney epithelial cells. A. PACAP1–27 preferentially pro-
motes cAMP formation (Pathway 1) via a Gαs/adenylyl cyclase-dependent mechanism. PACAP1–38 preferentially promotes inositol phosphate pro-
duction (Pathway 2) through a Gαq/phospholipase Cβ activation pathway. Large and small arrows indicate the major and minor pathways
activated by each PACAP peptide. B. Activation of each pathway is shown by PACAP1–27 and PACAP1–38, and the effect on the main downstream
second messenger (cAMP or inositol phosphates) is depicted. Figure generated from data reported by Spengler et al. (1993) using the ribbon di-
agram found at https://commons.wikimedia.org/wiki/File:A2A_receptor_bilayer.png
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stimulus trafficking, functional selectivity and ligand-
directed signalling) whereby a ligand stabilizes a particular re-
ceptor conformation to preferentially activate certain down-
stream signalling pathways relative to others (Kenakin,
1995; Kenakin, 2009; Evans et al., 2010; Seifert, 2013;
Kenakin, 2015). For example, biased agonism was first shown
for the pituitary adenylyl cyclase-activating polypeptide 1 re-
ceptor 1 (gene ADCYAP1R1) at which the agonists PACAP1–27
and PACAP1–38 elevate cAMP (via Gs) and inositol phosphates
(via Gq), respectively, with opposite orders of potency
(Spengler et al., 1993) (Figure 4). In the sections below, we
discuss biased agonism in the context of β2-adrenoceptor
agonists and consider whether ligands that bind GR could
produce biased gene expression.

Pharmacodynamics of GR-mediated gene
expression
Cooperative interactions of ligand-bound GR with tissue-
dependent factors, including sequence-specific transcription

factors, co-repressors and co-activators (Szapary et al., 1999;
Simons, Jr., 2006), combined with the linear arrangement of
transcription factor binding sites and their actual DNA se-
quence will, along with the specific chromatin structure and
any epigenetic modifications, result in a very specific three-
dimensional architecture for each individual gene promoter
(Keenan et al., 2016). As a consequence, the ability of any
given ligand-induced conformation of GR to interact with
each gene promoter will be unique and may, therefore, give
rise to gene-specific, patterns of transactivation, as is now re-
ported (Tanigawa et al., 2002; Reddy et al., 2009; Simons, Jr.,
2010; Uings et al., 2013; Joshi et al., 2015a; Rider et al.,
2015b). For example, an analysis of dexamethasone-induced
genes in A549 cells revealed an average EC50 of ~3 nM, with
the potency of the most and least sensitive genes varying by
a factor of ~20-fold (Reddy et al., 2009).

Extending this concept to different ligands, which are
known to stabilize GR in distinct conformations (Allan
et al., 1992; Wagner et al., 1996; Biggadike et al., 2009a;
Biggadike et al., 2009b; Edman et al., 2014), raises the

