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Abstract
Diffusion-weighted imaging (DWI) of the liver can be 
performed using most commercially available machines 
and is currently accepted in routine sequence. This 
sequence has some potential as an imaging biomarker for 
fibrosis, tumor detection/characterization, and following/
predicting therapy. To improve reliability including accuracy 

and reproducibility, researchers have validated this new 
technique in terms of image acquisition, data sampling, 
and analysis. The added value of DWI in contrast-
enhanced magnetic resonance imaging was established 
in the detection of malignant liver lesions. However, some 
limitations remain in terms of lesion characterization 
and fibrosis detection. Furthermore, the methodologies 
of image acquisition and data analysis have been in-
consistent. Therefore, researchers should make every 
effort to not only improve accuracy and reproducibility but 
also standardize imaging parameters.
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Core tip: The current application of diffusion-weighted 
imaging (DWI) is reviewed. DWI has some potential 
as an imaging biomarker for fibrosis, tumor detection/
characterization, and following/predicting therapy. However, 
some limitations remain in terms of lesion characterization 
and fibrosis detection. To improve reliability including 
accuracy and reproducibility, researchers have validated this 
new technique in terms of image acquisition, data sampling, 
and analysis. 
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INTRODUCTION
Diffusion-weighted imaging (DWI) is an imaging method 
that allows the mapping of the free diffusion of water 
molecules which reflects the structural differences in 
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disease by restricting diffusion. DWI can be added to 
the routine examination easily using recently available 
machines. This imaging method has a good ability to 
detect liver lesions, and quantitative evaluation can be 
achieved without contrast media. Therefore, DWI does 
not require considerations for patients having contrast 
media allergy and the risk of nephrogenic systemic 
fibrosis due to renal dysfunction[1].

FUNDAMENTALS AND TECHNIQUES
Theory 
When assuming free water, water molecules spread 
three-dimensionally with time and temperature de-
pendence by Brownian motion. It is represented by 
the Einstein-Smoluchowski formula: <r2> = 6Dt, D = 
μKBT, where r is the average distance, D is the diffusion 
coefficient, t is time, μ is mobility, KB is Boltzmann’s 
constant, and T is the absolute temperature. This spread 
follows the Gaussian distribution called free diffusion.

Stejskal and Tanner previously measured the diffusion 
coefficient along with their theory using a binary magnetic 
field gradient by the spin-echo method[2]. At present, 
DWI acquisition is commonly performed with a Spin-Echo 
echo planar imaging (EPI) sequence. Water molecule 
movement was impeded by the cell membrane, interstitial 
space, and macromolecules. The movement did not follow 
the Gaussian probability distribution. When D (diffusion 
coefficient) is small or time “t” is short, the measured D is 
the same as that of free diffusion because water molecules 
rarely interact with barrier structures. On the other 
hand, there is a high probability of the movement being 
affected by a barrier structure when time “t” is greater, 
which causes the measured D to become smaller than 
that of free diffusion. This state is referred to as restricted 
diffusion.

High cellularity, distortion of the extracellular space, 
and density of the hydrophobic cell membrane within 
the tissue restrict diffusion. In contrast, an intravoxel 
microvessel which travels disorderly behaves similarly 
to a diffusion phenomenon. As mentioned above, DWI 
enables not only pure diffusion but also microvessel 
perfusion. Therefore, the diffusion coefficient is designated 
comprehensively as apparent diffusion coefficient (ADC).

As the b-value increases on DWI, the signal de-
creases in tissues composed chiefly of large diffusion com
ponents such as free water owing to phase dispersion, 
and thus the contrast to tissues that restrict diffusion 
becomes more clear. b-value is defined by the following 
equation[2]: b (s/mm2) = - γ2‧G2‧δ2(Δ - δ/3), where γ 
is the gyromagnetic ratio, G is the diffusion gradient 
amplitude, δ is the gradient diffusion length, and Δ is the 
diffusion time.

