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Abstract

Sex hormones act throughout the entire brain of both males and females via both genomic and 

non-genomic receptors. Sex hormones can act through many cellular and molecular processes that 

alter structure and function of neural systems and influence behavior as well as providing 

neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located 

near membranes where they are associated with presynaptic terminals, mitochondria, spine 

apparatus, post-synaptic densities. Sex hormone receptors also are found in glial cells. Hormonal 

regulation of a variety of signaling pathways as well as direct and indirect effects upon gene 

expression induce spine synapses, up- or down-regulate and alter the distribution of 

neurotransmitter receptors, regulate neuropeptide expression and cholinergic and GABAergic 

activity as well as calcium sequestration and oxidative stress. Many neural and behavioral 

functions are affected, including mood, cognitive function, blood pressure regulation, motor 

coordination, pain and opioid sensitivity. Subtle sex differences exist for many of these functions 

that are developmentally programmed by hormones and by not-yet-precisely-defined genetic 

factors including the mitochondrial genome. These sex differences and responses to sex hormones 

in brain regions, and upon functions not previously regarded as subject to such differences, 

indicates that we are entering a new era of our ability to understand and appreciate the diversity of 

gender-related behaviors and brain functions.
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Introduction

In an article in Science in 1964, entitled “Hormones and Sexual Behavior”, Young, Goy and 

Phoenix (Young et al 1964) reviewed current knowledge at that time as to how gonadal 

hormones not only affect sexual behavior along with social and cultural factors and 

individual experiences but also influence sexual differentiation of those behaviors during 

development. Although there was little mention of the brain, which, after all, controls 

behavior, they stated the following:

“Few biochemists have been attracted to the problem, but it is they who must 

clarify the mechanisms of hormonal action in organizing the tissues of the central 

nervous system during development and in bringing behavior to expression in the 

adult. They may be helped in such a search by the circumstance that cellular 

elements in the genital tract, which differentiate and are activated under the 

influence of these same hormones, are at present more accessible for 

histophysiological study than those in tissues of the central nervous system

(Young et al 1964).”

When this article was published, there was already ongoing work on gonadal steroid actions 

in uterus via activation of gene expression by receptors in the cell nucleus; these receptors 

were detected in reproductive tissues using tritium labeled steroid hormones that allowed 

assessment of binding to these receptors (Jensen & Jacobson 1962). As will be described, 

tritiated steroids allowed the identification of putative estrogen receptors (ERs) in cell nuclei 

of the hypothalamus by steroid autoradiography (Pfaff 1968, Pfaff & Keiner 1973, Stumpf 

1968). These were confirmed biochemically as receptors (Zigmond & McEwen 1970) and 

this led, among other discoveries, to the elegant demonstration of the neural circuitry for 

sexual behavior (Pfaff 1980b) and demonstrations of the role of testosterone and its 

metabolites, estradiol and dihydrotestosterone, in brain sexual differentiation (McEwen et al 

1978, Naftolin et al 1975).

What was not appreciated at that time was that there are developmentally programmed sex 

differences throughout the entire brain. Moreover, it was also not known that the entire brain 

is acted upon by sex hormones via both nuclear and non-nuclear receptors, although this was 

strongly suggested by the myriad actions of sex hormones on cognitive function, mood and 

neuroprotection, addiction, blood pressure, fine motor skills, motor coordination, and pain, 

(Fig. 1) (McEwen et al 2012, McEwen & Alves 1999). After a brief historical overview of 

sex hormone action and a summary of mechanisms of plasticity of the adult as well as 

developing brain, this review will highlight some of the key steps in recognizing the broad 

influence of sex hormones in the brain and their implications for sex differences.

Historical overview

Preceding studies by Young et al. (1964) on sexual behavior, the work of Geoffrey Harris 

and subsequent pioneers established the connections between the brain and the endocrine 

system via the hypothalamus and the portal blood vessels that carry releasing factors from 

the hypothalamus to the pituitary gland (Harris 1948, Meites 1992). After the portal blood 

supply was shown to carry blood from the hypothalamus to the anterior pituitary (Harris 
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1948), heroic efforts using hypothalamus tissue from slaughterhouse animals led to the 

isolation and structural identification of peptide releasing factors (Guillemin 1978, Schally et 

al 1973). The feedback regulation of hypothalamic and pituitary hormones implied the 

existence of receptor mechanisms for gonadal, adrenal and thyroid hormones. Then the 

identification of cell nuclear hormone receptors in peripheral tissues (Jensen et al 1981, Toft 

& Gorski 1966) using tritiated steroid and iodinated thyroid hormones led to the 

demonstration by Don Pfaff as well as Walter Stumpf, of similar receptor mechanisms in 

hypothalamus and pituitary gland (Pfaff & Keiner 1973, Stumpf & Sar 1976). For this, it 

was necessary to use autoradiographic methods because of the discrete nature of these 

receptor containing cells, while Richard Zigmond in his Ph.D. thesis work at The 

Rockefeller University in the McEwen laboratory used more conventional cell fractionation 

methods, along with sucrose density gradient centrifugation to demonstrate receptors with 

molecular sizes, like those in the peripheral tissues (Gerlach & McEwen 1972, McEwen & 

Plapinger 1970, Pfaff & Keiner 1973, Zigmond & McEwen 1970).

What about behavior?

Before the demonstration of nuclear estrogen (ERs) and androgen receptors (ARs) in 

hypothalamus, some suggested, as noted in the Introduction, that sex hormones acted 

indirectly to activate sex behavior (Young 1961, Young et al 1964). The demonstration of 

binding sites and receptors for estrogens in hypothalamus led to studies using discrete 

hormone implants (Lisk 1962), as well as sophisticated neuroanatomical and 

neurophysiologic methods that demonstrated that sex hormones facilitate sex behavior via 

receptors in the hypothalamus (Davis et al 1979, Pfaff 1980a). Yet, in retrospect and even at 

that time, there were other behaviors and neurological states that were known to be 

influenced by estrogens involving brain regions besides the hypothalamus, including fine 

motor control, pain mechanisms, seizure activity, mood, cognitive function and 

neuroprotection (Bedard et al 1977, McEwen et al 1998, McEwen & Alves 1999, Van 

Hartesveldt & Joyce 1986). See Figure 1.

