Dunn and Weissman BMC Genomics (2016) 17:958
DOI 10.1186/512864-016-3278-x

Plastid: nucleotide-resolution analysis of

BMC Genomics

@ CrossMark

next-generation sequencing and genomics

data

Joshua G. Dunn'**#

and Jonathan S. Weissman'#**

Abstract

Background: Next-generation sequencing (NGS) informs many biological questions with unprecedented depth
and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate
data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information
jointly within multiple properties of read alignments — for example, in ribosome profiling, the locations of
ribosomes are jointly encoded in alignment coordinates and length — analytical tools are often required to extract
the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but
there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific

experimental regimes or analytical workflows.

Results: Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS
data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining
generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of
values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from

a variety of sources to such arrays.

Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced
transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-
centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid’s
data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated

analytical workflows with minimal effort.

Conclusions: Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including
RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER,
and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at

https://plastid.readthedocs.io.

Keywords: Sequencing, Genomics, Bioinformatics, Python, Ribosome profiling

Background

Next generation sequencing (NGS) has transformed
biology. Beyond enabling the rapid sequencing of ge-
nomes, increasingly sophisticated NGS assays have
empowered biologists to probe a wide array of biological
processes with unprecedented precision and depth,

* Correspondence: joshua.g.dunn@gmail.com

ICalifornia Institute of Quantitative Biosciences, San Francisco, USA
’Department of Cellular and Molecular Pharmacology, University of California
San Francisco, San Francisco, CA, USA

Full list of author information is available at the end of the article

(BioMed Central

provided that the desired information can be encoded
within a nucleic acid sequence. Many NGS assays en-
code nucleotide-resolution information within multiple

properties of sequencing reads — such as their align-
ment coordinates, lengths, or sites at which they mis-
match a reference sequence — and thus require

analytical tools that decode biological data from such
properties. One such assay is ribosome profiling, in
which the positions of the ribosomal P-sites are jointly
encoded by the lengths and positions of aligned
sequencing reads [1, 2]. Another example is bisulfite

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3278-x&domain=pdf
https://plastid.readthedocs.io
mailto:joshua.g.dunn@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Dunn and Weissman BMC Genomics (2016) 17:958

sequencing, in which the methylation status of cytosine
residues is encoded in the genomic locations of C-to-T
transitions within read alignments [3, 4].

Because decoding biological information from read
alignments is not trivial, a wide array of software has
been developed for this purpose. At one extreme are
tools dedicated to specific, predefined analysis of data
from a single assay, such as riboSeqR [5], RiboTools [6],
and RiboGalaxy [7] for ribosome profiling, or PROTEO-
FORMER [8], ORFscore [9], or ORF-RATER [10] for de
novo protein discovery and ORF annotation. Tools like
these are user-friendly, but, as a consequence of their
design, are difficult to adapt to novel purposes. At the
other extreme are low-level, generalized tools, like SAM-
tools [11] and BEDtools [12], that are not designed for
or limited to any specific assay or experimental setup.
These tools are extremely powerful, but using them re-
quires substantial expertise in programming and aware-
ness of seemingly esoteric file formats. Between these
extremes lie a number of user-friendly and general-
purpose toolkits, such as HTSeq [13], Metaseq [14], bx-
python [15], and Bioconductor [16]. But these, in their
present forms, are limited in their abilities to decode in-
formation from raw read alignments, to manipulate (or,
in some cases, even to represent) discontinuous genomic
features such as multi-exon transcripts, or to perform
nucleotide-resolution analysis. The situation is further
complicated by the fact that many file formats have been
invented to describe only a handful of data types in gen-
omics (Table 1), and that even synonymous file types
can be treated inconsistently within toolkits.

Here we introduce Plastid, a Python library for
nucleotide-resolution analysis of genomics data. Plastid

Table 1 File formats used in genomics

Data type Format Implementation
Feature annotations BED, extended BED* Plastid
(eighg,egﬁg,i;;agfscripts, BigBed Plastid + kentUtils [46]
replication) GTF2* Plastid

GFF3* Plastid

pSL* Plastid
Read alignments bowtie Plastid

BAM Plastid + Pysam [27]
Reduced count data bedGraph Plastid

BigWig Plastid + kentUTtils [46]

wiggle (fixedStep) Plastid

wiggle (variableStep) Plastid

FASTA
twobit

Sequence via Biopython [20]

via twobitreader [21]

For each category of genomics data, many file formats exist. Plastid includes
readers for each format that standardize the representation of data for each
type, so that the meaning of each data type is separated from its format on
disk. *tabix compression for these formats is supported via Pysam [27]

Page 2 of 12

is designed to retain the user-friendliness of pipeline
tools designed for specific NGS assays, like RiboGalaxy,
without sacrificing the generality and power of low-level
tools, like BEDtools. Given its goals, Plastid’s design dif-
fers substantially from existing packages (Fig. 1):

First, Plastid’s internal analysis pipeline introduces a
stage in which mapping functions extract the relevant
biological information from various properties of raw
read alignments. Biological data are then exposed to
users as vectors of information — such as the number
of ribosomal P-sites or C-to-T mismatches found at each
nucleotide position — rather than lists of read align-
ments or vectors of raw coverage. Because mapping
functions can perform arbitrary transformations on
properties of read alignments, they add substantial flexi-
bility to Plastid’s design: a mapping function suited to a
given NGS assay tailors Plastid’s tools to that assay
(Fig. 2). Uniquely, Plastid’s mapping functions are con-
figurable and replaceable rather than hard-coded. Thus,
Plastid has been used to analyze data from numerous
types of experiments, including ribosome profiling,
RNA-seq, DMS-seq, and bisulfite sequencing, and can
be used for other assays (e.g. ChIP-seq, CAGE-seq,
pseudouridine profiling) simply by choosing appropriate
parameters for existing mapping functions, or by imple-
menting new ones.

Second, Plastid introduces a novel data model, the
SegmentChain, to describe multi-exon transcripts and
other discontinuous features. SegmentChains are aware
of their own discontinuity and use this awareness to
encapsulate many nucleotide-wise operations that are
absent from other toolkits, such as conversion of
coordinates or vectorized data between genomic and
transcript-centric spaces. SegmentChains automatically
account for splicing and complementing, and thus re-
duce user error during many tasks common in position-
wise analysis (Fig. 3).

Third, Plastid provides consistent representations and
behaviors for the various categories of genomic data, re-
gardless of underlying file formats. Plastid’s tools thus
enable users to focus on biological questions rather than
data representation (Fig. 1, Table 1).

