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Abstract

Due to the need to balance the requirement for efficient respiration in the face of tremendous 

levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to 

maintain sustainable defense that minimizes damage caused by exposures and the detrimental 

effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage 

defenses constitute essential 1st and 2nd lines of protection that prevent the accumulation of 

potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without 

inducing inflammation. Though seemingly distinct, recent data show that epithelial and 

macrophage mediated defenses are linked through their shared reliance on airway mucins, in 

particular the polymeric mucin MUC5B. This review highlights our understanding of novel 

mechanisms that link mucus and macrophage defenses. The roles of phagocytosis and the effects 

of factors that are contained within mucus on phagocytosis, as well as newly identified roles for 

mucin glycoproteins in the direct regulation of leukocyte functions are discussed. The emergence 

of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how 

homeostasis is maintained under healthy conditions and how it is restored in disease.

Introduction

The principal function of the lungs is gas exchange. To this end, under normal tidal 

breathing, 8,000–12,000 liters of air pass through lungs each day. Gas flows through 

multiple generations of conducting airways, which ultimately terminate in the alveoli. 

Alveoli are bounded by type I epithelial cells that cover over 95% of the lung surface, and to 

allow for efficient exchange of O2 and CO2, type I epithelia are extremely thin and together 

with alveolar capillaries create a diffusion distance of <1 µm. Consequently, these thin 

surfaces are protected by elaborate defense mechanisms that must trap and eliminate 
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particulates and pathogens before they reach the alveolar walls, while simultaneously 

preventing and/or suppressing potentially inflammatory responses that could injure delicate 

gas exchange structures. This review concentrates on the mucociliary escalator and alveolar 

macrophages (AMs) as crucial first and second lines of host defense in the lungs.

Airway tissues are exposed to ~100 billion inhaled particles daily (1). Airborne particles can 

arise from natural and manmade sources, can vary in size and chemical composition, can 

differ in concentrations based on geography and local environments, and can thus result in 

heterogeneous pathological responses (2–8). Most inspired materials are large enough to 

impact upon nasopharyngeal and tracheal mucosae where they are transported proximally by 

mucociliary clearance (MCC) and are ultimately eliminated by expectoration or swallowing. 

The remainder deposit in the lung periphery where they are ingested by AMs. Under healthy 

conditions, particulate deposition in the periphery is primarily limited to small particles (<1 

µm diameter). However, under conditions where particulate concentrations are high or in 

pathological settings where MCC is impaired, larger particles can also accumulate in the 

lung periphery. Together, the coordinated functions of MCC and AMs eliminate inhaled 

particulates from the alveoli and airways, and hence comprise robust mechanisms for 

exogenous clearance. At the same time, clearance also removes endogenous materials that 

are generated during normal cell turnover or as a consequence of disease. Critically, 

although AM and MCC functions are ordinarily considered distinct, emerging data show 

that their functions are tightly linked through physiological and biochemical mechanisms. 

Below we describe mucus and macrophages separately, and this is followed by a discussion 

of emerging knowledge of interactions between them.

The mucus barrier and MCC

MCC involves the coordinated activities of secretory cells that release polymeric mucin 

glycoproteins, and multi-ciliated cells whose apically localized motile cilia provide a means 

for transport and elimination. Cilia are molecular machines whose structural and motile 

components are highly regulated; their complex assembly, function, and dysfunction in 

diseases are reviewed elsewhere (9, 10). For the purposes of this review, we consider 

physiological roles of motile cilia, and we highlight key aspects of mucociliary interactions 

that are essential in the airways. MCC requires the coordinated regulation of airway surface 

liquid to control the osmolarity, viscoelasticity, and resultant transportability of secreted 

mucus (11, 12). This control is driven by electrolyte transport machinery intracellularly as 

well as the presence of osmolytes in the extracellular space. Although ciliated and mucous 

layers have been considered as separate entities (‘sol’ and ‘gel’ phases), this distinction is 

challenged by recent studies demonstrating it as a more continuous glycoprotein hydrogel. 