Tritiated steroid hormone cell nuclear uptake and retention, as shown by autoradiography, 

was not all confined to the hypothalamus, although, in the case of sex hormones, the major 

concentration of such receptors is in the hypothalamic region and amygdala (Pfaff & Keiner 

1973). The big surprise was the discovery of receptor sites for steroid hormones outside of 

the hypothalamus. This finding was first accomplished for glucocorticoids in the 

hippocampus, not only of rodents, but also monkeys with extension to other species (Gerlach 

& McEwen 1972, Gerlach et al 1976, McEwen et al 1968). This unexpected finding is a 

major part of the story because it directed us to brain functions beyond the hypothalamus 

and, in particular, to the function of the hippocampus, a brain region important for memory 

and other aspects of behavioral regulation (Eichenbaum & Otto 1992) and it led to finding 

estrogen receptors in the hippocampus.

As it turned out, a further serendipitous finding of nuclear ERs in the hippocampus (Loy et 

al 1988) also represented a turning point in the realization that not all steroid hormone 

actions occur via cell nuclear receptors, but rather operate via receptors in other parts of the 

cell via a variety of signaling pathways (Fig. 2) (Kelly & Levin 2001, McEwen & Milner 
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2007). This is now recognized to be the case for all classes of steroid hormones, including 

Vitamin D (Huhtakangas et al 2004), aldosterone (Wehling et al 1992), androgens (Tabori et 

al 2005), as well as estrogens and progestins to be discussed later in this review. First, 

because structural plasticity of the brain is regulated by hormones, we shall briefly introduce 

the evolving concepts of structural plasticity in the adult brain.

Plasticity of the adult brain

Long regarded as a rather static and unchanging organ, except for electrophysiological 

responsivity, such as long-term potentiation (Bliss & Lomo 1973), the brain has gradually 

been recognized as capable of undergoing rewiring after brain damage (Parnavelas et al 

1974) and also able to grow and change as seen by dendritic branching, angiogenesis and 

glial cell proliferation during cumulated experience (Bennett et al 1964, Greenough & 

Volkmar 1973). More specific physiological changes in synaptic connectivity were also 

recognized in relation to hormone action in the spinal cord (Arnold & Breedlove 1985), and 

in environmentally directed plasticity of the adult songbird brain (DeVoogd & Nottebohm 

1981). Seasonally varying neurogenesis in restricted areas of the adult songbird brain is 

recognized as part of this plasticity (Nottebohm 2002). Indeed, neurogenesis in the adult 

mammalian brain was initially described (Altman & Das 1965, Kaplan & Bell 1983) and 

later rediscovered in the dentate gyrus of the hippocampus (Cameron & Gould 1994, Gould 

& McEwen 1993) in the context of studies of neuron cell death and actions of adrenal 

steroids and excitatory amino acids in relation to stress. This was further developed to call 

attention to the generality of neurogenesis across vertebrates (Alvarez-Buylla & Lois 1995), 

Although the existence of adult neurogenesis in the mammalian central nervous system 

(CNS) was doubted by some (see(Kaplan 2001)), recent evidence clearly proves that the 

human hippocampus shows significant neurogenesis in adult life (Spalding et al 2013). Now 

we turn to mechanisms by which sex hormones alter brain structural as well as functional 

plasticity, beginning with developmental determinants.

Developmental programming of sex differences

As discussed in this Special Issue, developmentally programmed sex differences arise not 

only from secretion of sex hormones during sensitive periods in development but there also 

are contributions of genes on Y and X chromosomes, and in females there is inactivation of 

one or the other X chromosome in females (McCarthy & Arnold 2011). Moreover, 

mitochondria derive from the mother and mitochondrial genes make important contributions 

to brain and body functions (e.g., see (Arnold et al 2004, Gruene et al 2014, McCarthy et al 

2012, McEwen & Morrison 2013). We note that there are, in brain, few sexual dimorphisms, 

that is, complete differences between males and females. The sexually dimorphic nucleus of 

the preoptic region (SDN-POA) in the rodent brain comes close (Gorski et al 1978) and 

Witelson has describe an apparent sex dimorphism in the human brain (Witelson et al 1995). 

However, the vast majority of sex differences are far more subtle and involve patterns of 

connectivity and brain regional differences that are the subject of controversy (Chekroud et 

al 2016, Del Giudice et al 2016, Ingalhalikar et al 2014a, Ingalhalikar et al 2014b, Joel et al 

2015, Joel & Tarrasch 2014, Rosenblatt 2016). However, at the level of underlying 

neurochemical and molecular mechanisms there are many surprising and dramatic sex 
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differences in animal model brains and some indications for similar sex differences in the 

human brain.

Sex differences can emerge throughout the life course via both genetic and epigenetic 

mechanisms. The following examples delve into different neural systems and processes, 

involving stress effects on the hippocampus and prefrontal cortex, the dopaminergic system, 

blood pressure control, the cerebellum and pain sensitivity.. Below we present some 

examples, by no means exhaustive, to illustrate both the widespread nature of sex hormone 

influences but also the unexpectedly widespread nature of subtle sex differences. We begin 

with mechanisms of sex hormone action on structural plasticity of the adult brain, in which 

estrogen actions have played a major role and where sex differences in hormone action have 

emerged.