Finally, Plastid’s intended audience includes bench
scientists and novices as well as seasoned bioinformati-
cians. For this reason, Plastid defines a minimal sets of
data structures that, when possible, have human-
readable names and are modeled on biological objects —
such as spliced transcripts — rather than on more ab-
stract notions. Users can thus leverage their biological
knowledge when writing or reading code (Fig. 4).

In addition to tools for nucleotide-resolution explora-
tory data analysis (EDA), Plastid includes command-line
scripts that automate analysis workflows used for a
number of common NGS assays, such as RNA-seq and

Dunn and Weissman BMC Genomics (2016) 17:958 Page 3 of 12

Genome browsers
R + BioConductor

Matlab/Octave

!

Genome sequence —)

Read alignments f(alignment)

Feature annotations «——»

Python + SciPy stack

Quantitative data ¢—— Manllenlll o Blanll

Arrays of data over genome

Features & transcript models

Fig. 1 Uses of Plastid in analysis workflows. Plastid (yellow box) contains tools for both exploratory data analysis (blue, center) and command-line
scripts for specific tasks (green, right). Plastid standardizes representation of data across the variety of file formats used to represent genomics

data (left). Quantitative data are represented as arrays of data over the genome. Read alignments may be transformed into arrays using a mapping
function appropriate to a given assay. Transcripts are represented as chains of segments that automatically account for their discontinuities
during analysis. Plastid integrates directly with the SciPy stack (blue, center). For exploratory analysis in other environments (blue, above) or
further processing in external programs (right, green), Plastid imports and exports data in standardized formats

External programs
e.g. DESeq2, edgeR

Gene expression
Metagene analysis
Create browser tracks
Translation efficiencies
P-site estimation
Phasing analysis

ribosome profiling. Unlike similar implementations
found in other toolkits, Plastid’s scripts leverage map-
ping functions, so that even common tasks, such as ex-
port of browser tracks for visualization of data, may be
tailored to a specific biological question: for example,
depending on the mapping function in use, Plastid’s
make_wiggle script can export a browser track of
mapped ribosomal P -sites, modified nucleotides, or any
other data encoded within the read alignments, instead
of simple read coverage. Like the rest of Plastid’s tools,
these scripts can be generalized to novel assays with the
implementation of new mapping functions.

Together, Plastid’s features enable novice and advanced
users to develop analytical workflows that are both con-
crete and sophisticated, using familiar idioms and few
lines of code. To support our users’ efforts, we offer exten-
sive documentation, step-by-step walkthroughs of various
analysis tasks, and a demo dataset for those walkthroughs
at https://plastid.readthedocs.io.

Implementation

Representation of quantitative data

Many NGS assays encode nucleotide resolution data,
and effectively associate a quantitative value with each
genomic or transcriptomic position. A natural represen-
tation for such data is a vector or array of values, each
position in the array corresponding to a nucleotide
within a region of interest.

Plastid adopts this representation and represents
quantitative data associated with genomic positions —
such as the number of sequencing reads aligned to a
given position, a phylogenetic conservation score, or
local G/C content — using objects called GenomeArrays.
Within GenomeArrays, data are indexed by chromo-
some, nucleotide position, and strand, and may be
accessed via a Python dictionary-like interface using a
SegmentChain as a key. GenomeArrays return data in
an array format (NumPy array; [17]) whose positions
correspond to nucleotide positions in the given regions
of interest. The use of NumPy arrays enables the data to
be used by the vast library of scientific tools compatible
with the SciPy (Scientific Python) stack [18], and thus
creates a useful bridge between genomics data and exist-
ing scientific infrastructure in Python.

Plastid includes implementations of GenomeArrays
tailored to a number of file formats, including bedGraph,
BigWig, and fixed-step or variable-step wiggle (Table 1).
With the aid of mapping functions, GenomeArrays can
also import read alignments in BAM or bowtie formats,
performing transformations at runtime (for BAM files),
or upon import (for bowtie files).

Transformations of read alignments

Plastid’s GenomeArrays are designed to perform trans-
formations on read alignments transparently during ana-
lysis, in order to extract the relevant biology — such as a

https://plastid.readthedocs.io

Dunn and Weissman BMC Genomics (2016) 17:958

a
Mapping function
Raw alignments Biology of interest
at each position in genome
M- "
b 50 bp n 1
7l 1
ATRAE
! miN_NEn_N_N|
Raw alignments U b_ _ K [T 5
= ’
Initiation peak y | ’,
4
| 7’
Ribosomal P-sites
CDC19
C
Raw alignments
% Unmethylated C
T T T T T T T T
1,019,840 bp " 1,020,000 bp
Position on chromosome 1

Raw alignments

Reactive C & A
T u T f T T T
42,799,960 bp 42,800,050 bp

Position on chromosome 5

Fig. 2 Mapping functions extract biological data from read
alignments. a. Mapping functions use various properties of a read
alignment to determine the genomic position(s) at which it should
be counted. b. Mapping functions for ribosome profiling use
alignment coordinates and lengths to estimate ribosome positions,
revealing features of translation, like a peak of density at the start
codon (red circle) and three-nucleotide periodicity of ribosomal
translocation (inset). c. For bisulfite sequencing, the fraction of C-to-T
transitions at each cytosine are mapped, revealing a CpG island. d. A
mapping function for DMS-seq differentiates structured from un-
structured regions of a selenocysteine insertion element in the 3’
UTR of human SEPPI. DMS reactivity (blue bars) matches A and C
residues predicted to be unstructured (yellow)

nucleotide modification or ribosomal P-site — from
whichever read properties encode them. These transfor-
mations are implemented in configurable mapping
functions that determine the genomic position(s) at
which the biology encoded in each alignment should
ultimately be counted (Fig. 2a). Concretely, mapping
functions are modular components of GenomeArrays
take as input a query region of the genome and a set of

Page 4 of 12

read alignments, and return as output an array of trans-
formed data covering each nucleotide position in the
query region. Because mapping functions can exploit
any property of a read alignment — for example, its
length or sequence — in addition to its aligned posi-
tions, they provide a high level of flexibility and enable
reuse of Plastid’s central tools with data from a large
variety of NGS assays.