Figure 5
Biased agonism at GR. The possibility that nuclear hormone receptors such as GR can adopt different active conformations in a ligand-dependent
manner could provide a means to promote gene expression bias in a given tissue. According to this hypothetical model, unbiased ligands (A, B
and C) generate a GR conformation(s) that promotes the expression of the GC transcriptome (shown here as Gene 1 and Gene 2) with the same
rank order of potency where, in the figure, ligand A is more potent than ligand B, which is more potent that ligand C on all genes. In contrast,
biased agonists (D and E) lead to the stabilization of different GR conformers that more favourably promote the transcription of one gene (or gene
population) over another relative to the reference ligand B. Gene expression bias could result from either a change in the way GR interacts with
essential co-factors and/or its ability to bind DNA and effect transcription. In each case, this will be dictated by the promoter context of each target
gene. The rank order of agonist potency can therefore vary in a gene-dependent manner as depicted by the concentration–response curves de-
scribing ligands D and E relative to the reference ligand B. Figure generated using the GR ribbon diagram found at http://www.rcsb.org/pdb/ex-
plore/explore.do?pdbId=1P93
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possibility of agonist-directed gene expression (Figure 5).
Such agonists, by stabilizing different GR conformations,
may differentially affect GR’s ability to interact productively
at different gene promoters and may thereby lead to
agonist-specific programmes of gene expression (Keenan
et al., 2016). Accordingly, gene expression changes within
the glucocorticoid-induced transcriptome will be described
by a family of concentration–response curves that are unique
to the agonist of interest. Central to this concept is that the
intrinsic efficacy for an agonist is governed by the relation-
ship between the specific agonist-induced conformation of
GR and differences in the promoter context for each gene
(Mercier et al., 1983; Newton et al., 2010b; Joshi et al.,
2015a). Thus, in A549 cells, dexamethasone and the dissoci-
ated steroidal ligand, RU24858 (Vayssiere et al., 1997),
showed differential abilities to induce the expression of
glucocorticoid-inducible genes (Chivers et al., 2006). More-
over, the abundance and stoichiometry of GR relative to
other factors necessary for gene expression are not invariant
across cell types. Therefore, tissue-dependent heterogeneity
in agonist-induced, gene expression signatures is predicted
(Simons, Jr., 2010). Although evidence for such differences
in gene expression is sparse, Tanigawa and colleagues re-
ported that dexamethasone was a robust activator of a mouse
mammary tumour virus (MMTV)-based reporter transfected
into HeLa cells under conditions where RU24858 was a very
weak agonist (Tanigawa et al., 2002). In contrast, these li-
gands were almost equi-effective in driving the same reporter
transfected into CV-1 cells (Tanigawa et al., 2002). Thus, a
cell-dependent factor, or factors, is responsible for this dis-
crepant behaviour. Consistent with this idea, the rank order
of potency of three glucocorticoids for activating a different
(3 × GRE) reporter transfected into both HeLa cells and CV-1
cells was distinct (dexamethasone > prednisolone >

RU24858 versus dexamethasone > RU24858 > prednisolone
respectively). Tanigawa and colleagues also reported that
substituting the MMTV-based construct in HeLa cells with
the 3 × GRE reporter transformed RU24858 from a very partial
agonist into one that was as effective as dexamethasone
(Tanigawa et al., 2002). Thus, the conformation adopted by
the RU24858:GR complex was more favourable for driving
the 3 × GRE reporter than for the MMTV-based construct,
and this establishes the principle that differential signalling
from GR can occur in different cells (Figure 5). Further evi-
dence for this proposal is that the potency of dexamethasone
differed by ~10-fold in driving transcription of either the
MMTV- and 3 × GRE reporters in both HeLa and CV-1 cells,
and the genes encoding glutamine synthetase (glutamate-
ammonia ligase; gene: Glul) and tyrosine aminotransferase
(gene Tat) in FU5-5 rat hepatoma cells (Mercier et al., 1983;
Tanigawa et al., 2002).

Recent studies using BEAS-2B bronchial epithelial cells
also show striking differences in the ability of a panel of GR
ligands to induce expression of CDKN1C, CRISPLD2, PDK4
and TSC22D3 (Joshi et al., 2015a; Joshi et al., 2015b). In those
studies, the GR agonists tested were equi-effective at inducing
TSC22D3 and CRISPLD2, whereas marked differences were
apparent for CDKN1C and PDK4. Notably, GW870086X and
desisobutyryl-ciclesonide behaved as weak and very weak
partial agonists on CDKN1C and PDK4, respectively, relative
to a reference agonist, dexamethasone. Similar data were also

reported for GW870086X in A549 cells, where intrinsic activ-
ity values (Box 1) varied from 0.1 to 0.9 across eight genes
with EC50 values that differed by 20-fold (Uings et al., 2013).
Collectively, these data are consistent with agonist intrinsic
efficacy varying in a gene-dependent manner that is dictated
by sequence and structural differences between promoters in
a given cell (Figure 5). This finding has significant implica-
tions for drug development as it may be possible to design
GR agonists that selectively enhance the expression of some
genes, while leaving others relatively unaffected.