Sex hormone actions beyond the hypothalamus: focus on the 

hippocampus

First discovered in neuronal cell nuclei of the hypothalamus, receptors for sex hormones are 

found in virtually every region of the nervous system when they have been looked for, albeit 

in non-nuclear distributions throughout the cell near membranes (Boulware et al 2007, Kelly 

& Levin 2001). Recognition of non-nuclear ER in brain was first described in the 

hypothalamus (Blaustein et al 1992). Later electron microscopic (EM) 

immunocytochemistry studies revealed that non-nuclear ERs are present in extra-

hypothalamic regions as discussed below.

In the original steroid autoradiography studies, a few scattered cells in hippocampus 

demonstrated strong cell nuclear labeling by 3H estradiol and these have been identified as 

inhibitory interneurons (Ledoux et al 2009, Loy et al 1988, Nakamura & McEwen 2005). In 

spite of the paucity of such labeled cells, there was evidence from seizure studies that the 

threshold for eliciting seizure activity in hippocampus was lowest on the day of proestrus 

when estrogen levels are elevated (Terasawa & Timiras 1968). Moreover, there were 

indications that elevated estrogens enhanced memory retention of the type involving the 

hippocampus (Sherwin 1988). Using the classical Golgi method, a cyclic variation was 

found the density of spine synapses, on the principal neurons of the CA1 region of the 

hippocampus, with peak density occurring on the day of proestrus (Woolley et al 1990) (Fig. 

3), thus providing a possible structural basis for the lower seizure induction threshold 

(Terasawa & Timiras 1968). This work in the McEwen lab was led by Catherine Woolley 

and Nancy Weiland (Weiland 1992, Woolley et al 1997), and Woolley has continued these 

studies at Northwestern (Huang & Woolley 2012, Smejkalova & Woolley 2010). Since 

excitatory amino acids are the major neurotransmitter in these neurons and since NMDA 

receptor activity is involved not only in hippocampal memory functions but also in seizure 

induction, we used a competitive N-methyl-D-aspartate (NMDA) receptor blocker and 

discovered that it prevented estradiol induced spine synapse formation. Thus, estradiol does 

not work alone in causing this synapse formation and the study of underlying mechanisms is 

revealing some remarkable new aspects not only of hormone action, but also of neuronal 

plasticity (McEwen et al 2012).
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Multiple cells and mechanisms involved in estrogen induced hippocampal synapse 
formation

Growing out of the recognition of the existence of non-nuclear ERs, the mechanisms 

implicated in estrogen-induced synapse formation and maturation have turned out to involve 

interactions among multiple cell types in the hippocampus, as well as multiple signaling 

pathways. In addition to NMDA receptors described above, cholinergic modulation of 

inhibitory interneurons and disinhibition of their input to pyramidal neurons is likely to be 

involved in estrogen induced synaptogenesis (Murphy et al 1998, Rudick et al 2003). 

Moreover, inhibitory interneurons and cholinergic activity participate in spine synapse 

induction (Daniel & Dohanich 2001, Murphy et al 1998, Rudick et al 2003) and estradiol 

rapidly and non-genomically stimulates acetylcholine release (Packard et al 1996). Electron 

microscopic studies further revealed that ERα is on cholinergic terminals in the 

hippocampus (Packard et al 1996, Towart et al 2003).

The paucity of nuclear ERs in hippocampus led to our serendipitous finding, using electron 

microscopic immunocytochemistry that has the resolution to see more than the cell nuclear 

sites, that epitopes for the classical ERs can be localized in dendrites, synapses, terminals 

and glial cell processes (reviewed in (McEwen & Milner 2007). Within these processes, ERs 

are associated with membranes including endomembranes near mitochondria (Milner et al 

2005). These epitopes were then identified as estrogen binding sites by high resolution 

steroid autoradiograhy with 125I-estradiol (Milner et al 2008). Concurrently, increasing 

recognition was being given to the so-called non-genomic actions of estrogens and their 

signaling pathways (Kelly & Levin 2001). Indeed, such non-nuclear membrane-associate 

ERs have been reported in newly generated dentate gyrus neurons (Herrick et al 2006).

Signaling pathways involving NMDA receptor activation together with estradiol

Although the mechanism is unclear, NMDA receptor activation likely participates in the 

ability of estradiol to stimulate signaling pathways within cells. In the CA1 pyramidal 

neurons, non-genomic actions of estrogens via PI3 kinase promote actin polymerization and 

filopodia outgrowth to form putative synaptic contacts by dendrites with presynaptic 

elements (Yuen et al 2010). Subsequent PI3 kinase activation via ERs stimulated translation 

of PSD-95 in dendrites to provide a post-synaptic scaffold for spine synapse maturation 

(Akama & McEwen 2003, Znamensky et al 2003). Signaling pathways implicated in these 

events include LIM kinase and cofilin phosphorylation (Yuen et al 2010) and PI3 kinase 

activation (Akama & McEwen 2003, Znamensky et al 2003), as well as the Rac/Rho 

signaling system (Kramar et al 2009). It is important to note that the cofilin pathway is 

implicated in spinogenesis in the ventromedial hypothalamus (Christensen et al 2011) that is 

part of the induction of lordosis behavior (Frankfurt et al 1990, Frankfurt & McEwen 1991).

Progesterone actions

Finally, what terminates the estradiol induced synapse formation? Progesterone treatment 

after estrogen-induced synapse formation caused rapid (12h) down-regulation of spine 

synapses; moreover, the progesterone receptor antagonist, Ru486, blocked the naturally-

occurring down regulation of estradiol induced spines in the estrous cycle (Woolley & 

McEwen 1993). But where are the progestin receptors that do this? Because Ru486 is 
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effective, it is very likely that the classical progestin receptor is the mediator as opposed to 

other G-protein coupled progestin receptors that are not affected by Ru486 (Thomas 2008). 