Mapping functions are particularly important to assays
in which secondary properties of read alignments encode
the biology of interest: for example, mapping functions
for ribosome profiling assign counts to ribosomal P-
sites, which occur at fixed offsets from the 5’ ends of
read alignments, potentially varying as a function of read
length [1]. P-site mapping reveals phenomena that are
obscured by raw read density, such peaks that occur at
translation initiation sites, or the periodic stepping of
the ribosome (Fig. 3b). In bisulfite sequencing, one
might use a mapping function that selectively assigns
counts to the genomic positions of C-to-T transitions
within a read alignment, enabling CpG islands to be
discerned (Fig. 2c). For DMS-seq assays — in which
dimethylsulfonate (DMS) alkylates unpaired cytosine
and adenine residues in RNA [19] — one would use
a mapping function that assigns counts to the alky-
lated residues, allowing inference of secondary RNA
structure (Fig. 2d).

Plastid includes configurable mapping functions ap-
plicable to RNA-seq, ribosome profiling, DMS-seq, and
a number of other sequencing assays (Table 2). When a
novel assay is developed, users can readily implement a
mapping function tailored to the experiment. Plastid can
then use the new mapping function as a plug-in, enab-
ling immediate application of extant tools to the novel
assay. Examples and instructions for writing mapping
functions are included in the mapping rules tutorial at
https://plastid.readthedocs.io.

Encapsulation of discontinuous genomic features
A substantial shortcoming of many existing genomics
toolkits is that discontinuous features, such as spliced
transcripts, are represented as lists of independently
behaving, continuous fragments. For many tasks, this
design requires users to perform laborious and error-
prone transformations to convert coordinates from the
N position of a transcript, to the I position of the
transcript’s /” exon, and eventually, to the X™ position
in the corresponding genome. Alternatively, users can
sacrifice positional information and align their sequen-
cing data to a continuous transcriptome, in this case
presuming a priori knowledge of which transcript iso-
forms are present.

A central difference between Plastid and other toolkits
is that Plastid’s encapsulates transcripts and other

https://plastid.readthedocs.io

Dunn and Weissman BMC Genomics (2016) 17:958

Page 5 of 12

a

Transcript position

Ty

865,437 —F
865,438 —}
865,439 —}

Genome position

865,402
865,403
865,404

b

Values at each position
in transcript

!
E

)
Values at each !

genomic position

bl ol bbb dilad

(]

Subchains covering

)
—EN
—

transcript positions 1-12

)

Genomic coordinates
of subchains

/ e
865,446 ——

865,403 —|
865,404 —

3\
865,437 ——] /

d

X~
1,561,746 — —! /
1,551,75244/44

1,561,527 — —
1,561,531 — —

Transcript =
I
I
I

Regions to mask

il [
Values at each ‘m bl

;
bbb LAk

genomic position NN - -

in transcript
Excluded from analysis

from computations without altering the chain coordinates

|
1[|
Values at each position Lol

Fig. 3 SegmentChains automate many common tasks. a. SegmentChain and Transcript objects automatically convert coordinates between
genomic and transcript-relative spaces. b. SegmentChains and Transcripts can therefore convert read alignments or quantitative data aligned to
the genome to arrays of values at each position in the chain. ¢. Subsections (green, pink) of chains can be fetched using start and end points rela-
tive to the parental chains. SegmentChains automatically generate the corresponding genomic coordinates. d. Regions of a chain can be masked

discontinuous genomic features within single objects,
called SegmentChains, that are aware of their own
discontinuity (Fig. 3). This design obviates the need to
separately track the potentially many exons that together
constitute a transcript, and facilitates analysis of phe-
nomena that are easily described in the context of a
transcript, but discontinuous in the genome, such as a
translational pause site in ribosome profiling data. Thus,
users can take advantage of the additional information
preserved by aligning reads to a genome, while retaining
the convenience of aligning to a transcriptome.
SegmentChains are also useful for analyses that simul-
taneously consider transcript isoforms that share genomic

coordinates, such those implemented in ORF-RATER [10],
a tool we have developed to identify and determine transla-
tion rates of potentially overlapping open reading frames
from ribosome profiling data. For analyses specifically
devoted to transcripts, a subclass of SegmentChain, called
Transcript, is provided. SegmentChains and Transcripts
provide tools for many common operations, including:

e mapping coordinates between various transcript
isoforms and the genome (Fig. 3a)

o fetching spliced arrays of genomic sequence, read
alignments, or count data at any or each nucleotide
position in the SegmentChain or Transcript (Fig. 3b)

Dunn and Weissman BMC Genomics (2016) 17:958

Page 6 of 12

Ribosome counts in second half

from plastid import *

open array of alignments

footprints = BAMGenomeArray("sc_SRR1562907.bam")

map footprints to P-sites, 15 nucleotides from 3' end of each alignment

footprints.set_mapping(ThreePrimeMapFactory (offset=15))

Reconstruct transcripts from constituent exons & coding regions

given 1in GTF2-forr
transcripts = GTF2_TranscriptAssembler("SGD_plus_UTRs.gtf", sorted=True)

t annotation

create three empty lists to hold the data
names =
first_halves = []
second_halves = []

get name, first-half, and second-half CDS counts for each transcript
for transcript in transcripts:

name = transcript.get_name()
cds = transcript.get_cds()
length = cds.length
get an array of footprint counts at each (DS position
counts = cds.get_counts(footprints)

total up counts in first and second halves of array
first_half = counts[:length//2].sum()
second_half = counts[length//2:].sum()

store values at the end of the Lists
names .append(name)
first_halves.append(first_half)
second_halves.append(second_half)

get Pearson correlation coefficient using scipy
import scipy.stats
pearson_r, p = scipy.stats.pearsonr(first_halves,second_halves)

make a Log-log scatter plot using matplotlib
import matplotlib.pyplot as plt

plt.loglog()
plt.scatter(first_halves,second_halves)

label title & axes

plt.xlabel("Ribosome counts in first half")
plt.ylabel("Ribosome counts in second half")
plt.title("Consistency of counts in each half of gene")

add correlation coefficient to plot

ax = plt.gca()
plt.text(0.1,08.9,"r**2 = %.3f" % pearson_r**2,transform=ax.transAxes)

Consistency of counts in each half of CDS

108 4 el el el
: P2 = 0,979 :

10° - ,,""’.’
10% -
10°
107 - .
E e :