GR number as a determinant of efficacy
The Law of Mass Action (Box 1) predicts that increases or de-
creases in the density of a given receptor will increase or de-
crease, respectively, agonist potency in that cell type. This is
an important concept because GR expression varies consider-
ably across structural and immune cells in the lungs, which
are the intended sites of action for ICS, to off-target tissues re-
sponsible for side-effects (Bourgeois and Newby, 1979;
Vanderbilt et al., 1987; Lowy, 1989; Spencer et al., 1991; Miller
et al., 1998). This effect is shown in over-expression studies
where the maximal response is enhanced and/or the agonist
concentration–response curves are displaced to higher po-
tency (Robertson et al., 2013). For example, mifepristone
(also known as RU486) appears to function as a full agonist
in promoting the translocation of GR to the nucleus (Schaaf
and Cidlowski, 2003; Chivers et al., 2004; Lewis-Tuffin et al.,
2007). However, mifepristone is generally inactive, or poorly
active, in glucocorticoid-sensitive systems that rely on endog-
enous levels of GR (i.e. no over-expression), where it behaves
as a GR antagonist. However, with GR over-expression, mi-
fepristone displays partial agonist activity in reporter assays
of transcriptional activation and repression (Zhao et al.,
2003; Zhang et al., 2007b). Thus, increasing GR expression al-
lows mifepristone to show some agonist activity. This finding
suggests that the conformation of GR stabilized by mifepris-
tone, while capable of binding DNA, does so in a manner that
is only poorly favourable for activating gene transcription. In
other words, mifepristone is a very weak partial agonist. Like-
wise, RU24858-bound GR adopts a conformation that is sub-
optimal for the recruitment of steroid receptor co-activator 1
(gene NCOA1) (Dezitter et al., 2014). As this is necessary for
GR-mediated transactivation, the failure to recruit sufficient
NCOA1 results in transactivation becoming highly depen-
dent on GR number (Dezitter et al., 2014). Collectively, such
data show that GR density, the specific-conformation of
ligand-bound GR and the promoter context of a gene, deter-
mines ‘transcriptional competency’. In pharmacological
terms, this defines a given ligand as a full agonist, partial ago-
nist or antagonist at any particular gene promoter.

As individual genes interpret equivalent degrees of GR oc-
cupancy differently, the concept described above suggests
that the relationship between the ligand occupancy of GR
and transcription is not uniform. Pharmacologically, the rela-
tionship between receptor occupancy andmeasured response
is described by the receptor reserve, of which the affinity (KA)/
EC50 ratio (Box 1) is a typical measure. The greater this ratio
(i.e. where KA > EC50), the larger is the receptor reserve, and
the occupation of fewer receptors is required to elicit a partic-
ular level of response Conversely, as the EC50 approaches the
KA, the reserve declines toward zero where all receptors must
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be occupied to achieve the measured response. The concept
of receptor reserve is traditionally associated with agonists
that act at GPCRs. However, recently, this was applied to
GR-mediated gene expression. In BEAS-2B cells, the potency
of the glucocorticoid fluticasone furoate was found to vary
in a gene-dependent manner (Joshi et al., 2015a). Receptor
occupancies necessary for half-maximal gene induction were
calculated as 21, 24, 29 and 39% for the glucocorticoid-
induced genes, TSC22D3, CRISPLD2, CDKN1C and PDK4 re-
spectively (Joshi et al., 2015a) (Figure 6A). Thus, engagement
of an equivalent fraction of GR by fluticasone furoate pro-
duced different degrees of gene activation with TCS22D32
and PDK4 being the most and least sensitive genes respec-
tively. These results were reproduced in cells subjected to frac-
tional GR inactivation, confirming that agonist intrinsic
efficacy varies in a gene-dependent manner (Joshi et al.,
2015a). Likewise, GW870086X, which has lower intrinsic ef-
ficacy relative to fluticasone furoate, revealed increasing par-
tial agonist behaviour that correlated inversely with the
receptor reserve for each gene (Figure 6B).

Differences in receptor reserve have particular signifi-
cance in tissues in which GR number is limiting as two ago-
nists, one with low and the other with a relatively high
intrinsic efficacy, will not generate the same gene expression
signature. In tissues with low GR expression, agonists with
low intrinsic efficacy, such as RU24858 or GW870086X, fail
to appreciably transactivate certain populations of genes,
and this may contribute to their improved therapeutic ratio
in some models (Vayssiere et al., 1997; Uings et al., 2013).
However, whether tissue-dependent variation in GR number
affects the anti-inflammatory activity of glucocorticoids used
in clinical practice is unknown. Furthermore, there is no pub-
lished precedent to suggest that GR number in target tissues is
considered when selecting glucocorticoids for development.

Nevertheless, it is noteworthy that the active metabolite of
the GR agonist, ciclesonide, behaves in BEAS-2B cells simi-
larly to GW870086X (Joshi et al., 2015a). Collectively, these
data suggest that the exploitation of partial GR agonists for
enhanced therapeutic benefit requires an assessment of their
ability to induce therapeutically desirable and undesirable re-
sponse genes in target and off-target tissues.