Curiously, the classical progestin receptor is not detectable in cell nuclei within the rat 

hippocampus, but it is expressed in non-nuclear sites in hippocampal neurons, and virtually 

all of the detectable progestin receptor is estrogen inducible (Parsons et al 1982, Waters et al 

2008). The mechanism of progesterone action on synapse down-regulation is presently 

unknown.

Neuroprotective actions of estradiol

It is clear that estrogen has other functions, such as protecting neurons from excitotoxic 

damage due to seizures and stroke, as well as Alzheimer’s disease (Henderson & Paganini-

Hill 1994, McCullough et al 2003). The exact role in this process of cell nuclear ERs found 

on inhibitory interneurons is unclear, but one clue is the ability of estrogens to enhance 

neuropeptide Y (NPY) expression and release, since NPY has anti-excitatory actions 

(Ledoux et al 2009, Nakamura et al 2004). Another facet of estrogen neuroprotection is their 

ability to translocate ER β to mitochondria and to regulate mitochondrial calcium 

sequestration, including Bcl-2 translocation (Nilsen & Brinton 2004).

Investigation of the ability of estrogens to protect against stroke damage, as well as 

Alzheimer’s and Parkinson’s disease, has uncovered the fact that the brain is capable of 

locally generating estrogens, either from androgens and possibly also directly from 

cholesterol (Hajszan et al 2007, Hojo et al 2003). Aromatization of androgen precursors 

produces estrogenic steroids and knock-out of the aromatase enzyme increases ischemic 

damage even beyond that found after ovariectomy of wild-type mice (McCullough et al 

2003).

What about androgens?

The brain also appears to have the capacity to locally generate the androgen, 

dihydrotestosterone, from as yet unknown precursors, independently of the gonads in an 

animal model in which mild exercise increases neurogenesis in a manner facilitated by those 

androgens (Okamoto et al 2012). Moreover, testosterone induces spine synapses in the male 

rat hippocampus, even though estradiol does not do so, unless genetic male rats are castrated 

at birth or treated with aromatase blockers to prevent developmental actions of testosterone 

(Leranth et al 2003, Lewis et al 1995, MacLusky et al 2006). Furthermore, androgens are 

able to induce spine synapses in the female rat hippocampus (Leranth et al 2004).

Moreover, like estrogens, androgens have neuroprotective effects (Pike et al 2008). In 

contrast to the ER story, CA1 pyramidal neurons have ample expression of cell nuclear ARs 

(Fig. 4) (Kerr et al 1995, Tabori et al 2005). In the male, these nuclear ARs may play a 

pivotal role in spine synapse formation which involves NMDA activity but not cholinergic 

activity (Romeo et al 2005a, Romeo et al 2005b). There are also extranuclear ARs with 

epitopes of the nuclear receptor that are found in the hippocampus in membrane associated 

locations in dendrites, spines and glia cell processes (Tabori et al 2005). However, the role of 

non-genomic forms of ARs in spine synapse formation and other processes is less clear 

(Tabori et al 2005).
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Now, with this historical and mechanistic background, we broaden the story to discuss sex 

differences that are functionally linked to the actions attributed to estrogens in Figure 1.

Sex differences in hippocampal response to stressors

In the hippocampus of male rats, 21 days of chronic restraint stress (CRS) causes apical 

dendrites of CA3 neurons to retract and a loss of ~30% of the parvalbumin (PARV)-

containing neurons in the dentate gyrus; these changes do not occur following CRS in 

female rats (Galea et al 1997, Milner et al 2013). Moreover, female and male rats show 

effects in the opposite direction of chronic stress on hippocampal dependent memory, with 

males showing impairment and females showing enhancement or no effect (Bowman et al 

2003, Luine et al 1996, Luine et al 1994). Moreover, exposure of male and female rats to 

restraint plus intermittent tail shock has opposite effects on classical eyeblink conditioning, 

inhibiting it in females and enhancing it in males; in females, this effect is abolished by 

ovariectomy and is therefore estrogen dependent (Shors et al 2001, Wood & Shors 1998). A 

morphological correlate of this in the hippocampus is the finding that acute stress inhibits 

estrogen-depending spine formation in CA1 neurons of the hippocampus, whereas the same 

acute stressors enhance spine density in male CA1 neurons, possibly by increasing 

testosterone secretion (Shors et al 2001) upon which spine formation in the male CA1 is 

dependent (Leranth et al 2003). Neonatal masculinizaton of females made them response 

positively, like genetic males, to the shock stressor (Shors 2016) Moreover, in females, 

depending on reproductive status and previous experience, the negative stress effect was 

altered, e.g., it was absent in mothers and virgin females with experience with infants (Shors 

2016).

Among possible mechanisms for the sex differences, the corticotrophin releasing factor 

receptor stands out since in hippocampus as well as in locus coeruleus, there are sex 

differences in the association of the CRF receptor (CRF1) with the Gs protein and beta-

arrestin 2 that make females more responsive to acute stress and less able to adapt to chronic 

stress as a result of compromised CRF1 internalization (Valentino et al 2013) Thus the 

failure of female rats and mice to show spine loss and dendrite shrinkage (Galea et al 1997, 

Pawlak et al 2005) may be related to this sex difference.

There appears to be an important maturational/developmental component to sex differences 

in chronic stress effects upon dendrite length and branching. This is suggested by the finding 

that stress in the pubertal transition causes qualitatively similar responses in males and 

females in hippocampus indicating that full sexual maturation produces the sex differences 

in responses to stress (Eiland et al 2012). It remains to be determined whether other sex 

hormone dependent and independent sex differences also show this type of maturation 

effect.

Hippocampal opioid system and stress

The opioid system in the CA3 region has been implicated in visual-spatial pattern 

completion (Kesner & Warthen 2010), an important component of contextual associative 

learning which is a key function of the hippocampal spatial and temporal mapping function 

(Hartley et al 2014, Moser & Moser 2014). Within the hippocampus, the opioid peptide, 
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enkephalin, is contained in the mossy fiber and lateral perforant path (Drake et al 2007). 