107 - §

: H

10° - 5 .
b e LRl R e e
107 10° 10? 10? 10° 10* 10° 10°

Ribosome counts in first half

Fig. 4 Plastid streamlines analysis. a. The quality of a ribosome
profiling dataset may be assayed by comparing the numbers of read
counts in the first versus second half of each coding region. Plastid
makes it possible to implement such analyses with few lines of
easily readable code. b. Plastid readily integrates with the tools in
the SciPy stack. Here, first- and second-half counts from (a) are plot-
ted against each other using matplotlib, and a Pearson correlation
coefficient calculated using SciPy

o fetching sub-regions of the chain, preserving their
discontinuity (Fig. 3c)

o masking sub-regions of the chain, such as repetitive
regions, from analysis (Fig. 3d)

e testing for equality, overlap, containment, or
coverage of other SegmentChains

e accessing and storing descriptive data, like gene
names or IDs, GO terms, database cross references,
or notes

e exporting to BED, GTF2, or GFF3 formats, for use
with other software packages or within a genome
browser

Simplified access to genomic data

In genomics, there are primarily four categories of data —
sequence data, feature annotations (e.g. transcript models,
coding regions, origins of replication), quantitative values
associated with genomic positions (such as conservation
scores), and read alignments — yet numerous file formats
have been developed to represent each of these data types.
Furthermore, many existing packages treat data of a given
type in a manner that depends upon the type of file in
which it is stored. Becoming familiar with the diverse
idiosyncrasies of these file types — for example, whether
transcripts are represented one-exon-per-line and must
subsequently linked by probing their IDs (GTF2, GFF3
files) or are captured wholly within single lines (BED,
BigBed, PSL) — can be time-consuming and a significant
impediment to research.

Plastid provides a minimal set of consistently behaved
object types for each category of data, and readers for
commonly used file formats in each category (Table 1),
allowing investigators to focus on their data rather than
its representation on disk (Fig. 1). In particular, Plastid
provides readers that parse feature annotations in BED,
extended BED, BigBed, GTF2, GFF3 and PSL formats
into SegmentChains or Transcripts, optionally recon-
structing transcripts from their components in GTF2 or
GFF3 formats; quantitative data in bedGraph, wiggle, or
BigWig formats into GenomeArrays; and read align-
ments in BAM or Bowtie’s legacy format into Geno-
meArrays, using mapping functions to transform the
data. Because a number of excellent packages already
exist for parsing nucleotide sequence, Plastid does not
implement new readers for sequence data. However, its

Dunn and Weissman BMC Genomics (2016) 17:958

Page 7 of 12

Table 2 Plastid includes configurable mapping functions that cover many uses cases in sequencing analysis

Method Map reads Sample use

Fiveprime At a fixed offset from their 5" ends Ribosome profiling with RNase | (e.g. yeast,
human), RNA-seq

Threeprime At a fixed offset from their 3" ends Ribosome profiling with RNase |, RNA-seq

Fiveprime, variable

Fiveprime, variable and

stratified by read length reads of each length into separate arrays

Center-weighted
of nucleotides from the 5" and 3" ends

At an offset from 5" end determined by read length

At an offset from 5" end determined by read length, partitioning

Fractionally over entire length, optionally trimming a fixed number

Ribosome profiling with RNase |, RNA-seq

ORF annotation from ribosome profiling data

Ribosome profiling with MNase (e.g. E. coli &
D. melanogaster), RNA-seq

tools are compatible with any sequence reader that
returns dictionary-like objects, such as those in Biopy-
thon (for data in FASTA, GenBank, EMBL, and many
other formats; [20]) and twobitreader (for 2bit files;
(21]).

Command-line scripts

In addition to the library it provides for EDA, Plastid in-
cludes a number of command-line scripts that implement
sequencing workflows commonly used in genomics and
NGS analysis (Table 3). While similar implementations
exist in other toolkits, Plastid’s scripts are distinct in their
use of mapping functions, which allows them to generalize
to many types of data and metrics. For example, Plastid’s
make_wiggle script generates genome browser tracks from
sequencing alignments, and, depending upon the mapping
function in use, could export a track of ribosomal P-sites,
modified nucleotides, unstructured regions of RNA, 5’
ends of read alignments, or whatever type of biology is
accessed by the mapping function.

In addition, Plastid introduces algorithms and scripts
for a number of tasks that are not implemented or are
handled substantially differently elsewhere. We highlight
a few of these below:

Maximal spanning windows
Many nucleotide-resolution analyses require prior know-
ledge of which transcript isoforms are present, but such
knowledge is frequently unavailable. For this circum-
stance, Plastid introduces the use of maximal spanning
windows (Fig. 5) as an approach to isoform-independent
analysis. Briefly, a maximal spanning window is defined
as a span of nucleotides surrounding a landmark (e.g. a
start codon), in which each position relative to the land-
mark maps to the same genomic coordinate across every
member of a group of transcripts (or other features).
Thus, a gene’s maximal spanning window captures the
range of feature positions whose distances to each other
and to a landmark are independent of whatever tran-
script isoform(s) that may be expressed.

The use of maximal spanning windows provides a num-
ber of advantages over other strategies when isoform

distributions are uncertain. A commonly used alternative
strategy is to choose a single, “canonical” transcript iso-
form from each gene to include in analysis. This approxi-
mation is appropriate in some circumstances, but is
variably inaccurate when comparing across cell lines or
culture conditions. Another strategy is to treat all tran-
script isoforms as independent entities. But, in the absence
of corrections downstream, this practice can yield double-
counting of read alignments and regions when multiple
isoforms overlap. Restricting analysis to each gene’s max-
imal spanning window minimizes the problems inherent
in both of these strategies insofar the quality of a given
genome annotation allows.

Plastid contains tools that generate a maximal span-
ning window surrounding a landmark of interest (such
as a start codon) for each gene (or, more generally, any
user-specified group of features) in a genome annota-
tion. To do so, Plastid makes use of landmark functions
that identify a landmark of interest, if present, within a
single transcript. The landmark function is applied to
each of a gene’s transcripts, and, if the genomic positions
of their landmarks are identical (e.g. all start codons
match the same genomic coordinate, even if at different co-
ordinates within each transcript), then Plastid’s window-
generating toolkit bidirectionally examines each position on
each transcript at increasing distance from the landmark
until corresponding positions on all transcripts no longer
map to the same genomic position. If all transcripts from a
given gene do not share the same genomic landmark co-
ordinate (contain different start codons), then the maximal
spanning window surrounding that landmark is of zero-
length, and excluded from analysis.

Plastid includes landmark functions that identify start
and stop codons, and includes instructions for writing
functions to programmatically identify other landmarks,
such as peaks in sequencing data or nucleotide motifs
within a region of interest. Plastid can use maximal
spanning windows for estimation of gene expression or
for metagene analysis (described below) for any type of
sequencing data, and, in the case of ribosome profiling,
additionally uses maximal spanning windows for estima-
tion of P-site offsets and sub codon phasing.