Biased agonism and GR-mediated gene
expression
While differential binding of agonists to nuclear hormone re-
ceptors is established (Allan et al., 1992; Wagner et al., 1996;
Biggadike et al., 2009a; Biggadike et al., 2009b; Edman et al.,
2014), it is unclear whether this can lead to biased gene ex-
pression (Figure 5) or merely different degrees of partial
agonism. Certainly, GR effector functions and sub-cellular lo-
calization of GR can occur in a ligand-specific manner
(Croxtall et al., 2002; Schaaf et al., 2005). Furthermore,
unique patterns of ligand-directed GR stabilization, differ-
ences in cofactor recruitment and agonist-dependent hetero-
geneity of GR-mediated gene expression all support the
possibility of selectively inducing one gene (or gene popula-
tion) over another (Bledsoe et al., 2002; Coghlan et al.,
2003; Kauppi et al., 2003; Miner et al., 2007; Ronacher et al.,
2009; Edman et al., 2014). This idea is supported by data de-
rived with non-steroidal GR ligands, such AL-438 and
LGD5552, which retain anti-inflammatory activity with re-
duced induction of, at least some, side-effect genes (Coghlan
et al., 2003; Miner et al., 2007). Similarly, mifepristone prefer-
entially recruits the co-repressor, NCoR1 (Schulz et al., 2002;
Ronacher et al., 2009), thereby establishing the principle that
GR ligands can differentially modify gene expression by af-
fecting co-activator/co-repressor recruitment. However, one

Figure 6
Relationship between GR occupancy and gene expression in human airway epithelial, BEAS-2B, cells. The data show that gene induction
expressed as a function of GR occupancy is not uniform across genes. This indicates that a given cell type interprets the same degree of GR occu-
pancy differently for each gene. In panel A, half maximal TSC22D3, CRISPLD2, CDKN1C and PDK4 induction was achieved with a concentration
of fluticasone furoate that produced 21, 24, 29 and 39% GR occupancy respectively. In panel B, a more extreme profile is shown with a different
GC, GW 870086X. Relative to fluticasone furoate, half maximal expression of GILZ and CRISPLD2 required ~23% GR occupancy. However, GW
870086X was a partial agonist on both CDKN1C and PDK4 such that 100% GR occupancy induced these genes to a level that was only 70
and 30% of the same responses produced by fluticasone furoate. Data re-drawn from Joshi et al. (2015a).
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attempt to identify biased agonism showed that fluticasone
furoate and GW870086X induced TSC22D3, CRISPLD2,
CDKN1C and PDK4 in BEAS-2B cells, but there was no evi-
dence of agonist potency reversal; fluticasone furoate was
always 5–7-times more potent than GW870086X for each
gene (Joshi et al., 2015a). Nevertheless, that study was lim-
ited by the number of ligands and genes examined, as well
as the structural similarity of the agonists. Clearly, compre-
hensive testing will be necessary to determine if different
conformations of GR are associated with selective transcrip-
tional signatures and whether these result from partial or,
possibly, biased agonism. Furthermore, the relationship
between any such biased agonism and the enhancement
by LABA will need to be carefully quantified and assessed
functionally.

Pharmacodynamics of β2-adrenoceptor
signalling
Tissue-dependent variation in β2-adrenoceptor number, cou-
pling efficiency to adenylyl cyclase and differences in agonist
intrinsic efficacy also have the potential to influence themag-
nitude of cAMP-induced responses. This applies to the en-
hancement of GR-mediated gene transcription and the
direct induction of cAMP-inducible genes by a LABA. In the
latter case, the promoter context of the gene of interest will
dictate whether PKA-phosphorylated transcription factors,
such as CREB1 or ATF1, bind to DNA consensus sequences
and effect transcription. In humans, pulmonary
β2-adrenoceptor number varies by approximately 50-fold.
For example, ASM cells express a high number of β2-
adrenoceptors (30 000–40 000/cell), whereas T-lymphocytes
express relatively few (~750/cell) (Johnson, 2002). Therefore,
the ability of LABAs to promote cAMP-dependent
transcription could be compromised in cell types where
β2-adrenoceptor number is limiting and/or when coupling
to adenylyl cyclase is weak. Likewise, the LABA enhancement
of GR-mediated gene expression and resultant anti-
inflammatory activity could also be impaired. This concept
is illustrated by studies with eosinophils, where salmeterol
failed to suppress granule protein secretion and activation
of the NADPH oxidase under conditions where the higher in-
trinsic activity agonist, formoterol, was effective (Rabe et al.,
1993; Munoz et al., 1995).