ADC is calculated using the following formula: Sb/S0 
= exp (- b‧ADC),where Sb and S0 are the signal intensity 
with and without the application of the diffusion gradient, 
respectively. This formula is a monoexponential model 
which does not fit with actual measurement. This is the 

reason why the signal intensity in the voxel is affected by 
blood microcirculation. Le Bihan et al[3] have proposed 
the theory of intravoxel incoherent motion (IVIM). They 
considered blood microcirculation as rapid diffusion, 
and defined pure molecular diffusion coefficient (D) and 
pseudodiffusion coefficient (D*). This biexponential model 
was defined using the following formula when multiple 
b-values are obtained, from low b-values (< 200 s/mm2) 
to high b-values (> 200 s/mm2): Sb/S0 = f × exp[(D* 
+ D) × b] + (1 - f) × (-D × b), where D is the true 
diffusion coefficient, D* is the pseudodiffusion coefficient, 
and f is the perfusion fraction. The IVIM model has been 
applied to the evaluation of liver fibrosis and tumor 
characterization[4,5]. However, some controversial issues 
about IVIM have remained. The poor reproducibility of D* 
has been reported[6,7]. Selection of a fitting model is also 
crucial for IVIM parameters, because the choice of the 
b-value and reproducibility may be closely related to the 
fitting models[8]. 

Advance of technology
DWI using parallel imaging allows for a shorter echo 
time, and it facilitates improvement of the signal-to-
noise (SNR) ratio and thus decreasing susceptibility 
to artifact[9]. Furthermore, distortion, blurring, and off-
resonance artifact diminish, and this increases the spatial 
resolution[10]. ADC measurement using parallel imaging 
is reliable except for ADC measurement in the left lobe 
of the liver[11]. The SNR increases at a high field strength 
system, but there are some concerns about the inferiority 
of image quality owing to artifact or signal decay by B0/
B1 inhomogeneity, T2/T2* shortening, and increasing 
acoustic gradient noise. However, using parallel imaging 
offsets these disadvantages[12]. 

Single shot EPI sequence is sensitized to not only the 
motion of diffusion but also bulk motion. Therefore, the 
consideration of respiration and pulsation is important in 
case of the acquisition of liver images. In image acquisition 
during breath holding, it is unnecessary to consider 
respiratory artifact, in contrast to some disadvantages 
such as low spatial resolution, low SNR, distortion, and 
ghost artifact. On the other hand, the free breathing 
(FB) method usually takes a few minutes because of 
the many acquisition times, and as a result the SNR 
increases. Moreover, a high spatial resolution can be 
achieved and thin slices can be obtained[13]. However, 
the disadvantage of the FB method is that it is less 
reliable if there is heterogeneity in the lesion owing to 
the averaging and blurring of the image. The navigator-
triggered (NT) acquisition is a method for running the 
image sequence in accordance with the expiratory phase 
monitoring the movement of the diaphragm on high-
speed imaging systems such as FLASH during FB. The 
NT technique improves image quality and lesion contrast, 
and increases SNR. Moreover, it enables accurate ADC 
measurement[14,15]. Artifact also becomes stronger as 
b-value increases[15]. In addition, a specific artifact reported 
as hepatic pseudoanisotropy attributed to performing DWI 
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in the respiratory gating (RT) has been reported[16].
ADC was reported to be affected by SNR, suscep

tibility artifact, or artifact derived from heart beating 
or liver motion due to respiration. Although FB tends 
to scatter signals compared with RT, the ADC does not 
differ[17]. The SNR on RT is higher than that on BH. The 
ADC is also slightly higher on RT than on BH[14]. In a 
comparison between NT and FB, both are reportedly 
similar in terms of the ADC and IVIM parameters[18].

For ADC reproducibility, RT is superior to BH but 
inferior to FB in healthy liver parenchyma[19]. Similarly, in 
a comparison study among multiple breath-hold (MBH), 
FB, RT, and NT, FB showed the best ADC reproducibility[20]. 
It should be noted that there were differences in the 
signal acquisition times among those techniques in these 
comparison studies[20].

Effects of contrast agent administration
Currently, GdEOBDTPAenhanced MRI has been widely 
used for the detection of liver lesions. However, it is 
necessary to wait for about 20 min for optimal liver paren-
chymal enhancement[21]. To improve the examination 
throughput, DWI is undertaken after Gd-EOB-DTPA 
injection. GdEOBDTPA does not have an effect on ADC[22]. 
Furthermore, considering the biexponential IVIM model, 
there were also no effects on D, D*, and PF[23]. Based on 
these facts, even if DWI is not successful prior to contrast 
administration, the lesion can be evaluated on the images 
acquired during the waiting time until the hepatobiliary 
phase.