Membrane mucins (MUC1, MUC4, and MUC16) that are present along cilia surfaces form a 

hydrated brush that allows for the free movement of cilia. The overlying, viscoelastic mucus 

layer is positioned atop this grafted brush of cilia. As a result, airway surface hydration 

regulates the balance between cilia and mucus structures maintained in a ‘gel-on-brush’ 

conformation that promotes effective motility and MCC (13).

Loss of MCC is a significant cause of respiratory infections. For instance, impaired MCC is 

a primary pathophysiological feature of infection-related diseases such as primary ciliary 
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dyskinesia (PCD) where cilia motility is impaired or absent, and cystic fibrosis (CF) where 

airway surface dehydration causes mucus adhesion to airway surfaces and hyperosmotic 

collapse of underlying cilia. Less appreciated perhaps are findings in COPD and asthma, 

which also show significant MCC impairment (14–21). Unlike the primary roles of altered 

mucus and ciliary structures in CF and PCD, COPD and asthma-related changes are 

secondary to inflammatory or injurious stimuli that cause impairments in ciliary motility and 

the dysregulated production of the two major secreted mucins, MUC5AC and MUC5B (22–

25).

Expression of the airway mucins MUC5AC and MUC5B

Under healthy conditions, MUC5AC and MUC5B are both produced in the lungs. MUC5AC 

is found predominantly in surface epithelia throughout the central conducting airways, 

whereas MUC5B is found mainly in submucosal glands of central airways (trachea and 

bronchi) and in non-ciliated surface epithelial cells of peripheral airways. MUC5AC levels 

increase in both airway surface and glandular epithelia in asthma (22, 23) and COPD (24, 

26, 27). By contrast, MUC5B levels are more variable. For example, in patients with 

established CF and COPD, MUC5B levels are increased in sputum (28, 29), which is 

predominated by central airway secretions that are supplied by tracheobronchial submucosal 

glands. However, in patients with early or pre-clinical COPD or with strong allergic asthma 

MUC5B levels actually decrease, especially within epithelial cells that line central and 

peripheral airway surfaces where MUC5B transcript levels are reduced by 90% or more (22–

24, 27). It is thus plausible that differential repression of MUC5B could affect MCC and 

contribute to lung pathologies. Indeed, recent studies in mice provide mechanistic support 

for this.

In mice, deletion of the Muc5b gene caused severe upper and lower airway MCC 

impairments and led to the development of lethal spontaneous infections (30). Interestingly, 

although chronic infection and inflammation were prominent outcomes in Muc5b knockout 

mice, their pathobiological impacts were stronger than those observed in models of PCD. In 

cilia-defective Dnaic, Pcdip1, Spef2, and Cby knockout mice, although MCC is severely 

impaired, upper airway pathologies were not reported to be lethal, and they did not carry 

over to the lower respiratory tract (31–33). Thus, among MCC components in the lungs, 

Muc5b is a dominant regulator of homeostatic microbial elimination. In addition, during 

chronic spontaneous and acute experimental infections, Muc5ac production increased in 

Muc5b knockout mice. Although not entirely protective itself, Muc5ac could have played a 

role in delaying the effects of infections (30). Possible explanations for the mucin functions 

in airway defense (as well as differences between Muc5ac and Muc5b) may reflect 

differences in their polymeric structures, glycosylation, and interactions with microbes or 

anti-microbial molecules. Determination of the specific and overlapping roles of Muc5ac 

and Muc5b remains an area of urgent investigation.