A number of mutually inclusive approaches could im-
prove the therapeutic activity of a LABA in cells that express
low β2-adrenoceptor number: (i) combine a GR agonist with
a LABA that has very high intrinsic efficacy, (ii) add-on a
PDE4 inhibitor to an ICS/LABA combination therapy, and
(iii) add-on, or replace with, a ligand for another Gs-coupled
receptor that is either more highly expressed or couples to
adenylyl cyclase with higher efficiency than the
β2-adrenoceptor. With the exception of salmeterol, most
LABAs described to date already have high intrinsic efficacy,
and it is unclear to what extent this property can be im-
proved. In contrast, attenuating cAMP hydrolysis with a
PDE4 inhibitor might transform a pro-inflammatory or im-
mune cell that is normally insensitive to a LABA into one that
now generates a cAMP signal of sufficient magnitude to pro-
mote cAMP-dependent transcriptional responses, and/or en-
hance GR-mediated gene transcription. Likewise, agonists of

GPCRs, other than the β2-adrenoceptor, which also increase
cAMP, will synergize with glucocorticoids. For example, acti-
vation of the prostacyclin receptor (gene PTGIR) or the aden-
osine A2B receptor (gene ADORA2B) enhanced simple
GRE-dependent transcription and synergized with glucocor-
ticoids to induce gene expression (Wilson et al., 2009; Greer
et al., 2013).

Adverse effects of β2-adrenoceptor agonists,
non-canonical signalling and response to
glucocorticoids
In asthma, β2-adrenoceptor agonists alleviate broncho-
constriction, but fail to combat the underlying inflamma-
tion. For this reason, chronic use of β2-adrenoceptor
agonists, in the 1970s, was identified as a risk factor contrib-
uting to asthma deaths (Tattersfield, 2006). Consequently,
asthma treatment guidelines now recommend that
β2-adrenoceptor agonists, as a class, should only be used on
an as-needed basis or, in the case of LABAs, in combination
with an ICS (Cates and Cates, 2008).

Mechanistically, β2-adrenoceptor agonists may be harm-
ful in asthma by promoting or enhancing pro-inflammatory
gene expression through direct, cAMP-dependent signalling
mechanisms. The β2-adrenoceptor may also mediate
G-protein-independent signalling that involves the recruit-
ment of β-arrestin-2 and the activation of ERK (Shenoy
et al., 2006; Billington et al., 2013; Walker and DeFea, 2014;
Pera and Penn, 2016). In murine models of asthma, this
pathway is linked to pro-inflammatory effects of certain
β2-adrenoceptor agonists in the airways (Nguyen et al., 2009;
Walker et al., 2011; Thanawala et al., 2013; Penn et al., 2014;
Zhou et al., 2014). For example, in allergen-sensitized
β-arrestin-2 knockout mice, the typical asthma-like pheno-
type (AHR, pulmonary leukocyte burden, histological fea-
tures of inflammation and mucus hyper-secretion)
resulting from allergen challenge was decreased relative to
effects in wild-type animals (Walker et al., 2003;
Hollingsworth et al., 2010; Nichols et al., 2012; Chen et al.,
2015). Similar results were obtained in sensitized and chal-
lenged mice deficient in either the β2-adrenoceptor (Nguyen
et al., 2009) or phenylethanolamine N-methyltransferase
(Gene PNMT; an enzyme central to adrenaline biosynthesis)
(Thanawala et al., 2013). Collectively, these data suggest
that, in mice, the cardinal features of asthma are dependent
on the release of adrenaline and its ability to activate
β2-adrenoceptors. Significantly, chronic administration of
β2-adrenoceptor agonist to PNMT�/� and wild-type mice re-
constitutes or exacerbates, respectively, these features of
asthma (Lin et al., 2012; Thanawala et al., 2013). Thus,
β2-adrenoceptor agonists may exert pro-inflammatory ef-
fects in the mouse lung, via a mechanism that is independent
of cAMP generation.