Dunn and Weissman BMC Genomics (2016) 17:958

Table 3 Plastid’s command-line scripts automate common
analysis tasks

Analysis of count and alignment data

counts_in_region Count the number of read alignments
covering arbitrary regions of interest
in the genome, and calculate read
densities (in reads per nucleotide and

in RPKM) over these regions

cs Count the number of read alignments
and calculate read densities (in RPKM)
specifically for genes and sub-regions
(5" UTR, CDS, 3" UTR), correcting gene
and sub-region boundaries for
overlapping genes

Fetch vectors of counts at each
nucleotide position in one or more
regions of interest, saving each vector
as its own line-delimited text file

get_count_vectors

make_wiggle Create wiggle or bedGraph files from
alignment files after applying a read
mapping rule (e.g. to map ribosome-
protected footprints at their P-sites),

for visualization in a genome browser

metagene Compute a metagene profile of read
alignments, counts, or quantitative

data over one or more regions of interest

phase_by_size Estimate sub-codon phasing in ribosome

profiling data

psite Estimate position of ribosomal P-site
within ribosome profiling read alignments
as a function of read length

Manipulation of genomic features

crossmap Empirically annotate multimapping
regions of a genome, given alignment

criteria

gff_parent_types Determine parent-child relationships

of features in a GFF3 file

reformat_transcripts Convert transcripts between BED,

BigBed, GTF2, GFF3, and PSL formats

findjuncs Find all unique splice junctions in
one or more transcript annotations,
and optionally export these in
Tophat'sjuncs format

slidejuncs Compare a set of splice junctions

to a reference set, and, if possible
with equal sequence support, slide
discovered junctions to compatible
known junctions

Metagene analysis
Noise can obscure important biological signals within
individual samples, but such signals frequently appear in

population averages. For nucleotide-resolution analysis of

NGS data, one particularly useful average is a metagene
profile, in which arrays of quantitative data, corresponding
to each position of a gene or region of interest, are aligned
at some landmark — such as a start codon [1], or the
beginning of a region encoding a signal peptide [22] — and
a position-wise average is taken over the aligned arrays

Page 8 of 12

Shared start codon

Nt nucleotide from start codon
maps to identical genomic position

I
I
I
I
I
I
I
I
for all transcripts |
I
I
|

Maximal spanning window about start codon
over transcript set

Fig. 5 Maximal spanning windows enable isoform-independent
analysis. A maximal spanning window over a set of transcripts (or other
genomic features) is defined as the largest possible window surround-
ing a shared landmark (in this example, a start codon; vertical line),
over which the N nucleotide from the landmark in each transcript
corresponds to the same genomic position. Maximal spanning win-
dows thus enable position-wise analysis over fractions of genes when
isoform distributions are unknown. Plastid uses maximal spanning
windows for metagene analysis, measuring sub-codon phasing in
ribosome profiling, and estimating ribosomal P-site offsets

(Fig. 6). Metagene profiles have been used to reveal numer-
ous biological signals, such as peaks of ribosome density at
start or stop codons [1], ribosomal pauses over polybasic
signals [23], and sites of engagement of hydrophobic
nascent chains by the signal recognition particle [22].

ey

> > >

SRR VN VVIVVIRURYW

Aligned, normalized arrays over
maximal spanning windows
for each gene

> >
" > > > |

FLLLLLLEEEELLLLLL onummise mosan

Metagene profile

Fig. 6 Metagene profiles reveal genomic signals. Schematic of
metagene analysis. Normalized arrays of quantitative data (e.g.
ribosomal P-sites; top) are taken at each position in the maximal
spanning windows of multiple genes. These arrays are aligned at
a landmark of interest (here, a start codon), and the median
value of each column (nucleotide position), is taken to be the

average (bottom)

Dunn and Weissman BMC Genomics (2016) 17:958

Plastid’s metagene toolkit is unique in its use of max-
imal spanning windows to obtain isoform-independent
arrays of data for each individual gene. These arrays are
then aligned at the position corresponding to the land-
mark and a column-wise median is taken at each pos-
ition. Because users can modify or define both landmark
functions and mapping functions, Plastid’s tools can be
used to obtain position-wise averages of arbitrary types
of data, surrounding virtually any landmark, in arbitrar-
ily grouped sets of regions.

Multimapping regions of the genome

Specific regions of the genome — such as transposable el-
ements, pseudogenes, and paralogous coding regions —
can yield sequencing reads that multimap, or align equally
well to multiple regions of the genome. It is frequently de-
sirable to exclude such regions from analysis, as these
introduce ambiguity into sequencing data. However, be-
cause a read’s ability to multimap is a function of both its
length and the number of mismatches tolerated during
alignment, specific experimental regimes require custom
annotation of multimapping regions in the genome.
Plastid includes a script called crossmap that empirically
determines which regions of the genome yield multimap-
ping reads of a given length at a permitted number of
mismatches.

Elaborating an approach developed in [1], crossmap
conceptually divides the genome into all possible se-
quencing reads of length k, and then aligns these back to
the genome allowing # mismatches, where k and # are
given by the user. When a read aligns equally well to
multiple regions of the genome under these criteria, its
point of origin is flagged as multimapping. crossmap ex-
ports all multimapping regions as a BED file, which can
be subsequently used to mask such regions of the gen-
ome from analysis in any of Plastid’s command-line
scripts or interactive tools.

Results and discussion

Manipulation of data at nucleotide resolution

In its earliest days, next-generation sequencing was used
principally for reconstruction of genomes, and, with the
advent of RNA-seq, for estimation of gene expression
levels. In the first case, the sequences of reads captured
the relevant biology, and in the second, the scalar num-
ber of read alignments covering an exon or transcript
satisfied most experimental needs.

At present, many NGS assays explore biological ques-
tions with nucleotide resolution. These assays have cre-
ated a need for analytical tools that enable users to
manipulate data nucleotide-by-nucleotide robustly and
easily. Plastid introduces several data models tailored
specifically to this way of working: First, mapping func-
tions convert the relevant properties of read alignments

Page 9 of 12

into arrays of decoded information, and thus create an
important bridge between NGS assays and the analytical
tools offered by the SciPy stack [18]. Second, Seg-
mentChains and Transcripts enable users to manipu-
late quantitative data and feature annotations with
nucleotide precision, in genomic or transcript-centric
coordinates. Thus, patterns in data can easily be
used to annotate new features, and features can be
arbitrarily sub-divided, joined, or exported in stand-
ard formats, enabling their use in other pipelines
and visualization in genome browsers. Finally, max-
imal spanning windows offer a novel and rigorous
approach to uncertainties created when multiple
transcript isoforms might be present, a common cir-
cumstance when studying higher eukaryotes.