Weak feature of DWI
Cardiac motion causes negligible artifact (signal loss) 
on DWI of the liver. This artifact tends to become 
emphasized with a higher b-value and is closer to the 
heart. Thus, the artifact in the left lobe around the 
lower surface of the heart in particular can make an 
image particularly obscure[19,24]. The liver-to-background 
contrast is also changed by the cardiac phase of 
acquisition; it decreases more at the systolic phase and 
signal loss is larger in the left lobe[25]. The ADC of the left 
lobe is higher and its reproducibility is worse compared 
with the right lobe[26]. Some solutions to reduce the 
effects of cardiac motion have been proposed. These 
include the postprocessing method[24] or filtering[27] which 
corrects the image after signal acquisition or cardiac 
triggering synchronized with the heart cycle[27,28]. ADC 
reproducibility was reportedly improved using these 
methods.

Moreover, susceptibility artifact occurs at the boun-
dary surfaces between the lungs and the liver parenchyma 
because of magnetic field inhomogeneity[29]. The artifact 
is observed as a signal loss in the diaphragm or liver.

Peristaltic movement can produce ghost artifact or 
blurring on abdominal MRI in the pancreas and liver near 
the intestinal tract[30]. Hyoscine butylbromide suppresses 
contraction of the smooth muscles in the intestines and it 
can reduce ghost artifact (peristaltic artifact). Moreover, 

it can similarly improve the image quality[31]. As hyoscine 
butylbromide administration can increase the heart rate, 
it has also been pointed out that the image quality of 
the subcardiac area in the hepatic left lobe is reduced 
on visual evaluation. However, there is no observed 
significant change in ADC[32]. Thus, it is necessary to 
address all of the challenges associated with DWI of 
the liver to achieve higher levels of quantitative and 
qualitative outcomes and to obtain precise assessments.

EVALUATION OF LIVER FIBROSIS
Clinical application
Liver fibrosis is the accumulation of scar tissue resulting 
from hepatocyte response to chronic inflammation caused 
by the hepatitis B or C virus and alcohol consumption, 
among many other causes[33]. Chronic inflammation 
activates the stellate cells and induces fibrosis of the 
extracellular matrix (ECM). In this process, molecules such 
as glycogen, proteoglycan, and other macromolecules 
accumulate in the ECM, restricting ECM diffusion[34,35]. 
Fibrosis leads to cirrhosis, portal hypertension after many 
years, and possibly eventual death. Liver biopsy is a 
widely accepted procedure for diagnosing and grading 
liver fibrosis. However, this procedure is associated with 
major complications in 0.3% and with mortality in 0.018% 
of patients[36]. Furthermore, because of the heterogeneity 
of liver fibrosis, sampling errors can also arise[37,38]. 
Therefore, alternative noninvasive diagnostic methods that 
can precisely evaluate liver fibrosis are desirable. Because 
of convenience and repeatability, the usefulness of some 
diffusion-weighted MRI parameters (e.g., ADC) and 
IVIM parameters has been evaluated in several studies. 
DWI enables the evaluation of restricted diffusion caused 
by collagen fibers accumulated in the ECM in cirrhotic 
liver[39-41]. In relation to this, it is important to distinguish 
METAVIR fibrosis stage 3 or 4 from stages 0 to 2 because 
patients in the F0-2 grades can be cured by treating the 
underlying liver disease[42]. 

Evaluating liver fibrosis using ADC
Several studies have shown that ADC decreases as the 
liver fibrosis grade progresses[40,41,43,44]. Specifically, the 
diagnostic performance of detecting METAVIR fibrosis 
grade 3 or 4 was variable and the area under the ROC 
curve (AUC) was 0.540.92. Some studies have concluded 
that MR elastography was more reliable than DWI[44,45]. 
Do et al[46] proposed normalized ADC to improve the 
diagnostic accuracy of DWI. They calculated normalized 
ADC as the ratio of liver ADC to spleen ADC and reported 
that the AUC increased from 0.689 to 0.805 using their 
methods (Table 1). 