If clinical evidence for such β2-adrenoceptor-mediated bi-
ased agonism is established, it would raise important ques-
tions about existing LABAs and how the next generation
should be designed. For example, to what extent are currently
marketed LABAs biased toward β-arrestin recruitment and sig-
nalling? Can the effect of LABA bias towards β-arrestin-
dependent effectors be reduced or mitigated? Currently, there
is some evidence that formoterol and salmeterol display a
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degree of bias for β-arrestin (Rajagopal et al., 2011; van der
Westhuizen et al., 2014). If confirmed, this highlights the
need to understand the structural elements in these ligands
that preferentially stabilize the β2-adrenoceptor in this un-
wanted conformation. One means to compensate for
adverse-effects mediated by β-arrestin-dependent ERK activa-
tion is to offset bias by enhancing LABA-induced, cAMP sig-
nalling with a PDE4 inhibitor (Forkuo et al., 2016; Pera and
Penn, 2016). Indeed, in sensitized and challenged PNMT-
deficient mice, roflumilast and rolipram prevented
formoterol and salmeterol from restoring the asthma-like
phenotype when compared with wild-type animals. Simi-
larly, the ability of glucocorticoids, and LABAs, to induce
DUSP1 expression, for example in primary human ASM or
bronchial epithelial cells (Quante et al., 2008; Manetsch
et al., 2012; Rider et al., 2015b; Shah et al., 2016), would inde-
pendently inactivate ERK. This effect may not only protect
against MAPK-dependent desensitization (Nino et al., 2010)
but should also reduce unwanted signalling due to biased
agonism from the β2-adrenoceptor. Thus, reducing the effect
of β2-adrenoceptor-mediated, β-arrestin signalling with a
PDE4 inhibitor and/or a glucocorticoid could tip the balance
away from ‘pro-asthma’ effects towards more favourable
‘therapeutic’ outcomes (Forkuo et al., 2016; Pera and
Penn, 2016).

These concepts of biased agonism are relevant to a recent
reappraisal of the PDE4 inhibitor, roflumilast, in mild-
to-moderate asthma (Bardin et al., 2015; Bateman et al.,
2015; Meltzer et al., 2015). Clinical efficacy (measured by im-
provement in forced expiratory volume in 1 s, time to first ex-
acerbation, rescue medication consumption and symptoms)
was found, perhaps surprisingly, not to be inferior to an ICS
(Bateman et al., 2015). If these findings are confirmed, a
strong case for a β2-adrenoceptor agonist/PDE4 inhibitor
combination therapy can be made based on their ability to
increase airway calibre, suppress inflammation and offset
unwanted effects that may be associated with signal bias.
Moreover, this approach would necessarily require combina-
tion with an ICS (Meltzer et al., 2015), which should further
mitigate adverse effects of LABAs that occur via canonical
and non-canonical β2-adrenoceptor-mediated signalling.
The possibility that LABAs and PDE4 inhibitors interact
synergistically on target cells and tissues with an attendant
improvement in clinical outcomes is also predicted. Logic
dictates that this would be most effective in cells and tis-
sues where β2-adrenoceptor density is limiting and/or
coupling efficiency to adenylyl cyclase is weak (Giembycz
and Newton, 2014). It is noteworthy, that this approach
has been adopted for the treatment of COPD with the de-
velopment of the novel, bifunctional ligand, GS-5759,
which is formulated for inhaled delivery (Salmon et al.,
2014; Tannheimer et al., 2014). GS-5759 is a single chemi-
cal entity composed of a PDE4 inhibitor linked via a spacer
to a β2-adrenoceptor agonist. This provides greater lung re-
tention, low oral bioavailability, reduced systemic exposure
and an improved therapeutic ratio that is typical of inhaled,
high molecular weight molecules (Phillips and Salmon,
2012; Robinson et al., 2013). Furthermore, the identical
deposition characteristics of the two pharmacophores max-
imize the opportunity for synergistic interaction at the
same target tissues.

