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Abstract

Protein intrinsic disorder has been shown to play an important role in some posttranslational
modifications (PTM). In this paper, we systematically investigated the correlation between protein
disorder and dozens of PTMs using data from UniProt/Swiss-Prot and 3-D structures solved by
NMR from Protein Data Bank. We observed that many PTMs have a preference for occurrence in
disordered regions, including phospho-serine/-threonine/-tyrosine, hydroxylation, sulfotyrosine, S-
geranylgeranyl cysteine, deamidated glutamine, 4-carboxyglutamate, 6'-bromotryptophan and
most of methylation; while a few PTMs have a preference for occurrence in ordered regions,
including 4-aspartylphosphate, S-nitrosocysteine, tele-methylhistidine, FMN conjugation, 4,5-
dihydroxylysine, 3-methylthioaspartic acid, most of ADP-ribosylation, and most of FAD
attachment. It is also noted that acetyllysine does not show any significant preference for
occurrence in either disordered or ordered regions. Further analysis of NMR structures suggested
disorder-to-order transitions might be introduced by modifications of phospho-serine/-threonine,
mono-/di-/tri-methyllysine, sulfotyrosine, 4-carboxyglutamate, and potentially 4-hydroxyproline.
This study sheds light on the functions and mechanisms of various PTMs.

1. Background

Almost all proteins undergo certain chemical modifications on their side chains, called
posttranslational modifications (PTM) at some cellular state. Many PTM sites have been
shown to occur in disordered regions. For example, it has been reported that phosphorylation
was overrepresented in disordered regions;1:2 the regions containing acetylated and
methylated lysines in histone proteins was shown to be disordered;3 methylated arginine was
observed to be enriched in disordered regions;* various aspects of ubiquitination process
were reported to occur predominately in disordered regions,® and protein disorder was
suggested to facilitate hydroxylation of proline residues.® Large-scale studies on the
relationship between protein disorder and PTM were also carried out previously. Pang et al.
investigated the correlation between 44 types of PTMs and surface accessibility/disorder.’
Xie et al. studied the correlations between predicted disorder and PTMs annotated by Swiss-
Prot functional keywords, and they reported significant associations between PTMs and
predicted protein disorder.8 We noted that these two large-scale studies were both based on

I{Corresponding author: xudong@missouri.edu.
Current address: Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Gao and Xu

2. Results

Page 2

computationally predicted disorder. While most disorder prediction tools achieve high
accuracies when predicting long intrinsic disordered regions, they typically do not target
prediction of short disordered regions. Besides, the current way to define disorder regions
(residues with atoms missing in X-ray structures) for training these tools may not be reliable.
Therefore, correlations between PTM and disorder implied from these prediction tools may
have some bias.

In this study, we systematically investigated the correlations between various PTMs and
protein disorder/flexibility. We utilized large-scale PTM annotations from UniProt/Swiss-
Prot too but with more specific types and on a finer level than noted in previous studies (e.g.
Xie et al). We excluded N/C-terminal modifications (e.g. N-linked acetylation and N-linked
methylation, and C-linked amidation) for analysis, since terminal residues in general are
inherently more flexible/disordered. In addition, to overcome the limitations of predicted
disorder, we explored for the first time NMR 3-D structures in Protein Data Bank (PDB)? to
study the relationship between PTM and disorder/flexibility. In this regard, we do not treat
protein regions with binary states, i.e. order and intrinsic disorder. Instead, we characterize
protein order/disorder using a continuous and quantitative measure, i.e. flexibility defined by
the distribution of multiple structural models in the same PDB file. By combining results of
predicted disorder and NMR structures, PTMs were categorized according to their
correlations with protein disorder more reliably.

We also compared the disorder/order state before and after modifications occur. Previous
studies suggested disorder-to-order transitions after modifications such as
phosphorylation.19 Here, we further studied the NMR data innovatively approaching this
issue in a more systematical way thereby observing modification-induced disorder-to-order
transitions for several PTMs.

2.1. Correlation of PTM sites and their predicted disorder scores

Protein sequences and annotations of known PTMs were retrieved from UniProt/Swiss-Prot
(release 2010_09)11, using a bioinformatics tool, Musite.? Disordered regions were
predicted for the retrieved proteins by applying a widely used protein disorder prediction
tool VSL2B.12 The disorder prediction scores of PTM sites were then extracted and
compared with those of non-PTM sites, as shown in Table 1 with major findings
summarized below:

. For phosphorylation, the average predicted disorder scores of
phosphoserines, phosphothreonines and phosphotyrosines are significantly
greater than those of their unmodified counterparts. However,
phosphohistidine and 4-aspartylphosphate have significant lower mean
disorder scores than their unmodified counterparts.