Evaluating liver fibrosis using IVIM parameters
The efficacy of diagnosing liver fibrosis has been reported 
by Luciani et al[5]. They found that perfusion-related 
diffusion parameters (D*: Fast component of diffusion, f: 
Fraction of the diffusion linked to microcirculation) were 
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significantly related to restricted diffusion in a cirrhotic liver, 
whereas diffusion-related parameters (D: Slow component 
of diffusion) were not significantly related. Several studies 
followed after this study[5,45,47-53]. Including the study of 
Luciani et al[5], 3 studies[49,52,53] only compared cirrhotic 
liver with healthy volunteer liver but did not evaluate the 
fibrosis grade. D* was found to be significantly lower in 
the cirrhotic liver in all studies and D showed a significantly 
lower value in 2 studies[52,53]. In these 2 studies, the 
authors adopted relatively more of high b-values and 
less of low bvalues. On the other hand, Chung et al[48] 
calculated IVIM parameters using 3 patterns of b-value 
selection to diagnose highgrade liver fibrosis: b = 0, 30, 
60, 100, 150, 200, 400, 600, 900 s/mm2; b = 0, 30, 60, 
100, 150, 200, 900 s/mm2; and b = 0, 100, 200, 900 
s/mm2. They suggested that the number of lower b-values 
was not crucial for diagnosing high-grade liver fibrosis. 
Girometti et al[50] have suggested that higher b-values 
may not be necessary for diagnosing liver fibrosis. 
Supporting these hypotheses, Wu et al[47] suggested that 
favorable results were given by b-values 0, 20, 40, 60, 80, 
100, 150, 200, 400, and 800 s/mm2.

Effects of steatosis
Steatosis has been reported to have possible effects on 
ADC. Poyraz et al have suggested that steatosis decreases 
ADC because the increased fat content of hepatocytes and 
the extracellular fat accumulation reduce the interstitial 
space and restrict water diffusion[39,54]. Other studies 
have evaluated the effects of fat deposition by DWI using 
other methods. These studies estimated that fat has 
several components that broaden the spectrum and mimic 

T2* decay at short TE ranges; however, the accurate 
mechanism is unknown[55,56]. Another study mentioned 
that IVIM parameters, such as diffusion coefficient and 
perfusion fraction, are not affected by the fat fraction and 
have the possibility of evaluating liver fibrosis regardless of 
the fat deposition[57].

Effects of iron deposition
The most widely used sequence for DWI is EPI, which 
allows acquisition of a full slice in a single shot. However, 
the EPI readout is also subject to ghosting and susceptibility 
artifacts, and may decrease ADC as a result of the T2* 
shortening effect[8,58]. Chronic liver disease may often 
have iron overload. Therefore, if extremely low ADCs are 
obtained, iron overload should be considered[59-63].

DETECTION AND CHARACTERIZATION 
OF LIVER TUMORS
Detection of liver tumors
DWI has a better contrast-to-noise ratio and better 
conspicuity by suppression of background vessels in low 
b-values[64]. DWI has a higher detection rate of liver 
tumors than T2WI[64,65], particularly in detecting malignant 
lesions[66]. However, the ADC of benign solid lesions 
has been reported to be similar to that of the liver par-
enchyma[67]. Therefore, benign solid lesions may be 
difficult to detect on DWI. 

Many studies have reported that DWI has an addi-
tional value for detecting liver metastasis in combination 
with Gd-EOB-DTPA (Table 2); however, this remains 
controversial in hepatocellular carcinoma (HCC). Some 

Table 1  Detection of fibrosis using diffusion-weighted imaging

Tesla Respiratory Staging ROI setting b -value Diagnostic accuracy of fibrosis 
F3 or grater

AUC Sensitivity Specificity

Cece et al[91] 1.5 BH MTAVIR 5 ROIs, Both 0, 500, 1000 0.888 92.9 79.4
Taouli et al[92] 1.5 BH MTAVIR 4 ROIs, Both 0, 50 0.717 40 100

0, 300 0.716 50 94.7
0, 500 0.835 70 85
0, 700 0.901 66.7 100
0, 1000 0.832 80 90
0, 50, 300, 500, 700, 1000 0.896 88.9 80

Kocakoc et al[93] 1.5 BH Ishak 3 ROIs, Both 100, 600, 1000 0.759 56.5 99.3
Wu et al[47] 3 RT MTAVIR 5 ROIs, Right 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 200, 300, 400, 500, 1000
0.684