Mucin Expression

MUC5AC/Muc5ac and MUC5B/Muc5b gene expression levels are regulated by endogenous 

and environmental factors. For human MUC5B, single nucleotide polymorphisms have been 

shown to regulate expression via control of promoter activity (34–36). These genetic 
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controls likely impact (or are impacted upon) by numerous innate and adaptive immune 

cytokine signaling pathways, as well as growth factor regulated mechanisms that are 

associated with responses to inflammation, injury, and tissue repair. These are reviewed 

extensively elsewhere (37–42). Lastly, endogenous factors include developmental (43–46) 

and epigenetic (47–49) regulatory mechanisms, which may play roles in the expression of 

mucins in cancers.

Mucin polymerization

The abilities of secreted mucins to regulate MCC are largely dependent on their polymer 

structures formed through disulfide bonds (Figure 1). Like other members of the secreted 

polymeric mucin family, Muc5ac and Muc5b are composed of ~5–6% cysteines (~250–300 

per molecule). They have cysteine-rich N- and C- terminal von Willebrand factor (vWF) 

type D-like and C- terminal cysteine knot disulfide bonding domains that are critical for 

intermolecular mucin assembly (50–52). Additional highly conserved cysteine-rich CysD 

domains are interspersed in varying numbers in polymeric mucin carbohydrate-rich repeats 

(53–55). Through intramolecular disulfide linkages, CysD domains are proposed to form 

hydrophobic loop structures that facilitate mucin alignment and regulate mucus mesh 

spacing (56). Furthermore, in each mucin at least 100 cysteines exist that are not found in 

defined “domains”. In all cases, the majority of disulfide bonds are thought to form 

intracellularly during assembly. In the extracellular environment, free cysteines that do exist 

may become oxidized and form additional cross-links that increase the elastic moduli of 

mucus gels (57). Disruption of N- and C-terminal bonds or CysD’s may be sufficient to 

“loosen” obstructive mucus. Accordingly, current mucolytic therapies such as N-

acetylcysteine, as well as investigative therapies, target these by reducing disulfides and 

decreasing mucus viscoelasticity, thereby enhancing mucus transport (58–60). A current 

challenge is to determine which therapies can be given at doses that are well-tolerated and 

still maintain the benefits of efficient defense.

Mucin glycosylation

While disulfide polymerization is an important but underappreciated aspect of secreted 

mucins, their glycosylation is perhaps more eminent. Mucins are defined by their heavy 

glycosylation, especially within variable-sized glycan-rich domains (see Figure 1). In 

MUC5AC and MUC5B, these regions are called ‘PTS’ domains due to their enrichment in 

prolines, threonines, and serines. PTS-rich repeats are sites of O-glycosylation, starting with 

N-acetylgalactosamine on serine and threonine residues. Galactose and N-acetylglucosamine 

are then attached and elaborated linearly or in branches, and the sugars can be modified by 

sulfation or by the addition of terminal sialic acid and fucose glycans. Two chief purposes of 

mucin glycans are to adsorb water and to participate in host defense. For water adsorption, 

glycan variations can greatly affect the osmotic pressures imparted by mucus gels. For 

example, sialylated and sulfated termini are strongly charged, and their large polar surface 

areas promote both hydration and electronegative repulsion (11, 13). On the other hand, 

fucose has a lower charge and an approximately 50% lower polar surface area, which 

hypothetically promotes mucus aggregation, increases viscoelasticity, and thereby inhibits 

MCC. For host defense, mucin glycans are known to interact with sugar binding molecules 

on a variety of bacteria that colonize or infect the lungs (61–67) and gastrointestinal tract 
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(68–74), fungi such as Aspergillus fumigatus (75) and respiratory viruses such as respiratory 

syncytial virus and influenza (76, 77). Whether these interactions are beneficial to the host 

or the microbe vary widely. Nonetheless, as the result of host genetics and environmental 

exposures (such as infectious or allergic states) protection is limited. Impaired defense may 

be affected by changes in the properties of mucus (e.g., through variations in MUC5AC/
Muc5ac vs MUC5B/Muc5b expression levels or glycosylation) that are often coupled with 

ciliary dysfunction (e.g., through loss/absence of ciliated cells or components of motile cilia) 

(78–91). Taken together, the roles of mucins in the formation and maintenance of a mucus 

gel, and their abilities to bind microorganisms demonstrate the coordinated function and 

dysfunction of mucus binding and clearance dynamics in host defense.