. We investigated 17 subtypes of methylation/dimethylation/trimethylation.
Ten of them (including all 4 subtypes of dimethylation) have significantly
greater mean predicted disorder scores, including cysteine methyl ester,
asymmetric dimethylarginine, N6-methyllysine, symmetric
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dimethylarginine, N6,N6-dimethyllysine, glutamate methyl ester (Glu),
omega-N-methylarginine, Omega-N-methylated arginine, leucine methyl
ester and N6-methylated lysine. Tele-methylhistine and S-methylcysteine
have significantly lower mean disorder scores. N6,N6,N6-trimethyllysine
does not have any significant difference in mean disorder score between
PTM and non-PTM lysine residues.

All 3 subtypes of hydroxylation (4-hydroxyproline, 3-hydroxyproline and
5-hydroxylysine) have significantly greater mean disorder scores.

For acetylation, N2-acetylarginines have much greater mean scores than
non-PTM arginine residues. N6-acetyllysine has lower mean scores than
non-PTM lysine residues. Although the difference is statistically
significant, the absolute value of difference is very small. Therefore, we
assume that N6-acetyllysine does not have any significant preference for
occurrence in either disordered or ordered regions.

The residues with all 4 subtypes of ADP-ribosylation have lower mean
disorder scores than their unmodified counterparts, but the difference for
ADP-ribosylcysteine is not significant.

For deamidation, deamidated glutamine has a significantly greater mean
disorder score, while diamidated asparagine has a significantly lower one.

For FAD attachment, tele-8alpha-FAD histidine and S-8alpha-FAD
cysteine have significantly lower disorder scores.

For FMN conjugation, both FMN phosphoryl threonine and S-4a-FMN
cysteine have significantly lower mean disorder scores.

4-carboxyglutamate, S-geranylgeranyl cysteine, 6'-bromotryptophan and
sulfotyrosine all have significantly greater mean disorder scores than their
unmodified counterparts.

4,5-dihydroxylysine and S-nitrosocysteine both have significantly lower
mean disorder scores than their unmodified counterparts.

S-palmitoyl cysteine has a lower mean disorder score although the
difference is not large.

S-diacylglycerol cysteine does not have a significantly different mean
disorder score.

3-methylthioaspartic acid has a significantly lower mean disorder score.

2.2. Correlation of PTM sites and their spatial fluctuations in NMR 3-D structures

We also investigated the flexibility of spatial fluctuations of PTM sites in protein 3-D
structures determined by NMR spectroscopy. 7,714 NMR-based protein structures were
retrieved from PDB (as of May 4", 2011). Since the number of modified residues in 3-D
structures is limited (as shown in Section 2.3), PTM annotations from UniProt/Swiss-Prot
were mapped and aligned onto known protein structures, based on the mapping downloaded
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from European Bioinformatics Institute (ftp:/ftp.ebi.ac.uk/pub/databases/msd/sifts/text/
pdb_chain_uniprot.Ist). We excluded PTM sites that had any mismatch (i.e. with any
different types of amino acids) between UniProt and PDB.

The spatial fluctuation score of a residue among multiple NMR models of the same protein
was calculated based on the following equation:

n

> (X - X) (X - X)
F: =1

n )

where nis the number of models in the PDB file, Xjis a 3-element vector representing the 3-
D coordinates of the C-alpha atom for the 77 model, and X'is the mean vector of X/s.
Structures with less than 10 models (7<10) were excluded from the analysis. A residue with
a larger spatial fluctuation typically results from sparse spatial restraints derived from
nuclear Overhauser effects (NOEs) in NMR spectroscopy. Thus, the residue is more flexible
and has higher tendency to be disordered. Conventionally, short mobile regions of proteins
may not be considered as intrinsic disorder, which often refers to long protein fragments
(>40 residues) that cannot be observed in X-ray crystallography. However, we believe the
protein flexibility has a continuous spectrum, from highly rigid, to mobile and then to
completely disordered. Therefore, we use the parameter ~to characterize protein order/
disorder, which can quantify the relationship between PTM and protein disorder
continuously. The spatial fluctuations of PTM sites and non-PTM sites were then compared
using student’s #test as shown in Table 2. Details are explained below:

. For phosphorylation, phospho-serine, -threonine and -tyrosine have
significantly greater mean fluctuation scores than corresponding non-PTM
residues; and 4-aspartylphosphate has a significantly lower one. These
results are consistent with Table 1.