Chung et al[48] 1.5 RT MTAVIR 6 ROIs, Right 0, 100, 200, 900 0.768
0, 30, 60, 100, 150, 200, 900 0.764
0, 30, 60, 100, 150, 200, 400, 600, 
900

0.754 65.5 82.1

Ding et al[94] 1.5 FB New Inuyama Whole right lobe 0, 500 0.61 30.4 90.6
Feier et al[43] 3 NA MTAVIR 1 ROI, Right 50, 300, 600 0.77 81.08 72.5
Fujimoto et al[95] 1.5 NA MTAVIR 4 ROIs, Right 0, 1000 (entropy ADC) 0.926 87 84
Do et al[46] 1.5 BT Ludwig 4 ROIs, Right 0, 50, 500 (normalized ADC) 0.689 56 71
Bonekamp et al[96] 1.5 BT MTAVIR 9 ROIs, Both 0, 750 0.8 83.9 68.5
Wang et al[44] 1.5 NA MTAVIR 3 ROIs, Right 50, 500, 1000 0.84 88 76
Lewin et al[41] 1.5 RT MTAVIR 3 ROIs, Right 0, 200, 400, 800 0.92 87 87
Sandrosegaran et al[40] 1.5 BH 2 ROIs, Both 50, 400 0.656 51.7 71.4

Saito K et al . DWI of the liver
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authors have reported no additional value because 
some welldifferentiated HCCs could not be detected on 
DWI as the major reason[68]. Welldifferentiated HCCs 
include variable pathological characteristics like as early 
HCCs whose pathology is very similar to the surrounding 
liver parenchyma, steatosis contained lesion and a 
hypervascular lesion. Kim et al[69] reported that early 
HCCs showed hyperintensity on DWI which was strongly 
associated with their progression to hypervascular HCCs.

Characteristic differentiation of liver tumors (benign vs 
malignant)
In hypercellular tissue, extracellular water cannot 
diffuse and this results in a reduction in ADC. A cystic 
component has few structures to restrict diffusion and 
this result in a high ADC. Cysts can be distinguished 
from solid lesions easily. The cutoff ADC was reported 
to be approximately 2.5 × 10-3 mm2/s for distinguishing 
cysts from other solid liver tumors[70]. Hemangioma 

is also relatively easy to distinguish from malignant 
lesions. The ADC of hemangioma was reported to 
be approximately 1.4 × 10-3 mm2/s. However, some 
overlaps have been recognized which reduce accuracy 
in distinguishing metastatic lesions[71]. This is particularly 
true for mucinous carcinoma from the ovary which 
mimics colorectal carcinoma (Figure 1). However, tumor 
characterization was reportedly not dependent on size[72] 

(Table 3). 
DWI is reportedly not helpful in differentiating focal 

nodular hyperplasia and adenoma from solid malignant 
lesions. The mean ADCs of these benign solid lesions 
were reported as 1.40-1.79 × 10-3 mm2/s[72,73]. Notably, 
the ADCs of these benign solid lesions and those of 
malignant lesions such as HCCs and metastatic tumors 
overlap (Figure 2). 

Histological differentiation of HCC
Preoperative prediction of the histological grade of HCC 

Table 2  Detection of liver tumor in combination with Gd-EOB-DTPA- enhanced magnetic resonance imaging

Tesla Respiratory b -value (× 10-3 s/mm2) Tumor Results

Kim et al[97] 3 RT 0, 100, 800 Mets Combined EOB-MRI and DWI yielded better 
accuracy and sensitivity(Various)

Chung et al[98] 3 FB 50, 400, 800 Mets Combined EOB-MRI and DWI yielded better 
accuracy and sensitivity(colorectal)

Koh et al[99] 1.5 FB 0, 50, 100, 250, 500, 750 Mets Combined EOB-MRI and DWI improved 
detection(colorectal)

Löwenthal et al[100] 1.5 BH 0, 500 Mets DWI can detect small lesions
(colorectal)

Shimada et al[101] 3 RT 0, 500 Mets EOB-MRI showed higher accuracy
(Various)

Donati et al[102] 1.5 BH 0, 150, 500 Mets No added value of DWI
(Various)

Kim et al[103] 1.5 RT 0, 50, 600 Mets, HCC DWI increases sensitivity for detecting Mets
No added value of DWI for HCC detection

