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Microglia and neurogenesis in the epileptic dentate gyrus
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ABSTRACT
Microglia are recognized as major immune cells in the brain. They have been traditionally studied in
various contexts of disease, where their activation has been assumed to induce mostly detrimental
effects. Recent studies, however, have challenged the current view of microglia, clarifying their
essential contribution to the development of neural circuits and brain function. In this review, we
particularly discuss the role of microglia as the major orchestrators that regulate adult neurogenesis
in the hippocampus. We also review the roles of microglia in seizure-induced adult neurogenesis in
the epileptic dentate gyrus. Specifically, we introduce our recent study, in which we identified a
novel mechanism by which viable newborn cells in the adult dentate gyrus are phagocytosed and
eliminated by microglia after status epilepticus, maintaining homeostasis of the dentate circuitry.
This review aims to reconsider the microglial function in adult neurogenesis, especially when they
are activated during epileptogenesis, challenging the dogma that microglia are harmful neurotoxic
cells.
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Introduction

Microglia are recognized as resident immune cells
in the brain that exhibit a phagocytic capacity and
originate from erythromyeloid progenitors in the
early embryonic yolk sac.1 Recent studies have
revealed that microglia engulf and remove less
active synapses2,3 in the healthy brain as well as
dead cells and cell debris during inflammation,
indicating their role in regulating homeostasis of
the central nervous system (CNS). However, com-
pared to neurons and astrocytes, the discovery
and introduction of microglia into the neurosci-
ence arena has been delayed half a century, which
leaves microglia as one of the least-understood cell
types in the brain. In particular, the specific
molecular and cellular mechanisms through which
microglia communicate and interact with other
cell types are only beginning to be explored. Here,
we summarize and discuss the data concerning the
involvement of microglia in adult neurogenesis, a
process of generating and functionally incorporat-
ing neurons into pre-existing neuronal circuits.
Specifically, we focus on adult neurogenesis in the
subgranular zone (SGZ) of the hippocampal

dentate gyrus and discuss the role of microglia in
both physiological and pathological conditions,
which is related to our recently published paper
entitled ‘Microglia engulf viable newborn cells in
the epileptic dentate gyrus’ published in the
journal Glia.4

In physiological conditions

Accumulating research has promoted our understand-
ing of the origin of newborn neurons and their sur-
vival, maturation and integration into pre-existing
neuronal circuits in the adult hippocampus (Fig. 1).
Genetic fate-mapping studies have demonstrated that
the radial glia-like neural stem cells in the SGZ, an
intermittent zone between the granular cell layer and
the hilus, are the source of newborn neurons in the
dentate gyrus.5 These neural stem cells give rise to
intermediate neural progenitor cells (NPCs), which in
turn give rise to neuroblasts and immature neurons.6,7

Immature neurons migrate into the inner granule cell
layer and differentiate into mature dentate granule
cells.8 At each stage of neurogenesis, surveillant micro-
glia are suggested to regulate the fate and development
of adult-born neurons.
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Proliferation

In normal physiological conditions, newborn cells are
constantly generated in the adult SGZ, but this proliferat-
ing rate is altered by changes in the surrounding milieu,
which are induced by environmental enrichment, volun-
tary exercise, and aging. Rodents with a free access to a
running-wheel exhibit significantly enhanced cell prolif-
eration, as well as improved performance in spatial mem-
ory and learning tasks.9 The effects of exercise are not
restricted to the proliferation of NPCs. For example, run-
ning also increases the activation of both cortical and hip-
pocampal microglia.10,11 Thus, it is possible that the
exercise-induced activation of microglia contributes to
enhanced NPCs.