Ease of use

One of Plastid’s design goals is to lower the barrier to
entry for genomic analysis. To this end, Plastid’s de-
sign focuses on simplicity and, when possible, use of
biological analogies. Plastid therefore introduces a
minimal set of classes, and instead favors existing and
commonly-used data structures (such as NumPy ar-
rays) and file formats (e.g. BED and GTF2), whenever
possible. Data that cannot be captured in standard
formats are formatted as tab-delimited tables, which
can readily be manipulated in Python (using Pandas
[24]), R, or even Excel.

To facilitate reading, re-reading, or writing code, Plas-
tid’s classes, methods, and functions are modeled upon
biological idioms and, when possible, given human-
readable names. This design enables users to leverage
knowledge of biology when familiarizing themselves with
Plastid, and also to write code that, using the concrete
language of biology, is more easily interpreted by others.

Finally, to enable users, we have written extensive
documentation with tutorials and walkthroughs of
various types of analysis, as well as a test dataset tai-
lored to those walkthroughs. These are available at
https://plastid.readthedocs.io.

Extensibility

Plastid is designed to be both modular and easily ex-
tended, and includes well-defined and documented APIs.
In addition, Plastid includes entrypoints to register new
mapping functions and their command-line arguments
with Plastid’s command-line scripts, enabling advanced
users to share their extensions with others.

Plastid also includes script writing tools for imple-
menting new workflows. These include argument parsers
that read data in supported file formats into Plastid’s
standard objects, enabling developers, like users, to re-
main agnostic of file formats. Plastid also includes exten-
sions to Python’s warning control system that give

https://plastid.readthedocs.io

Dunn and Weissman BMC Genomics (2016) 17:958

developers more finely-grained control over how to
group and limit warnings displays, which can be numer-
ous when operating on large genomics datasets.

Conclusions

Plastid is a genomics and NGS analysis toolkit that offers
unique tools for decoding information from read align-
ments and manipulating data at nucleotide-resolution.
Plastid’s design enables it to retain generality and flexi-
bility across assays while remaining user friendly. Thus,
we and others have used Plastid to analyze data from
numerous NGS assays, including ribosome profiling,
RNA-seq, DMS-seq, and bisulfite sequencing.

Plastid’s utility derives not only from the introduction
of mapping functions, SegmentChains, and maximal
spanning windows, but also from a design intent that fo-
cuses on simplicity, consistency, and integration with
other packages: biological data are represented through
unified interfaces regardless of the underlying file for-
mat; these interfaces are modeled on biological idioms;
and, importantly, these interfaces integrate seamlessly
with the SciPy stack. Thus, both novice users and
experienced bioinformaticians have found Plastid useful.
Versions of Plastid have been used in a number of publi-
cations [10, 25] and manuscripts in progress (personal
communications from C.A. Gross, M. Schuldiner, and N.
Bellletier & E.A. Gavis), and is the genomic engine of
our ORF annotation software, ORF-RATER [10].

Availability and requirements

Source code

Plastid is released under the BSD 3-Clause license.
Official releases are available in the Python Package Index
at http://pypi.python.org/pypi/plastid. Development ver-
sions are available at the project’s home page, https://
github.com/joshuagryphon/plastid. Examples, user docu-
mentation, and technical information are available at
http://plastid.readthedocs.io. The version discussed in this
article is Plastid 0.4.6.

Computing requirements

Plastid is platform-independent and runs on Python 2.7
and Python 3.3 or greater. It depends on Cython [26],
numpy [17], and Pysam [27] for compilation, and
additionally SciPy [18], matplotlib [28], pandas [24],
Biopython [20], twobitreader [21], and termcolor [29]
for runtime.

Plastid runs well on laptops, but system requirements
scale with the complexity of the genome annotation and
the number of read alignments in a dataset. The mini-
mum amount of RAM we recommend for S. cerevisiae
and other small genomes is 1 GB; for mid-sized genomes
like D. melanogaster, 4 GB; and 8 GB for vertebrate or
plant genomes. Run times and memory usage for worst-

Page 10 of 12

case scenarios under a variety of scripts included in Plas-
tid are shown in Table 4.

External datasets and software used in this study
Sequencing datasets supporting the conclusions of this art-
icle are available in the the SRA [30] under accession num-
bers SRR1562907 (ribosome profiling, [22]); SRR019600-20
and SRR20276-20282 (bisulfite sequencing, [31]); and
SRR1057939 (DMS-seq, [19]). Data were visualized in the
Integrative Genomics Viewer [32] and modified in Adobe
Hlustrator CS6. Code syntax was highlighted using Pyg-
ments version 2.2 [33].

For Fig. 2, ribosome profiling dataset SRR1562907 [22]
was stripped of 3’ cloning adaptors (CTGTAGGCAC-
CATCAAT), and aligned to the yeast reference genome
(SGD R64.1.1) using Tophat 2.1.0 [34]. Ribosomal P-
sites were assigned to be 15 nucleotides from the 3" end
of 25-35mers. Bisulfite sequencing data were pooled
from SRA datasets SRR019600-20 and SRR20276-20282
[31], stripped of 3" cloning adaptors (AGATCGGAA-
GAGC) and aligned to the human reference genome
(UCSC hg38p3; [35]) using Bismark 0.14.4 [36]. Methy-
lation was determined from Bismark calls by parsing the
XM flag of each alignment following the specification in
[36]. DMS-seq dataset SRR1057939 [19] was down-
loaded and aligned to human genome sequence
(Ensembl GrCh38.78; [37]) using Tophat [34]. Counts
were assigned to alkylated residues, estimated to be 1
base 5° of the read alignment, in the direction of the