Table 3  Characteristic differentiation of liver tumors

Tesla b -value ADC (×10-3 mm2)

Benign Malignant

Cyst Hemangioma All HCC Mets All

Goshima et al[104] 1.5 0, 100, 200, 400, 800 3.70 ± 0.9 1.23 ± 0.2 1.08 ± 0.3 0.99 ± 0.5
Battal et al[105] 1.5 0, 800 1.94 ± 0.61 0.86 ± 0.13
Gurtosoyianni et al[106] 1.5 0, 50, 500, 1000 2.55 1.9 2.55 1.38 0.99 1.04
Testa et al[71] 1.5 0, 600 2.4 1
Miller et al[73] 1.5 0, 500 3.40 ± 0.48 2.26 ± 0.70 2.50 ± 0.86 1.54 ± 0.44 1.50 ± 0.65 1.52 ± 0.55
Namimoto et al[107] 1.5 30, 1200 3.05 1.95 0.99 1.15 1.04
Kim et al[108] 1.5 3, 57, 192, 408, 517, 705, 

846
2.91 ± 1.51 2.04 ± 1.01 2.49 ± 1.39 0.97 ± 0.31 1.06 ± 0.50 1.01 ± 0.38

Taouli et al[67] 1.5 0, 500 3.63 ± 0.56 2.95 ± 0.67 1.33 ± 0.13 0.94 ± 0.60
Cieszanowsk et al[109] 1.5 50, 400, 800 2.45 1,55 1.86 0.94 1.05 1.07
Bruegel et al[72] 1.5 50, 300, 600 3.02 ± 0.31 1.92 ± 0.34 1.05 ± 0.09 1.22 ± 0.31
Kandpal et al[13] 1.5 0, 500 2.90 ± 0.51 2.36 ± 0.48 1.27 ± 0.42 1.13 ± 0.41
Demir et al[110] 1.5 0, 1000 3.05 ± 0.26 2.46 ± 0.21 2.57 ± 0.26 0.90 ± 0.10 0.79 ± 0.11 0.86 ± 0.11
Oner et al[111] 1.5 0, 500 2.34 ± 0.36 1.72 ± 0.30 1.03 ± 0.24
Holzapfel et al[112] 1.5 50, 300, 600 2.61 ± 0.57 1.69 ± 0.34 2.36 ± 0.62 1.12 ± 0.28 1.08 ± 0.32 1.09 ± 0.30

Saito K et al . DWI of the liver

DWI: Diffusion-weighted imaging; BH: Breath-hold; RT: Respiratory gating; FB: Free breathing; HCC: Hepatocellular carcinoma.

ADC: Apparent diffusion coefficient; HCC: Hepatocellular carcinoma.
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can facilitate the estimation of prognosis and contribute 
to the choice of therapy. There is also a higher incidence 
of recurrence in poorly differentiated HCCs than in well
differentiated and moderately differentiated HCCs[74,75]. 

Histological grade correlates with cellularity and 
structural atypia which includes trabecular, pseudoglandular, 
solid, and scirrhus. As HCC progresses to poorly diff
erentiated HCC, there is increased cellular density, nuclear/

cytoplasmic ratio and intracellular organelles; thickened 
cellular plates; and shrinkage of the extracellular and 
intracellular spaces. This may lead to restricted diffusion in 
poorly differentiated HCC. However, the results have been 
inconsistent[75-79] (Table 4). One of the main reasons for this 
inconsistency is the region of interest (ROI) setting. Previous 
studies showed no significant differences in the ROI setting 
for each histological grade on whole lesions[76,77]. On the 

A B

C

Figure 1  A 65-year-old man with metastatic 
tumor in the liver from colorectal carcinoma. A: 
T2-weighted imaging shows an obvious hyperintense 
lesion on segment VII (arrow); B: DWI (b-value 
of 800 s/mm2) shows hyperintensity; C: Apparent 
diffusion coefficient map also shows hyperintensity. 
This finding mimics that for hemangioma. DWI: 
Diffusion-weighted imaging.