Enkephalins as well as exogenous opiates (e.g., morphine) predominantly affect excitability 

and long-term potentiation (LTP) of CA3 pyramidal cells indirectly via activation of μ 

opioid receptors (MORs) and δ opioid receptors (DORs) which result in inhibition of 

inhibitory gamma amino butyric acid (GABA)-ergic interneurons (i.e., disinhibition) 

(Commons & Milner 1995, Derrick et al 1992, Drake et al 2007, Witter 1993, Xie & Lewis 

1991). Additionally, enkephalins and exogenous opiates can directly inhibit DORs present 

on CA3 pyramidal cells (Bao et al 2007). Our light and EM studies have demonstrated 

notable sex differences in the hippocampal opioid system: for example, at elevated estrogen 

states, compared to low estrogen states and males, enkephalins, MORs and DORs are 

subcellularly positioned to enhance excitability and learning processes (Torres-Reveron et al 

2008, Torres-Reveron et al 2009b, Williams et al 2011). Moreover, females in proestrus 

(high estrogen state) compared to diestrus females and males have a lower baseline 

transmission in the mossy fiber-CA3 pathway that is regulated by MORs and, unlike males 

and diestrus females, exhibit a LTP evoked by low frequency stimulation of the mossy fibers 

that is regulated by DORs (Harte-Hargrove et al 2015).

The hippocampal mossy fibers also contain dynorphin that is elevated in the presence of 

estrogens (Torres-Reveron et al 2009a). The rodent hippocampus contains few kappa opioid 

receptors (KORs) but in the guinea pig KORs are on inputs from the hypothalamus (Drake et 

al 2007). However, there are known sex differences in KOR function and their potential 

impact on addiction (Chartoff & Mavrikaki 2015) making this a recent topic of interest.

Drug addiction, particularly relapse, is often provoked by stress (reviewed by (Bruchas et al 

2008, Shalev et al 2000)). Stress has powerful influences on the addictive processes in both 

males and females (Koob 2008). However, females have a heightened sensitivity to stress 

(Becker et al 2007, Milner et al 2013) and can show enhanced cognitive performance 

following stress (Luine et al 2007) that may contribute to their accelerated course of 

addiction, particularly to opiate analgesics (Elman et al 2001, Hu et al 2004, Lynch et al 

2000, Robbins et al 1999).

As described in the section above, chronic stress has the opposite effects on the hippocampal 

opioid system in males and females. Our studies have shown that 10 days of chronic 

immobilization stress (CIS) in males essentially “shuts off” the opioid system. Conversely, 

the opioid system of females regardless of estrogen state is “primed” for even greater 

excitation of CA3 pyramidal cells after CIS. After CIS females do not display the atrophy of 

CA3 pyramidal cell dendrites and the loss of PARV-containing GABA interneurons seen in 

males (McEwen 1999, Milner et al 2013, Vyas et al 2002). Instead, in CIS females, 

enkephalin levels in mossy fibers are elevated and the distribution of MORs and DORs in 

hippocampal neurons resembles that seen in unstressed females at high estrogen states 

(Milner unpublished)(Milner et al 2013, Pierce et al 2014). Moreover, CIS in females traffics 

DORs to the near plasmalemma of hilar somatostatin/NPY-containing GABAergic 

interneurons (Milner, unpublished) that project to granule cell dendrites where they converge 

with entorhinal afferents (Milner & Bacon 1989, Milner & Veznedaroglu 1992). Notably 

one-hour after a single injection of oxycodone (3mg/kg, i.p.) the DORs in these GABAergic 

interneurons have moved to the plasmalemma (Milner et al., unpublished) where additional 
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exposure to ligand would promote disinhibition (i.e., excitation) and thus LTP of the 

entorhinal-granule cell synapses (Sperk et al 2007). Thus, chronic stress “primes” the opioid 

system in all females in a manner that would promote excitation and learning processes 

following subsequent exposure either to stress or an opiate ligand (Fig. 5).

Sex differences beyond the hippocampus: some examples

As discussed above, sex hormones affect many regions and functions of the hippocampus, 

beyond reproduction, through receptors in both males and females that operate via genomic 

and non-genomic mechanisms (further reading can be found (Dumitriu et al 2010, Hara et al 

2015, McEwen et al 2012, McEwen & Milner 2007)]. Besides hippocampus, other brain 

regions demonstrate estrogen-regulated spine synapse formation and turnover, including the 

prefrontal cortex (Hao et al 2007) and primary sensory-motor cortex (Chen et al 2009). 

Indeed, there is likely to be estrogen-regulated spine synapse turnover in other brain regions. 

Besides estrogen induced spine formation, estrogens are implicated in functions in the 

nigrostriatal system (Xiao & Becker 1997), cardiovascular nuclei (van Kempen 2016) 

cerebellum (Smith 1989) and pain circuitry (Loyd & Murphy 2014), suggesting that their 

effects are widespread in the CNS.

Prefrontal cortex (PFC)

Chronic restraint stress (CRS) for 21d causes neurons in the medial PFC of the male rat to 

show dendritic debranching and shrinkage (McEwen & Morrison 2013). These neurons 

project to cortical areas and not to the amygdala, and, in the female, these neurons do not 

show dendritic changes. However, neurons that project to the amygdala from the medial PFC 

undergo dendritic expansion in females but not in males; this expansion in the female is 

dependent on there being estrogens in the system, since ovariectomized females did not 

show such changes (Shansky et al 2010). Estrogens and stress also interacted in a regionally 

specific manner in the PFC, in that cortically-projecting PFC neurons, which showed no 

dendritic changes after CRS in either intact or ovariectomized (OVX) animals, displayed a 

CRS-induced increase in spine density in OVX animals but not in intact females with 

circulating estradiol; yet amygdala-projecting PFC neurons showed CRS-induced spine 

density that was enhanced in intact females to accompany the dendrite expansion (Shansky 

et al 2010). Regarding function, as shown by lesion studies, contralateral prefrontal to 

amygdala projection is key to the ability of acute foot shock stress to impair eyeblink 

conditioning in female rats, whereas male rats normally show enhanced conditioning after 

the same footshock stress, as is discussed below (Shors 2016).