Outlook and opportunity for drug
discovery
The clinical superiority of ICS/LABA combination therapy is
well established and, for some time, has been the standard-
of-care where ICS monotherapy fails to provide adequate dis-
ease control. While this enhanced effect seems likely to have
arisen as a consequence of the natural interactions between
endogenous stress response mechanisms, for example be-
tween glucocorticoids and catecholamines, the molecular ba-
sis remains unclear. Indeed, although several explanations
have been proposed to explain how LABAs enhance ICS
action, their ability to account for gene-specific effects is
questionable (Table 1). It is clear that glucocorticoids and
LABAs independently and in combination induce gene tran-
scription. This is important given the increasing apprecia-
tion that GR-mediated transactivation contributes to the
mechanism of action of ICS. The ability of LABAs to en-
hance glucocorticoid-dependent transcription and for
LABAs and glucocorticoids to synergistically enhance the
expression of genes, such as RGS2, provides a compelling
explanation for the improved asthma control seen in clin-
ical practice. Therefore, understanding the consequences
of LABA/glucocorticoid-induced gene expression is central
to the development of improved combination therapies.
Knowing which genes are desirable, and which are not,
is necessary to comprehend integrated biological function
in complex disease networks. Equally, knowing that the
enhancement of GR-mediated gene expression is cAMP-
dependent provides additional opportunities to improve
anti-inflammatory glucocorticoid therapies. For example,
adding-on a PDE4 inhibitor may prove useful by augmenting
the effects of a LABA in target cells where β2-adrenoceptor
density is low. This approach has the additional advantage
of reducing the potential undesirable consequences of biased
agonism from the β2-adrenoceptor. Alternatively, the identifi-
cation of non-biased, or perhaps Gs-biased, β2-adrenoceptor
agonists or ligands for other GPCRs that are more highly
expressed and/or better coupled to adenylyl cyclase on target
cells may be highly effective in combination with an ICS.
In each case, such effects may be further optimized by
combining multiple drugs into single molecules that
display unique polypharmacological characteristics.

A further, and currently underexplored, avenue for im-
proving therapeutic efficacy lies with the realization that ev-
ery GR responsive gene, each with its own unique promoter
environment, may be maximally activated only by specific
GR conformations (Keenan et al., 2016). Thus, each gene is ef-
fectively an independent signal transducer that responds to
ligand-activated GR. Furthermore, as each different GR ligand
has the potential to preferentially activate gene expression in
manner that is dictated by the ligand-induced conformation
that is adopted by GR, there is the potential for biased
GR-dependent gene expression. However, approaches to im-
prove glucocorticoid effectiveness have generally rested on
the concept that GR transactivation is undesirable, whereas
transrepression, for example of NF-κB, is beneficial. This
may have unwittingly resulted in the identification of partial
agonists of GR. Thus, the repression of NF-κB-dependent
transcription or genes, such as IL6 and CXCL8, that are NF-κ
B-dependent versus the ability to activate simple GR-
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responsive reporters have been used to screen for candidate
ligands. However, the repression of NF-κB-dependent
reporters and inflammatory gene expression is routinely
observed at lower glucocorticoid concentrations compared
with transactivation of simple GRE reporters (Jonat et al.,
1990; Chivers et al., 2004; Chivers et al., 2006; King et al.,
2013). Thus, partial agonists of GR will inevitably produce
separation of repression from transactivation. Indeed,
ligands such as RU24858, GW870086X and ciclesonide can
behave as partial GR agonists (Joshi et al., 2015a). While this
may produce some improvement in therapeutic benefit, the
details and functions of genes showing differential expres-
sion to agonists with high and low intrinsic efficacy remain
to be fully explored. Nevertheless, we submit that the
possibility of biased GR agonism offers greater therapeutic
potential compared with partial GR agonists.

In conclusion, GR-mediated transactivation of the nu-
merous response genes that contribute to the therapeutic ac-
tivity of ICS in asthma offers new opportunity for the
identification and selection of ligands that may transactivate
more desirable groups of effector genes. At present, this area
of GR biology is relatively underdeveloped, but could contrib-
ute substantially to the discovery of novel therapeutics.
Exploiting gene expression bias to design improved anti-
inflammatory GR ligands will require changes in gene expres-
sion to be correlated with an extensive understanding of their
function in on- and off-target tissues.While this is necessarily
an empirical approach, modern high-throughput technolo-
gies now make the initial part of this objective an achievable
goal. Probably more challenging will be to accurately assign
gene function as beneficial or undesirable in asthma
management. Finally, the identification of biased GR agonists
will need to be considered in the context of combination
therapies. While this substantially increases the level of
complexity, there are correspondingly more opportunities
for drug optimization and discovery.
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