A B

C

Figure 2  A 45-year-old man with focal nodular 
hyperplasia. A: Hepatobiliary phase on Gd-EOB-
DTPA-enhanced MRI shows mainly hyperintensity 
on the outer layer and hypointensity on the inner 
layer. These enhancement patterns are typical 
radiologic findings of focal nodular hyperplasia; B: 
DWI (b-value of 800 s/mm2) shows hyperintensity; C: 
ADC map shows heterogeneous hyperintensity. The 
ADC is 1.40 × 10-3 mm2/s. Gd-EOB-DTPA-enhanced 
MRI is more useful for obtaining a precise diagnosis 
than DWI alone. MRI: Magnetic resonance imaging; 
DWI: Diffusion-weighted imaging; ADC: Apparent 
diffusion coefficient.

Saito K et al . DWI of the liver
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Table 4  Histological differentiation of hepatocellular carcinoma using apparent diffusion coefficient

other hand, in cases of the ROI set at the lowest ADC and 
the ROI set to avoid a necrotic or cystic area, a lower ADC 
was obtained in poorly differentiated HCC[75,78,79].

The current applications are IVIM and ADC minimum. 
D shows a better diagnostic performance than ADC in 
distinguishing highgrade HCC from lowgrade HCC[80]. 
ADC contains combined information on cell density 
(D) and perfusion (f) (microcirculation). Minimum-spot 
ADC was reported to be significantly lower in poorly 
differentiated HCC than in welldifferentiated HCC and 
moderately differentiated HCC[75]. 

MONITORING OF THERAPY
Transarterial chemoembolization in HCC
Tumor necrosis shows a high intensity on the ADC map, 
representing free diffusion of water molecules[81]. The-
refore, DWI can evaluate the therapeutic outcome of 
transarterial chemoembolization (TACE). In case of a 
hypervascular lesion without a definite venous washout, 
DWI has an advantage compared with dynamic MRI and 
improves the detection of marginal tumor recurrence[14], 
although dynamic MRI has a more accurate correlation 
with histopathological findings in necrosis. TACEinduced 
perilesional parenchymal changes negatively affect DWI 
in terms of overall accuracy. On the other hand, Kokabi 
et al[82] reported that an ADC change 3 h after TACE is an 
accurate predictor of treatment response and survival. 

IVIM and diffusion kurtosis imaging (DKI) are current 
imaging biomarkers. Specifically, D* predicts lipiodol 
uptake[83]. DKI is reportedly a more reliable imaging bio-
marker than ADC[84]. 

Chemotherapy in liver metastasis
Some studies have reported that ADC could predict the 
response to chemotherapy in liver metastasis[85,86]. Liang 
et al reported that pretreatment ADC is significantly lower 
in responders[87]. In contrast, Koh et al[85] reported that 
a high pretreatment ADC predicted a poor response. 
Furthermore, ADC increases 3 or 7 d after chemotherapy 
in responders. Recently, ADC histogram analysis has 
shown that the mean, 1st percentile, 10th percentile, 
50th percentile, 90th percentile, and 99th percentile 
were significantly lower in the responding group than 

in the nonresponding group. The reason why ADC in 
responders is lower is that high cell density tumors are 
well perfused, resulting in the high delivery and retention 
of chemotherapeutic drugs. 

Sorafenib in HCC
IVIM has been proposed for evaluating the therapeutic 
outcome of sorafenib[88,89]. D before treatment in res-
ponders was found to be higher than D before treatment 
in nonresponders[88]. This might be due to the tumor 
histological grade. Sorafenib acts more effectively in low-
grade HCCs[90]. D can better distinguish lowgrade HCCs 
from highgrade HCCs[80], and a higher D indicates low-
grade HCCs. Lewin et al[89] reported that f increased 
significantly in responders after 2 wk. This perfusion par
ameter f increases with normalization of tumor vessels. 

CONCLUSION
DWI has potential as an imaging biomarker for fibrosis, 
tumor detection/characterization, and following/predicting 
therapy outcome. To improve accuracy and reproducibility, 
researchers have validated this new technique in terms 
of image acquisition, data sampling, and analysis. The 
added value of DWI in contrast-enhanced MRI has been 
established in the detection of malignant lesions of the 
liver. However, some limitations remain in terms of lesion 
characterization and fibrosis detection. Furthermore, the 
methodologies of image acquisition and data analysis 
have been inconsistent. Therefore, researchers should 
make every effort not only to improve accuracy and 
reproducibility but also to standardize the imaging 
parameters.
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