A subsequent study by Shansky has begun to reveal the consequences for fear learning and 

extinction in rats exhibiting high (HF) or low (LF) levels of freezing on a extinction retrieval 

test (Gruene et al 2014). The HF and LF male rats showed neuroanatomical distinctions that 

were not found in HF or LF female rats, and, though there were no overall sex differences in 

freezing behavior, HF and LF behavioral differences were evident in males during extinction 

and in female rats during fear conditioning, the later of which does not involve infralimbic–

basolateral amygdala neurons (Gruene et al 2014).
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Dopaminergic systems

The study of estrogen actions as well as sex differences on the dopaminergic system has 

been recently reviewed (Almey et al 2015) and thus will be discussed briefly here. Estradiol 

stimulation of dopaminergic release was one of the first examples of a rapid estrogen effect 

apparently independent of nuclear ERs (Mermelstein et al 1996). A sex difference in the 

ability of estrogen to promote dopamine release has been reported (Bazzett & Becker 1994, 

Becker et al 1982). Moreover, membrane-associated, non-genomic ERs have been 

demonstrated in dopamine-terminal areas including the caudate, prefrontal cortex and 

nucleus accumbens (reviewed in (Almey et al 2015)). Indeed, in the prefrontal cortex local 

estradiol application mimics the effects of high systemic estrogen in promoting a place 

memory as opposed to a response memory bias, interacting with the dopaminergic system 

(Almey et al 2014).

The nigrostriatal system is interesting because of its role in Parkinson’s disease. The 

Parkinson’s connection arose with the observation that high dose estrogen treatment used in 

the initial contraceptive preparations exacerbated symptoms of Parkinson’s Disease in 

women (Bedard et al 1977). This was very unexpected for those who believed in the nuclear 

ER story because there are almost no cell nuclei with ERα or ERβ in the rodent striatum 

(Almey et al 2012), and yet tiny unilateral implants of estradiol in the rodent striatum 

elicited unilateral rotation associated with imbalanced dopaminergic function (Van 

Hartesveldt & Joyce 1986). Now we know that estradiol regulates dopamine release from 

striatum in a sexually-dimorphic manner via non-genomic estrogen receptors of the type first 

identified in hippocampus and now elsewhere in the brain (Castner et al 1993). Moreover, 

with lower doses of estradiol, there is evidence for neuroprotection in Parkinson’s disease 

(Currie et al 2004, Leranth et al 2000) and the involvement of multiple signaling pathways 

(Bourque et al 2012), including the G-protein coupled ER (GPER1) (Almey et al 2012, 

Almey et al 2015).

Interestingly, besides dopamine, beta 1 adrenergic receptors in the striatum, and possibly 

elsewhere in the brain, are up-regulated after ovariectomy and there is a sex difference that is 

programmed by exposure to testosterone early in life so that males are not responsive to 

estrogens and genetic females given testosterone at birth do not show these effects of 

ovariectomy (Meitzen et al 2013)

CNS cardiovascular regulation

Sex differences in blood pressure control have been extensively reviewed recently (van 

Kempen 2016) and thus will only be discussed briefly here. Light and electron microscopic 

immunocytochemical studies in rodents have revealed that gonadal steroid receptors are 

anatomically poised to influence the regulation of blood pressure in a number of brain 

regions involved in cardiovascular regulation. In particular, nuclear and extranuclear ER’s, 

PR’s and AR’s are complementary and overlapping in three major autonomic regions: the 

rostral ventrolateral medulla), nucleus of the solitary tract (NTS) and paraventricular nucleus 

of the hypothalamus (PVN) (McEwen 2012). Within this circuitry, there are many potential 

sites by which gonadal steroid receptors interact with angiotensin II and related signaling 
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molecules critical for neuronal activation and plasticity in brain cardiovascular regulatory 

circuits.

There is a significant sex difference in both the slow-pressor response to AngII and changes 

in NMDA and related signaling pathways in PVN neurons. Like humans, a sex-dependent 

susceptibility to hypertension is seen in rodents following systemic administration of low 

doses of angiotensin II (AngII) via osmotic minipumps. In young male mice, but not cycling 

young female mice, systemic low-dose AngII-infusion results in a slowly developing 

increase in blood pressure (Girouard et al 2009, Li et al 2008, Marques-Lopes et al 2015a, 

Marques-Lopes et al 2014, Marques-Lopes et al 2015b, Pinkerton & Stovall 2010, Tiwari et 

al 2009, Van Kempen et al 2015b, Xue et al 2013, Xue et al 2005). However, slow-pressor 

AngII-infusion induces hypertension in OVX mice that model surgical menopause (Hay et al 

2014, Xue et al 2013) and in aged rodents (Fortepiani et al 2003, Marques-Lopes et al 

2015b, Tiwari et al 2009) that model the acyclicity (Nelson et al 1995) seen in post-

menopause. Using a mouse model of Accelerated Ovarian Failure (AOF) that uniquely 

recapitulates hormonal changes seen in human menopause (Van Kempen et al 2014, Van 

Kempen et al 2011), we showed that the susceptibility to slow-pressor AngII hypertension 

begins at emerges at a timepoint that mimics perimenopause (i.e., when estrogens are 

present but erratically fluctuating) [9].