. The result for phosphohistinine is not consistent with the corresponding
comparison in Table 1. The mean fluctuation score of phosphohistidine is
greater than non-PTM histidine, mainly because the residue H243 in the
structure with PDB accession of 1JOY (corresponding to the residue H243
of Swiss-Prot entry POAEJ4) has very high fluctuation scores of 4.85 A
(chain A) and 5.11 A (chain B). The fluctuation scores of residues
corresponding to the other two phosphohistidines (H842 in PDB:1SR2 and
H58 in PDB:1Y6D) are actually low (0.58 A and 0.96 A). Since the two
high fluctuation scores may be outliers (which could explain the
insignificant #test p-value), one cannot make any inference until more
data are available.

. The results for the subtypes of methylation are consistent with Table 1,
except that asymmetric dimethylarginine does not have a significant p-
value. Omega-N-methylarginine, N6-methyllysine, symmetric
dimethylarginine and N6,N6-dimethyllysine have significantly greater
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mean fluctuation scores than corresponding non-PTM residues. Similar to
Table 1, N6,N6,N6-trimethyllysine has a mean fluctuation score very close
to non-PTM lysine.

. Again, N6-acetyllysine has a mean fluctuation score that is almost the
same as nhon-PTM lysine, providing more evidence that N6-acetyllysine
may not have preference on either disordered or ordered regions.

. 6'-bromotryptophan and 4-carboxyglutamate have significantly greater
mean fluctuation scores, which are consistent with Table 1.

. S-nitrosocysteine has a significantly lower mean fluctuation score, which
is consistent with Table 1.

. Sulfotysine has a greater mean fluctuation score but not statistically
significant. More data are needed for a significance test.

. S-palmitoyl cysteine has a significantly higher mean fluctuation score than
non-PTM cysteine, which is inconsistent with Table 1. We noted that the
disorder scores for both S-palmitoyl cysteine and corresponding non-PTM
sites are relatively low in Table 1 (0.27, and 0.35, respectively). We
observed from the structures (e.g. C422 in PDB:1Q68 and C5 in PDB:
1SPF) that S-palmitoyl cysteine tends to be in short, highly maobile regions
(less than 15 amino acids), which are not considered as disordered regions
by protein disorder prediction tools.

. The inconstancy of results for 4-hydroxyproline between Table 1 and
Table 2 will be explained in Section 2.3.

2.3. Spatial fluctuation changes in 3-D structure due to PTM

Although sparse, there are some modified residues characterized in the NMR-based 3-D
structures. To study the possibility of conformational changes after modifications, we
separated PTM sites used in Section 2.2 into two groups: one group containing those PTM
sites that are actually modified in structures; and the other group containing PTM sites
(mapped from UniProt/Swiss-Prot) that are in pre-modified apo-forms in structures. For
each type of PTM, we then compared the spatial fluctuations between the two groups, if
there were cases available in both groups, as shown in Table 3. Interestingly, for all groups
except 4-hydroxyproline, the modified residues have lower mean spatial fluctuations than
unmodified residues. The differences for phosphoserine, phosphothreonine, N6-
methyllysine, N6,N6-dimethyllysine, N6,N6,N6-trimethyllysine, sulfotyrosine and 4-
carboxyglutamate are significant. This finding could indicate disorder-to-order transitions
triggered by those PTMs. For 4-hydroxyproline, most of the PTM sites (65 out of 68) are
modified in the structures (Table 3). The mean spatial fluctuation of the three residues in
apo-form is lower than the 65 residues in modified form mainly because one of the three
unmodified residues, i.e. P6 in PDB:2H8S, has a very low fluctuation score (0.32 A). If we
assume this residue is an outlier, 4-hydroxyproline could also follow the same disorder-to-
order transition, which is also supported by the data in Tables 1 and 2. The disorder scores in
Table 1 for pre-modified residues suggest 4-hydroxyprolines are very likely to occur on
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disordered proline residues, and the spatial fluctuations in Table 2 for post-modified residues
suggest that 4hydroxyprolines’ transition are more ordered.