Table 4 Computing requirements for genomes and datasets of
varying size

Test Organism Run time Peak memory
(hh:mm:ss) usage (MB)
Read counting Yeast 00:01:18 + 00:00:01 255+0
Read counting Fly 00:36:34 + 00:00:03 1138+7
Read counting Human 00:19:56 + 00:00:01 1053 £2
Manipulate Yeast 00:00:27 + 00:00:02 467 £0
annotations
Manipulate Fly 00:03:37 + 00:00:03 2620+ 1
annotations
Manipulate Human 00:18:42 £ 00:01:49 4419 +1
annotations
Export browser track Yeast 00:00:58 + 00:00:00 28141
Export browser track Fly 00:09:05 + 00:00:40 2452 +7
Export browser track Human 00:06:11 + 00:00:03 537+0
Build crossmap Yeast 00:00:35 + 00:00:00 100+ 0
Build crossmap Fly 00:10:44 + 00:00:10 328+7
Build crossmap Human 04:11:51 + 00:06:32 130£1

Four command-line scripts were executed on yeast, fly, and human datasets.
Runtimes and peak memory usage are given as the mean + standard deviation
of three replicates. See methods for details

http://pypi.python.org/pypi/plastid
https://github.com/joshuagryphon/plastid
https://github.com/joshuagryphon/plastid
http://plastid.readthedocs.io/

Dunn and Weissman BMC Genomics (2016) 17:958

alignment. SECIS elements and their structure predic-
tions were identified using SeciSearch 2.19 [38].

For Table 4, all tests were run on a single 2.7 GHz
Intel Core i7-5700 CPU on an MSI Apache Pro QE2 lap-
top, in a virtual machine running Ubuntu 14.04 with 10
Gb of RAM, except for Build crossmap, which used two
cores. Runtimes and memory usage were monitored
using Memory Profiler version 0.32 [39]. For tests on
yeast, we used the annotation and genome assembly
from SGD R64.1.1 [40], 5" and 3" UTR definitions from
[41] and [42], and ribosome profiling dataset SRR1562907.
For tests on the fly genome, we used the annotation and
genome assembly from FlyBase r5.54 [43] and merged
ribosome profiling datasets from [26] (SRA numbers
SRR942868-77). For tests on the human genome, we used
all APPRIS-scored [44] transcripts from Ensembl annota-
tion GrCh38.81 [37], the hg38 genome assembly from
UCSC [35], and ribosome profiling dataset SRR1976443.
All genome annotation files were converted to GTF2 for-
mat. Sequence was in FASTA format with the exception
of hg38, which was kept as a 2bit file. Alignments of all se-
quencing reads were kept in BAM format. For tests that
used read alignments, alignments were mapped as follows
for each organism: 15 nucleotides from the 3" end of the
read for S. cerevisiae (modified from [1]), center-weighted
mapping for D. melanogaster [25], and using a variable
offset for H. sapiens [2].

For each organism dataset, a series of tests were con-
ducted. In Manipulate annotations, all transcripts,
genes, exons, and coding regions within a chromosome
were compared and modified in multiple ways using
Plastid’s c¢s script, executed as cs gemnerate /tmp/foo
—annotation_file gtf file.gtf —sorted. In Read counting,
read counts and densities were tabulated for all tran-
scripts in a genome annotation using the counts_in_re-
gion script, executed as counts_in_region /tmp/foo
—count_files bam_file.bam—annotation_files gtf file.gtf —
sorted [—threeprime—offset 15 for yeast | —fiveprime_vari-
able p_offtxt for human | —center —nibble 12 for fly]. In
Build crossmap, an empirical annotation of which re-
gions in a given genome give rise to multimapping reads
was empirically determined by slicing the genome se-
quence into k-mers and counting the number of times
each k-mer aligned to the genome using Plastid’s cross-
map script, which internally used Bowtie version 1.1.2
[45]. The crossmap script was executed as crossmap -k
26 —mismatches 0 -p 2 —sequence_file file.[fa | 2bit]
—sequence_format [FASTA | 2bit] /path/to/bowtie/index
/tmp/foo.

Abbreviations

CAGE-seq: Cap-analysis gene expression, for identification of 5" ends of
eukaryotic messenger RNAs; ChIP-seq: Chromatin immunoprecipitation
sequencing, for probing sites of DNA:protein interaction; DMS-

seq: Dimethylsulfonate sequencing, for probing RNA structure;

Page 11 of 12

EDA: Exploratory data analysis; GB: Gigabyte; hh:mm:ss: Time expressed as
hours:minutes:seconds; MB: Megabyte; NGS: Next-generation sequencing;
UTR: Untranslated region

Acknowledgements

We are particularly grateful to Elizabeth Costa, Natalie Baggett, Naama
Aviram, Edwin Rodriguez, and the members of the Weissman lab for testing
and criticism of the software and documentation; to Alex Fields and John
Hawkins for useful discussion of algorithms; and to Gloria Brar and all
mentioned above for helpful comments on the manuscript.

Funding

JGD's stipend and JSW's laboratory were funded by an NSF graduate
research fellowship, NIH/NIA grant P01 AG010770, NIH/NIGMS grant P50
GM102706, and the Howard Hughes Medical Institute. These organizations
did not directly participate in design, implementation, or writing of the
software or this manuscript.

Authors’ contributions
JGD designed, implemented, and tested the software. JGD and JSW wrote
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details

!California Institute of Quantitative Biosciences, San Francisco, USA.
“Department of Cellular and Molecular Pharmacology, University of California
San Francisco, San Francisco, CA, USA. *Howard Hughes Medical Institute,
University of California San Francisco, San Francisco, CA, USA. “Center for
RNA Systems Biology, Berkeley, CA, USA.

Received: 21 June 2016 Accepted: 9 November 2016
Published online: 22 November 2016

References

1. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome
profiling. Science. 2009;324:218-23.

2. Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic
stem cells reveals the complexity and dynamics of mammalian proteomes.
Cell. 2011;147:789-802.

3. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A
genomic sequencing protocol that yields a positive display of 5-
methylcytosine residues in individual DNA strands. Proc Natl Acad Sci. 1992;
89:1827-31.

4. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative
sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-
base resolution. Science. 2012;336:934-7.

5. Hardcastle TJ. riboSeqR: Analysis of sequencing data from ribosome
profiling experiments. 2014; Available from: http://bioconductor.org/
packages/release/bioc/html/riboSeqR.html. Accessed 13 Nov 2016.

6. Legendre R, Baudin-Baillieu A, Hatin I, Namy O. RiboTools: a Galaxy toolbox
for qualitative ribosome profiling analysis. Bioinformatics. 2015;31:2586-8.

7. Michel AM, Mullan JPA, Velayudhan V, O'Connor PBF, Donohue CA, Baranov
PV. RiboGalaxy: a browser based platform for the alignment, analysis and
visualization of ribosome profiling data. RNA Biol. 2016;13(3):316-9. doi:10.
1080/15476286.2016.1141862.