The PVN, predominantly through projections to the spinal cord, is a primary source of the 

excitatory drive that supports the elevation of sympathetic vasomotor tone critical for the 

emergence of slow-pressor AngII hypertension (Benarroch 2005). In particular, up-

regulation of postsynaptic NMDA receptor function in PVN neurons that project to the 

spinal cord play a pivotal role in enhancing excitatory drive (Li et al 2008). Activation of 

PVN-spinal neurons results in NADPH oxidase (NOX) activity, generating reactive oxygen 

species (ROS), leading to the activation of voltage-gated L-type Ca2+ currents (Girouard et 

al 2009, Wang et al 2006, Wang et al 2004). Importantly, spatiotemporal deletion of the 

obligatory GluN1 subunit of the NMDA receptor in the PVN attenuates hypertension in 

males (Glass et al 2015). Our recent electron microscopy studies (Marques-Lopes et al 

2015a, Marques-Lopes et al 2015b, Van Kempen et al 2015a) revealed that alterations in the 

subcellular distributions of GluN1 in ERβ-containing PVN neurons (but not those 

containing angiotensin type A receptors or CRF1 receptors (Marques-Lopes et al 2015a, Van 

Kempen et al 2015a) reflect the hypertensive responses of male and female mice following 

slow-pressor AngII. In particular, the density of GluN1 is elevated in hypertensive male and 

aged female mice but decreased in non-hypertensive young females (Marques-Lopes et al 

2014). Using the AOF model, we showed that the AngII-induced hypertension is 

accompanyied by an increase in plasma membrane GluN1 receptors in ERβ-containing PVN 

neurons (Marques Lopes 2016). Importantly, the increase in plasma membrane GluN1 

receptors was not seen in hypertensive AOF mice from a “post-menopausal” timepoint (e.g., 

post-AOF). These findings are consistent with accumulating clinical evidence (Hodis & 

Mack 2011, Pinkerton & Stovall 2010) that perimenopause is a “window of opportunity” for 

gonadal steroids to modulate hypertension susceptibility.

Hypertension linked to AngII is strongly associated with superoxide production by NOX 

neurons in the PVN (Coleman et al 2013, Wang et al 2013, Zimmerman et al 2004). The 
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NOX2 isoform requires mobilization of cytoplasmic p47phox to dock with the membrane 

bound proteins for superoxide production (Brandes et al 2014). In males, slow-pressor AngII 

hypertension results in a repartitioning of p47phox to the plasmalemma of PVN neurons that 

do not express arginine vasopressin (AVP), along with a concomitant increase in ROS 

production (Coleman et al 2013). At baseline, young females have a greater density of 

p47phox SIG near the plasma membrane of AVP-containing dendrites than males m(Van 

Kempen et al 2015b). Compared to young females, post-AOF females have increased 

plasmalemmal p47phox SIG particles on non-AVP dendrites (Van Kempen et al 2015b). Like 

males, slow pressor AngII elevates blood pressure in post-AOF females. However, opposite 

to males, slow pressor AngII decreases plasmalemmal p47phox SIG in non-AVP dendrites 

and increases near plasmalemmal p47phox SIG in AVP-containing dendrites in post-AOF 

females (Van Kempen et al 2015b). These findings provide evidence for fundamental sex 

differences in the hypothalamic changes underlying the neurohumoral regulation of blood 

pressure (Fig. 6).

Cerebellum

The cerebellum is responsive to estrogens and generates both estradiol and progesterone 

during its development, and, in humans, it is implicated in disorders that show sex 

differences (Dean & McCarthy 2008, Hedges et al 2012). Estrogens direct the growth of 

dendrites in the developing cerebellum and regulate both excitatory and inhibitory balance, 

affect not only motor coordination but also memory and mood regulation (Hedges et al 

2012). Although there are few described sex differences except possibly more neurons in the 

male in the cerebellum there are sex differences in the disorders associated with the 

cerebellum such as autism, attention deficit hyperactivity disorder (ADHD), and 

schizophrenia males (Dean & McCarthy 2008, Hedges et al 2012).. Associative learning 

related to pain is also mediated in part by the cerebellum. Men and women showed different 

functional connectivity in cerebellar lobules: for women, the lobules mostly represent 

somatomotor networks, while in men, activity in the lobules showed enhanced neural 

activation that are representative of frontoparietal and ventral attention networks (Labrenz et 

al 2015). The authors conclude “ that the cerebellum is involved in associative learning 

processes of conditioned anticipatory safety from pain and mediates sex differences in the 

underlying neural processes” (Labrenz et al 2015). They suggest that the high prevalence of 

chronic pain conditions in women may be due in part to these sex differences in cerebellum 

(Labrenz et al 2015)

Pain sensitivity and circuitry

Clinical studies indicate that morphine is less potent women compared to men in alleviating 

pain. Within the brain, the periagueductal gray (PAG) and its descending projections to the 

rostral medial medulla and spinal cord comprise the essential neural circuit for both the 

endogenous and exogenous opioid-mediated analgesia. Gonadal steroids, primarily through 

ERα and ARs in the PAG, exert a sexually dimorphic regulation of spinal antinociception 

(Loyd & Murphy 2014, Mogil 2012). Recent evidence (Sorge et al 2015) indicates that 

microglial inhibitors reduce allodynia, a form of pain hypersensitivity to touch, in males but 

not females and that this sex-specific response depends on testosterone levels.
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Migraine is a pain condition that is more frequent in women than in men and Increased pain 

sensitivity in women (Maleki et al 2012). Women with migraine had thicker posterior insula 

and precuneus cortices compared with male migraineurs as well as healthy controls of both 

sexes. Furthermore, responses to heat within the migraine groups revealed a sex-specific 

pattern of functional connectivity of the posterior insula and precueus with the rest of the 

brain, pointing to a ‘sex phenotype’ in migraine and indicate that brains are differentially 

affected by migraine in females compared with males. Furthermore, the authors not that 

their “ results also support the notion that sex differences involve both brain structure as well 

as functional circuits, in that emotional circuitry compared with sensory processing appears 

involved to a greater degree in female than male migraineurs” (Maleki et al 2012).