In summary, this conventional view of the mucociliary barrier as a defense system regulated 

by mucus and ciliary functions has been refined by the identification of key factors such as 

Muc5b and by the dissection of complex biophysical regulation of mucociliary interactions. 

An immediate challenge is to relate these to specific and required molecular components 

that regulate their intrinsic biophysical functions. Furthermore, new findings have introduced 

a novel set of interactions through which mucins regulate defense and inflammation in the 

lungs via resident and recruited pulmonary leukocyte populations. In particular, dendritic 

cell, eosinophil, and macrophage functions in various tissues have been demonstrated to be 

regulated specifically by mucin terminal glycans. Below we focus on macrophage and 

eosinophil functions that are regulated by extracellular oligosaccharides, including the 

airway mucin Muc5b.

Macrophage ontogeny and clearance mechanisms

Particulates and microbes that evade the first line of defense--epithelial mucus--reach the 

distal lung where they must be cleared rapidly and efficiently by the second line of defense--

phagocytes. AMs are the dominant phagocytic cell in the lungs, and during health account 

for up to 90% of the leukocytes in airspaces (92–95) They reside in the alveolar lumen, and 

perhaps also in the airways. In addition to clearing inhaled particulates, they are critical for 

removing dying cells and maintaining alveolar homeostasis. Recent evidence suggests that 

AMs arise from progenitors that occupy the fetal liver and yolk sac during embryogenesis 

(96–98). At birth, these cells populate the airspaces where they quickly mature into resident 

AMs. Importantly, AMs self-renew throughout life, and in the absence of disease, they are 

not replaced by monocytes from the circulation (99–101). During inflammation, resident 

AMs proliferate locally (102). At the same time monocytes from the circulation migrate to 

inflamed regions where they mature into macrophages, termed monocyte-derived AMs 

(MDAMs) (103). Hence, the inflammatory AM pool contains cells of both embryonic and 

post-natal origin. Although both macrophage subsets demonstrate phagocytic capacity, their 

respective contributions to the clearance of exogenous particulates and pathogens and to the 

removal of endogenous debris and cells remain unknown. Intriguingly, as inflammation 

resolves MDAMs undergo programmed cell death and are removed from the lungs, leaving 

behind the embryonically derived resident AMs to maintain alveolar homeostasis (103).

During health, resident AMs function as sentinels, constantly surveying the luminal 

environment for pathogens and inhaled particulates. Under most circumstances, such agents 
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are cleared silently and quickly - without inducing systemic inflammatory responses that 

could injure alveolar gas exchange structures. Indeed, experimental depletion of AMs results 

in exaggerated inflammatory responses (104–112), yet at the same time AM absence impairs 

the ability to control infection (107, 110, 113) demonstrating that restrained responses are 

more efficacious and beneficial. As discussed below, the alveolar environment plays an 

essential role in regulating AM endocytic and inflammatory responses, and it also contains a 

diverse array of molecules that recognize pathogens and facilitates clearance by non-

inflammatory phagocytic defense.

Phagocytic Mechanisms

AMs employ a number of mechanisms to ingest particulates and pathogens, all of which 

involve endocytosis, a process in which the plasma membrane surrounds a target, 

invaginates, and then pinches off to form a membrane bound vesicle (reviewed in (114, 

115)). Phagocytosis is the primary endocytic process by which AMs clear exogenous 

materials and is driven by cytoskeletal rearrangements that lead to rapid internalization of 

pathogens such as bacteria or fungi in a membrane bound phagosome. The phagosome 

becomes acidified after sequential fusion with endosomes and lysosomes, which contain 

hydrolytic enzymes and reactive oxygen species that digest and destroy the target. An initial 

interface that AM’s have with particles and pathogens occurs through a phagocytic synapse 

formed by a diverse array of plasma membrane proteins that recognize phagocytic targets 

through specific moieties on them, including microbial and host cell glycoconjugates. These 

AM receptors initiate and/or modulate phagocytosis.