8. Crappé J, Ndah E, Koch A, Steyaert S, Gawron D, De Keulenaer S, et al.
PROTEOFORMER: deep proteome coverage through ribosome profiling and
MS integration. Nucleic Acids Res. 2015;43:229.

9. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B,
Fleming ES, et al. Identification of small ORFs in vertebrates using ribosome
footprinting and evolutionary conservation. EMBO J. 2014;33:981-93.

http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://dx.doi.org/10.1080/15476286.2016.1141862
http://dx.doi.org/10.1080/15476286.2016.1141862

Dunn and Weissman BMC Genomics (2016) 17:958

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

Fields AP, Rodriguez EH, Jovanovic M, Stern-Ginossar N, Haas BJ, Mertins P,
et al. A regression-based analysis of ribosome-profiling data reveals a
conserved complexity to mammalian translation. Mol Cell. 2015;60:816-27.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25:
2078-9.

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;,26:841-2.

Anders S, others. HTSeq: Analysing high-throughput sequencing data with
Python [Internet]. 2010. Available from: http://www-huberembl.de/HTSeq/
doc/overview.html. Accessed 13 Nov 2016.

Dale RK, Matzat LH, Lei EP. Metaseq: a Python package for integrative
genome-wide analysis reveals relationships between chromatin insulators
and associated nuclear mRNA. Nucleic Acids Res. 2014;42:9158-70.
bxlab/bx-python [Internet]. GitHub. [cited 2016 Sep 21]. Available from:
https://github.com/bxlab/bx-python

Gentleman RC, Carey VJ, Bates DM. Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol.
2004;5:R80.

van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for
efficient numerical computation. Comput Sci Eng. 2011;13:22-30.

Jones E, Oliphant T, Peterson P, et al. SciPy: open source scientific tools for
python [internet]. 2001. Available from: http://www.scipy.org/. Accessed 13
Nov 2016.

Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. Genome-wide
probing of RNA structure reveals active unfolding of mRNA structures in
vivo. Nature. 2014:505:701-5.

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.
Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics. 2009,25:1422-3.

Schiller BJ, contributors. twobitreader: a fast python package for reading
2bit files [Internet]. twobitreader. [cited 2015 Oct 26]. Available from:
https://pythonhosted.org/twobitreader/

Jan CH, Williams CC, Weissman JS. Principles of ER cotranslational
translocation revealed by proximity-specific ribosome profiling. Science.
2014,346:1257521.

Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li G-W,
et al. A ribosome-bound quality control complex triggers degradation of
nascent peptides and signals translation stress. Cell. 2012;151:1042-54.
McKinney W. Data Structures for Statistical Computing in Python.
Proceedings of the 9th Python in Science Conference. 2010,51-6

Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS. Ribosome profiling
reveals pervasive and regulated stop codon readthrough in Drosophila
melanogaster. Elife. 2013,;2:€01179.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The
Best of Both Worlds. Computing in Science and Engineering. 2011;13:31-9.
Heger A, contributors. pysam: htslib interface for python [Internet]. [cited
2015 Oct 26]. Available from: https://github.com/pysam-developers/pysam
Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering. 2007;9:90-5.

Lepa, Konstantin. termcolor 1.1.0 : ANSI Color formatting for output in
terminal [Internet]. [cited 2016 Apr 26]. Available from: https.//pypi.python.
org/pypi/termcolor.

Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic
Acids Res. 2011;39:D19-21.

Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al.
Human DNA methylomes at base resolution show widespread epigenomic
differences. Nature. 2009;462:315-22.

Thorvaldsdéttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer
(IGV): high-performance genomics data visualization and exploration. Brief
Bioinform. 2013;14:178-92.

Brandl, Georg, Ronacher, Armin, Hatch, Timothy, the Pocoo team. Pygments:

Python syntax highlighter [Internet]. [cited 2016 Apr 26]. Available from:
http://pygments.org/

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013;14:R36.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial
sequencing and analysis of the human genome. Nature. 2001;409:860-921.
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for
Bisulfite-Seq applications. Bioinformatics. 2011,27:1571-2.

37.

38.

39.

40.

42.

43.

45.

46.

Page 12 of 12

Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl
2015. Nucleic Acids Res. 2015;43:D662-9.

Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R,

et al. Characterization of mammalian selenoproteomes. Science. 2003;300:
1439-43.

Pedregosa, Fabian. Memory Profiler: a module for monitoring memory
usage of a Python program [Internet]. [cited 2016 Apr 26]. Available from:
https://pypi.python.org/pypi/memory_profiler/

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al.
Saccharomyces genome database: the genomics resource of budding yeast.
Nucleic Acids Res. 2012;40.D700-5.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The
transcriptional landscape of the yeast genome defined by RNA sequencing.
Science. 2008;320:1344-9.

Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, et al. Ab initio
construction of a eukaryotic transcriptome by massively parallel mRNA
sequencing. Proc Natl Acad Sci U S A. 2009;106:3264-9.

Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, et al.
FlyBase: establishing a Gene Group resource for Drosophila melanogaster.
Nucleic Acids Res. 2016:44:D0786-92.

Rodriguez JM, Maietta P, Ezkurdia |, Pietrelli A, Wesselink J-J, Lopez G, et al.
APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids
Res. 2013/41:D110-7.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

Kent, Jim, ENCODE DCC. kentUtils: Jim Kent command line bioinformatic
utilities [Internet]. GitHub. [cited 2016 Apr 26]. Available from: https://github.
com/ENCODE-DCC/kentUtils

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
https://github.com/bxlab/bx-python
http://www.scipy.org/
https://pythonhosted.org/twobitreader/
https://github.com/pysam-developers/pysam
https://pypi.python.org/pypi/termcolor
https://pypi.python.org/pypi/termcolor
http://pygments.org/
https://pypi.python.org/pypi/memory_profiler/
https://github.com/ENCODE-DCC/kentUtils
https://github.com/ENCODE-DCC/kentUtils

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Representation of quantitative data
	Transformations of read alignments
	Encapsulation of discontinuous genomic features
	Simplified access to genomic data
	Command-line scripts
	Maximal spanning windows
	Metagene analysis
	Multimapping regions of the genome

	Results and discussion
	Manipulation of data at nucleotide resolution
	Ease of use
	Extensibility

	Conclusions
	Availability and requirements
	Source code
	Computing requirements
	External datasets and software used in this study
	show [abb]

	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