As an example, coagulation factor 1X (UniProt accession of P00740) undergoes disorder-to-
order transition in 3-D structure after gamma-carboxylation on glutamic acid, as shown in
Figure 1. PDB entries 1CF113 and 1CFH1* are two NMR solved structures for residues 1-47
of coagulaiton factor IX. 1CFl is heavily carboxylated, containing 12 4-carboxyglutamates
(Figure 1(A)), while none of glutamic acid residues in 1CFH are carboxylated (Figure 1(D)).
From the secondary structures (Figures 1(B) and 1(E)), it is obvious that 1CFI is
substantially more ordered with increased helical content than 1CFH. From Figures 1(C) and
1(F), the structure fluctuation among NMR models for 1CFI is much lower than that of
1CFH.

3. Discussion

Based on observed correlations between PTMs and predicted disorder and spatial fluctuation
in 3-D structures, we can divide PTMs into three categories: (1) PTMs that have preferences
for occurrence in disordered regions; (2) PTMs that have preferences for occurrence in
ordered regions; and (3) PTMs that have no obvious preferences for occurrence in either
disordered or ordered regions. Some PTMs have positive correlations to both predicted
disorder and high spatial fluctuation in NMR structures. Therefore, they have strong
preferences for occurrence in disordered regions including phosphoserine,
phosphothreonine, phosphotyrosine, omega-N-methylarginine, N6-methyllysine, symmetric
dimethylarginine, N6,N6-dimethylarginine, 6’-bromotryptophan, and 4-carboxyglutamate.
Some PTMs were observed to be positively correlated to both predicted order and low
spatial fluctuation, including 4-aspartylphosphate and S-nitrosocysteine, and thus they are
highly overrepresented in ordered regions. Many PTMs have significant positive correlations
to predicted disorder only, but with no corresponding NMR structures available including
cysteine methyl ester, glutamate methyl easter, N6-methylated lysine, leucine methyl easter,
asymmetric dimethylarginine, omega-N-methylated arginine, 5-hydroxylysine, 3-
hydroxyproline, N2-acetylarginine, deamidated glutamine, S-geranylgeranyl cysteine, and
sulfotyrosine. Some PTMs have positive correlations to predicted order only but are also
with no corresponding NMR structures available including tele-methylhistidine, ADP-
ribosylasparagine, ADP-ribosylserine, ADP-ribosylarginine, tele-8alpha-FAD histidine,
S-8alpha-FAD cysteine, 4,5-dihydroxylysine and 3-methylthioaspartic acid. N6-acetyllysine
has no significant correlation to either predicted disorder or spatial fluctuation in 3-D
structures. Further analysis of NMR structures also provided evidences of disorder-to-order
transitions after modifications of phospho-serine/-threonine, mono-/di-/tri-methyllysine,
sulfotyrosine, 4-carboxyglutamate, and potentially 4-hydroxyproline. Disorder-to-order
transition could be a general mechanism that many PTMs use to control the functions of
proteins. The 4-hydroxyproline residues have high mean predicted disorder but low mean
spatial fluctuation. This could be due to disorder-to-order transition after hydroxylation and,
therefore, 4-hydroxyproline may still target proline residues predominately in disordered
regions.
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It is noted that both data of disorder prediction and NMR structures have limitations:
predicted disorder may have a certain level of inaccuracy depending on the training data and
algorithm, and NMR structures may have bias since the models of some NMR structures
may have been selected in an ad hoc way by the experimentalists. By combining both data,
we hope to better assess the results and hence gain more credibility with consistent results.

Most of the results in this paper are novel findings. It is worth mentioning the differences
between this study and previous ones by Pang et al.” and Xie et al.8 These two studies
correlated PTMs with predicted disorder/order, while this study departed from tradition to
take advantage of NMR structures to verify the correlations and to investigate PTM-induced
disorder-to-order transitions. Xie et al. only reported results for general types of PTMs (e.g.
methylation and phosphorylation). In contrast, we investigated PTMs with many specific
types and subtypes. We found that subtypes of PTMs (e.g. N6-methyllysine and tele-
methylhistidine) in the same general type (e.g. methylation) could have different correlations
to disorder regions. All these findings provided useful insight into the mechanisms of
various PTMs and may facilitate further investigations into the structural and functional
implications of these PTMs.
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Fig. 1.
Disorder-to-order transition after gamma-carboxylation on coagulation factor IX (UniProt

accession P00740). (A) Sequence and secondary structures of PDB 1CFI (heavily
carboxylated); (B) 3-D visualization of the first model in 1CFl; (C) 3-D visualization of all
17 models overlaid in 1CFI; (D) Sequence and secondary structures of PDB 1CFH (with no
carboxylation); (E) 3-D visualization of the first model in 1CFH; (F) 3-D visualization of all
16 models overlaid in 1CFH.
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