Phagocytic Receptors

AMs are equipped with a vast repertoire of phagocytic receptors. Importantly, during 

microbial contact many different receptor families are often simultaneously activated. Some 

receptors directly recognize specific molecules on phagocytic targets (e.g., phosphatidyl 

serine or inflammasome molecules), whereas others bind to targets coated with opsonins 

(e.g., immunoglobulins, complement, and surfactant materials). In addition, whereas some 

(e.g. Fc receptors) lead directly to pathogen engulfment, others (e.g. Toll-like receptors 

(TLRs)) promote phagocytosis indirectly by upregulating the expression of phagocytic 

receptors and their downstream signaling molecules (116–118). Here we discuss main 

classes of receptors on AMs in the context of opsonins and signals present in airway mucus 

(119–125).

Immunoglobulin (Ig) signaling is an important adaptive immune process that mediates AM 

phagocytosis. AMs express high levels of Fcγ-receptors I (CD64), II (CD32) and III (CD16) 

that recognize the Fc region of IgG. Biologically relevant concentrations IgG can be found 

in the alveolar lining fluid of healthy humans (126). To trigger phagocytosis, Fcγ-receptors 

bind multiple IgG molecules within an immune complex. FcγRI is a high affinity receptor 

that in addition to respiratory burst and microbial killing also leads to phagocytosis. In 

comparison, FcγRII and FcγRIII may also promote phagocytosis but have low binding 

affinity. Respiratory epithelial cells secrete IgA by transcytosis, and IgA can easily be 

detected in the lumens of both the proximal airways and alveoli (126, 127). AMs express 

low levels of both FcαRI (CD89) and Fcα/µR that bind IgA and drive phagocytosis (128). 
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Adaptive immune Ig functions are linked to glycan structures through the recognition of 

carbohydrate antigens, N- and O-glycosylation of their Fc domains, and physical association 

with secreted mucins that have specific Ig binding domains (129–132).

The complement system aids in innate host defense by opsonizing immune complexes and 

pathogens, enhancing their killing and removal. Alveolar lavage fluid of healthy humans 

contains components of the classical (C1q, C2, C3, C4) and alternative (C3, Factor B) 

pathways (133–135). The classical pathway is primarily activated by the interaction of C1q 

with antigen-antibody complexes, but it can also be activated by direct binding of C1q to 

bacterial, fungal and virus membrane components (136, 137). Opsonization of targets by 

either means can stimulate phagocytosis. AMs express three complement receptors (CRs), 

CR1, CR3 and CR4. CR1 is incapable of internalizing opsonized particles on its own, but 

can enhance Fc-mediated phagocytosis. CR3 and CR4 are heterodimers that share a 

common β2 integrin chain (CD18) paired with specific α chains. CR4 contains the αX 

subunit (CD11c) and binds to particles opsonized with C3b and iC3b fragments. CR3 

contains an αM chain (also known as CD11b) with a carbohydrate-binding lectin site. 

Accordingly, in addition to binding particles opsonized with C3b and iC3b fragments, CR3 

binds microbial cell wall glycan-containing components including LPS, mannan, β-glucan, 

and others (138, 139). While CR3 appears to be capable of internalizing opsonized bacteria 

independently (140, 141) it also functions cooperatively with other receptors including CR1, 

CD14, FcγR and FcαRI (138, 142–144) to enhance particle clearance. Not surprisingly, 

mice deficient in CR3 have impaired host defense to gram-negative bacteria, gram-positive 

bacteria and yeast (145, 146). Importantly, studies from rodents demonstrate that cell surface 

expression of complement receptors varies markedly on resident AMs versus recruited 

MDAMs (103): Resident AMs express high levels of CD11c/CR4 but not CD11b/CR3, 

whereas recruited MDAMs have high CD11b/CR3 but low CD11c/CR4. This raises the 

intriguing hypothesis that AM subpopulations have complementary functions to control 

infectious and inflammatory host defense. Like Ig’s, complement components are found in 

airway mucus, and their levels are upregulated in inflammation (147, 148). Furthermore, 

complement also increases the expression of Muc5ac in airway epithelial cells (149).