Indeed, in relation to emotional circuitry, assessments of empathy in male and female 

volunteers, in which both sexes perform equally well on 3 separate tests, reveal different 

brain regional patterns of activation using fMRI (Derntl et al 2010). One way to generalize 

this is that, in their daily lives, men and women use different “strategies” in their 

relationships and approaches to solving problems and yet, on the average and with 

considerable overlap, do most things equally well ((Derntl et al 2010, McEwen & Lasley 

2005).

Conclusions

While the brain was for many years not regarded as a target for estrogens and other 

hormones, except the hypothalamus for regulation of reproductive function, we now know 

that the entire brain is a target for gonadal, as well as for stress and other steroid hormones 

and metabolic hormones (McEwen 2007). While gonadal hormone actions on many brain 

functions were suspected for many years, this new view was made possible at the level of 

mechanism by the identification of membrane associated receptors that appear to be post-

translational modifications of the same receptors that work at the cell nuclear level. 

Moreover, subtle sex differences are now being recognized in brain regions and functions 

not previously regarded as subject to such differences, indicating that we are entering a new 

era of our ability to understand and appreciate the diversity of gender-related behaviors and 

brain functions.
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Significance statement

Sex hormones act throughout the entire brain of both males and females via both 

genomic and non-genomic receptors and through many cellular and molecular processes 

that alter structure and function of neural systems and influence behavior as well as 

providing neuroprotection. Developmentally programmed, subtle sex differences and 

responses to sex hormones that influence functions and in brain regions not previously 

regarded as subject to such differences, indicates that we are entering a new era of our 

ability to understand and appreciate the diversity of gender-related behaviors and brain 

functions.
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Figure 1. 
Estrogens have many effects throughout the brain.
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Figure 2. 
Steroid hormones can act via classical (genomic) and non-classical (non-genomic) receptors. 

In many cases, the same receptor molecule has different functions in the nucleus and non-

nuclear sites in the cell.
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Figure 3. 
The discovery of estrogen actions on synapse formation in hippocampus via both genomic 

and non-genomic mechanisms has opened the way to understanding actions of estrogens and 

other steroid hormones throughout the brain where nuclear steroid hormone receptors are 

not evident. A. Schematic of coronal section through the dorsal rat hippocampus. Com, 

commissural; DG, dentate gyrus; PP, perforant path; Sch, Schaffer collaterals; sr, stratum 

radiatum. B. Representation of CA1 pyramidal neurons in the female rat hippocampus 

during the 4–5 day estrous cycle. 1. Diestrus, when estradiol levels are lowest. 2. Proestrus, 

when estradiol levels are decreasing. 3. Estrous, when estradiol levels are decreasing (A and 

B from McEwen and Schmeck. The Hostage Brain. Rockefeller Univ. Press, 1994. Drawings 

by Lidia Kibiuk.) C. Light micrograph shows nuclei with ERα-ir (arrows) in the stratum 

radiatum (sr) of CA1. D. Electron micrograph shows ERα-ir in a dendritic spine identified 

by a spine apparatus (SA) that is contacted by an unlabeled terminal (uT). An axon with 

ERα-ir is nearby. Bar C 40 μm; D, 500nm (C and D modified from Milner et al. (Milner et 

al 2001).
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Fig. 4. 
Sex differences in CA1 steroid hormone receptor distribution. Nuclear and nonnuclear 

steroid receptors are found on different cell types and/or cellular locations in females and 

males. Both females and males have membrane receptors on dendrites and dendritic spines. 

However, in females nuclear ERs are in GABAergic neurons whereas in males ARs are in 

pyramidal cell neurons. Moreover, membrane estrogen receptors are found on cholinergic 

(ACh) afferents.
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Fig. 5. 
Schematic shows sex differences in the hippocampal opioid system in unstressed and CIS 

rats. Arrows indicate predicted effects of MOR/DOR trafficking changes on inhibition 

(minus signs). In unstressed conditions, low frequency (1 Hz) stimulation of the granule 

cells elicits a DOR-dependent LTP in CA3 of proestrus females that is not seen in diestrus 

females or males (Harte-Hargrove et al 2015). The opioid system in all females after CIS 

resembles that of females in elevated estrogen states: (1) the pool of available enkephalin is 

elevated in mossy fibers; (2) DORs are decreased in the dendritic shafts but increased in the 

spines of CA3 pyramidal cells; and (3) MORs are increased in the dendrites and terminals of 

PARV GABA interneurons in the dentate gyrus (DG). Moreover, (4) after CIS in females, 

DORs have mobilized to the near-plasmalemma of the dendrites of GABAergic NPY/SOM 

interneurons known to project to granule cell dendrites where they converge with entorhinal 

afferents. Abbreviations: δ opioid receptors (DORs), dense-core vesicles (DCVs), lateral 
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perforant path (LPP), long-term potentiation (LTP), μ opioid receptors (MORs), 

neuropeptide Y (NPY), plasma membrane (PM), somatostatin (SOM)
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Fig. 6. 
Sex differences in PVN neuron responses to slow pressor AngII. Fourteen days following 

slow pressor Angiotensin II delivered through osmotic minipumps, blood pressor increases 

in young males and in accelerated ovarian failure females from a timepoint that corresponds 

to “postmenopause” in humans. The trafficking of GluN1 and p47phox within PVN neurons 

varies depending on sex, ovarian hormone status and cell type. Arrows indicate direction of 

movement towards the plasma membrane. Receptors on the plasma membrane are available 

for ligand binding. Thus, an increase of GluN1 would indicate potential for greater 

excitability.
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