Other classes of carbohydrate lectins, the C-type lectins, are calcium-dependent 

carbohydrate binding proteins that contain a conserved glycan recognition domain and are 

involved in pathogen recognition and phagocytosis (150). In the context of lung host 

defense, two groups of C-type lectins are well recognized: the pulmonary collectins 

(surfactant proteins A and D), and pathogen-binding receptors (namely the mannose 

receptor (CD206) and dectin-1). Surfactant proteins A and D (SP-A, SP-D) are comprised of 

highly oligomerized monomers that are formed by N-terminal collagen-like domains linked 

to a C-terminal carbohydrate recognition domain (CRD) by a central hinge region. Through 

their CRDs, SP-A and SP-D recognize sugar residues on microbial pathogens. 

Consequently, they opsonize gram-negative and gram-positive bacteria, mycobacteria, fungi, 

and viruses such as influenza A and respiratory syncytial virus. A number of candidate 

receptors for collectin-opsonized particles exist on AMs, including C1qRp, SP-R210, CD14, 

and the calreticulin-CD91 complex (reviewed extensively in (151)). In addition to enhancing 

phagocytosis through their opsonizing effects, collectins may also promote phagocytosis 

indirectly. For example, SP-A enhances expression of scavenger receptor A (SR-A) and may 
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augment Fc-receptor and CR-mediated phagocytosis (152–154). In addition, both SP-A and 

SP-D appear to increase cell surface localization and hence the phagocytic function of the 

mannose receptor (155–157). The mannose receptor (CD206) is highly expressed on AMs, 

and contains an extracellular domain that recognizes mannose, N-acetylglucosamine, and 

fucose glycans. Accordingly, CD206 promotes phagocytosis of pulmonary pathogens with 

diverse extracellular carbohydrate signatures including Streptococcus pneumoniae, 
Klebsiella pneumoniae, Mycobacterium tuberculosis, Pneumocystis jerovecii, and fungi 

such as candida and aspergillus (158). Precise mechanisms by which CD206 participates in 

phagocytosis are unclear, and it is likely that interactions with co-receptors are required 

(159). Dectin-1 was originally identified as a dendritic cell-specific receptor, but it is also 

expressed on AMs (160). Dectin-1 recognizes β-glucans found in fungal cell walls (161, 

162) and also particles opsonized with pentraxin-3, a protein rapidly synthesized and 

secreted by mononuclear phagocytes in response to pro-inflammatory signals (163). 

Together these classes of receptors highlight a group of surface molecules that interact with 

exogenous and endogenous constituents of airway surface liquid and mucus to mediate AM 

phagocytic defense.

In immunocompetent individuals, defensive components such as IgG increase in the lungs 

during infection, promoting pathogen clearance through recognition of numerous antigen 

types, including carbohydrate epitopes. Indeed bacterial targets such as surface 

polysacharrides are exploited for use in developing effective pneumococcal vaccines (164). 

Conversely, recurrent sinopulmonary infections and impaired pathogen clearance are 

common in patients with Ig deficiencies (165–171). In addition, in common chronic airway 

diseases including asthma, COPD and cystic fibrosis, impaired clearance of microbial 

pathogens by AMs has been extensively documented (172–175). AM dysfunction correlates 

with disease severity and exacerbation frequency (176–178). While etiologies vary among 

diseases, common features include altered expression of phagocytic receptors, reduced 

lysosomal killing, and enhanced production of mediators that can worsen inflammation by 

inducing collateral damage to surrounding tissues. These defects in AMs are either absent or 

reduced in mononuclear phagocytes isolated from other sites (e.g. blood). Therefore, 

perturbations in the local environment appear to play a dominant role in altering AM 

function in these diseases.

Emerging links between airway mucins and AM function

Based on the distinct anatomical localization and the highly dedicated cellular mechanisms 

involved in the specification of mucin-producing goblet cells in the airways and phagocytic 

macrophages in the alveoli, there is an outward appearance of discrete compartmentalization 

of their functions. However, the limiting the localization of resident AM’s to the alveolar 

space is not entirely warranted, as intraluminal macrophages in conducting airways account 

for 2–8% of the total resident macrophage population in rat lungs (179–185). Even within 

the alveolar compartment recent evidence demonstrates that a subpopulation of AMs, termed 

sessile AMs, can communicate across great distances through via a calcium-dependent 

signaling AM:alveolar epithelial circuit that ultimately suppresses immune function (186). 

Recent studies show that there are indeed functional links between airway mucus and 

macrophage function, and that these links are crucial for host defense. At one level, secreted 
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factors such as Ig’s and complement are abundant in secreted mucus, suggesting that mucus 

is an important carrier of these defensive molecules. In addition, there are also direct links 

between secreted mucins and resident innate immune cells through their coordinated 

activities during resolving inflammation and physical interactions between glycans on 

mucins and carbohydrate-binding lectin receptors on leukocytes such as the sialic acid 

binding immunoglobulin-like lectins (siglec’s). We propose that mucin-leukocyte 

interactions regulate homeostatic, inflammatory, and resolving immune functions through 

signaling and physical clearance mechanisms (Figure 2).

In the mouse, the intestinal mucin, Muc2, interacts with glycan-selective immuno-regulatory 

receptors on dendritic cells that mediate the development of inflammatory and regulatory 

lymphocyte subsets. In this setting, Muc2 glycans bind to two lectins (Dectin-1 and 

Galectin-3) that function cooperatively with the inhibitory IgG receptor FcγR3 to suppress 

inflammatory signals and promote tolerance (187). In a similar vein, goblet cells have also 

been shown to be an important mechanism for the delivery of antigens to resident monocyte-

derived dendritic cells in the small intestine (188). The result of these activities is the 

development of tolerance to foreign antigens introduced by ingested food particles.

In the lungs, inhibitory regulation of leukocyte functions appears to be mediated by acute 

control of leukocyte activation states. In mice, Muc5b, through its α2,3-linked sialoside 

glycans binds to Siglec-F, an inhibitory SHP-phosphatase signaling immunoreceptor on 

eosinophils and AMs (189) (Figure 3). On eosinophils, Siglec-F mediates apoptosis (190–

193), thereby functioning as a significant mechanism for resolving allergic inflammation. 

Indeed, mice lacking Siglec-F or one particular enzyme needed for this Muc5b sialylation 

step, ST3Gal-III, fail to make airway ligands for Siglec-F, and these mice display 

exaggerated and selective lung eosinophilia in a type 2 allergic inflammation lung model 

(194–198). In this context, Muc5b presumably contributes to the physical removal of cells 

by MCC while simultaneously preventing continued activation and mediator release into 

airspaces during elimination from the mouse lung. In humans, the Siglec-F paralog Siglec-8 

also reduces eosinophil survival via sialylated and sulfated ligands, but the specificity 

observed between Muc5b and Siglec-F in mice is not as well conserved between MUC5B 

and Siglec-8 in humans (199–201). Rather, Siglec-9 is an isoform that is bound by MUC5B 

sialosides, and it is expressed on neutrophils, natural killer cells, dendritic cells, and 

monocytes/macrophages (199). Indeed, resident alveolar macrophages in healthy mouse 

lungs also express Siglec-F, but its role beyond that of a cell surface marker is not yet clear. 

Given the associations of mucus and macrophage dysfunction in numerous lung pathologies, 

determining the nature of their interactions will be of tremendous interest as the field 

advances. With the emergence of mucins as important mediators of defense, and the 

recognition of the crucial significance of the glycobiology of innate and adaptive immunity, 

efforts to interrogate these will involve both challenging and exciting experimental 

approaches.

Conclusion

Innate defenses in the lungs are essential for maintaining efficient gas exchange. As first and 

second lines of host defense, mucins and macrophages play critical roles that are integrated 
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by their physical and physiological interactions. The emergence of these links presents a 

convergence of new challenges that connect epithelial and innate immune programs.
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Figure 1. Polymeric and macromolecular structures of the major secreted mucins in the airways 
- MUC5AC and MUC5B
MUC5AC and MUC5B (and their orthologs) have amino (N) and carboxyl (C) termini that 

are evolutionarily conserved in polymeric mucins and von Willebrand factor (vWF, grey and 

black regions). The vWF-like domains are involved in covalent intermolecular disulfide 

assembly of C-terminal linked dimers and N-terminal linked multimers. Multimers may 

exist as linear or branched structures with sizes in the 1 to >10 MDa range. Between vWF-

like domains are additional cysteine rich regions (CysD domains, green hexagons) that are 

rich in hydrophobic amino acids and intramolecular disulfide bonds. CysD’s are suggested 

to mediate the distribution of mucin strands and gel-pore size after secretion in healthy 

mucus, but may become oxidized and increase in polymer size and stiffness in disease (57). 

Lastly, the majority of the remaining mucin apoprotein backbone is rich in proline, serine, 

and threonine. This ‘PTS’ domain (white) is an imperfect repeat region and is the primary 

site of O-linked glycosylation. O-linkages on serine and threonine residues form Core1–4 

structures, which are defined the presence of N-acteylgalactosamine (GalNAc, yellow 

squares) linkages on the hydroxyl groups of serine and threonine followed by single or 

paired attachments of galactose (yellow circles) and/or N-acetylglucosamine (GlcNAc, blue 

squares). Lastly, galactose and GlcNAc glycans can be further substituted with fucose, sialic 

acid, and sulfates that impart diverse charges that may affect mucus gel hydration and also 

form 3-D structural confirmations that are critical for interactions with both pathogens and 

host-cell lectins. Glycan structures shown are examples of possible linkages and do not 

necessarily represent those found on specific mucins. Polar and non-polar glycans can be 

found on sugars from each core type, and may be found along the same or different 

branches.
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Figure 2. Mucin:leukocyte interactions during homeostasis and inflammation
In healthy lungs, resident resting alveolar macrophages (AMs) are defensive and non-

inflammatory. MUC5B from bronchioles mixes with alveolar fluids, providing a route for 

MUC5B to contact alveolar AMs. Homeostatic or low dose stimuli elicit defensive functions 

such as phagocytosis. During inflammation resident AMs can become activated, and this is 

associated with a decrease in their Siglec-F surface expression. In addition, leukocytes, such 

as monocyte-derived macrophages (which lack Siglec-F) or eosinophils (which express 

Siglec-F) are recruited and persist for brief periods of time. These transient populations are 

eliminated as inflammation resolves. In mice, resolution involves Siglec-F-mediated 

reductions in leukocyte activation and survival. Dampened and apoptotic cells are 

subsequently eliminated by MUC5B-mediated MCC.
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Figure 3. Putative Muc5b:Siglec-F signal transduction mechanism
Muc5b, via its display of multivalent α2,3-sialic acid (SA) linkages on galactose residues, 

binds to the N-terminal lectin domain of Siglec-F, thereby driving immunoreceptor tyrosine-

based inhibitory motif (ITIM) and ITIM-like domain activation. ITIM signals putatively 

activate SH2 domain-containing phosphatase (SHP) enzymes that suppress kinase-activated 

inflammatory signals and can also promote apoptosis.
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