Vukovic et al. found that microglia were able to acti-
vate latent NPCs through the C-X3-C chemokine recep-
tor 1 (CX3CR1) pathway in the hippocampus of mice
that underwent exercise (wheel-running).12 The C-X3-C
motif chemokine 1 (CX3CL1)-CX3CR1 signaling is
important in regulating the neurotoxic effects of micro-
glia, such as releasing cytokines and abnormal

engulfment. Although it is debatable which cell type
expresses CX3CL1 and CX3CR1, CX3CL1 is principally
expressed in neurons, while CX3CR1 is expressed in
microglia.13-15 Previous reports have determined that
interactions between CX3CL1 and CX3CR1 contribute
to maintainingmicroglia in a resting phase, partially con-
trolling their neurotoxicity.16,17 In addition to the exer-
cise-related neurogenesis, the CX3CL1-CX3CR1 axis is
suggested to be involved in the aging-related reduction of
neurogenesis. Both the proliferation rate of NPCs and the
expression levels of CX3CL1 decrease with aging, and
Bachstetter et al. investigated the relationship between
CX3CL1-CX3CR1 signaling and aging-induced effects
on neurogenesis.18 They found that the disruption in
CX3CL1-CX3CR1 signaling in young adult rodents
decreased the proliferation of NPCs by activating inter-
leukin-1b (IL-1b) signaling. The activation of the IL-1
receptor (IL-1R) in NPCs decreases the level of cyclin
D1, a regulator of the G1 cell cycle expressed in NPCs,
which suppresses NPC proliferation without affecting
apoptosis.19

Figure 1. Schematic diagram of the process of adult neurogenesis in the hippocampus. A sagittal view of an adult rodent brain
highlighting the dentate neurogenic niche. In the adult dentate gyrus, neurogenesis undergoes 5 continuous stages. Stage 1, prolifera-
tion: amplifying neural progenitors are generated from the neural stem cells with their cell bodies located within the subgranular zone
and radial processes projecting through the granular cell layer. Stage 2, survival: a large proportion of progenitors undergoes apoptotic
death (gray) in the early period of their life. Stage 3, differentiation: progenitors differentiate into immature neurons (orange). Stage 4,
migration: immature neurons migrate a short distance into the granule cell layer. Stage 5, integration: new granule cells (yellow) receive
inputs from the entorhinal cortex and send axons to synapse CA3 and hilar neurons. In each stage of neurogenesis, surveillant microglia
regulate the fate and development of newborn neurons via the engulfment of apoptotic cells (Sierra et al., 2012) and secreting inflam-
matory and growth factors, such as IL-1b,19 TGF, PDGF, EGF and BDNF26,57.
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Survival

Ninety percent of newborn cells undergo apoptotic
death in the first 1 to 4 d of their life, during the tran-
sition from amplifying NPCs to neuroblasts. Thus, the
survival rate of newborn cells critically affects the
number of neurons incorporated into the hippocam-
pal circuitry. It has been shown that these apoptotic
NPCs during the early stage of neurogenesis are effec-
tively and rapidly cleared through phagocytosis by
non-activated microglia.20 However, the consequences
of microglial phagocytosis on adult hippocampal neu-
rogenesis remain elusive. Treatment of mice with
annexin V, which binds to the phosphatidylserine
(PS) receptor and prevents the recognition of PS on
the surface of apoptotic cells, presumably blocking
phagocytosis, increases the number of apoptotic cells
and reduces neurogenesis in the SGZ.21 This indicates
that blocking microglial-mediated phagocytosis alone
is not able to increase the survival rate of NPCs.
Indeed, annexin V reduced neurogenesis by decreas-
ing the survival of neuroblasts without affecting the
proliferation of NPCs.22 These findings suggest that
the clearance of apoptotic newborn cells by microglia
promotes the survival rate of NPCs.

Apoptosis of newborn cells may be directly induced
by microglia-released cytokines, such as tumor necro-
sis factor-a (TNF-a). TNF-a triggers the apoptosis of
hippocampal neurons via NF-kB translocation.23 The
TNF-a receptor tumor necrosis factor receptor 1
(TNF-R1) is expressed in proliferating NPCs, and the
survival rate of these cells in SGZ was increased in
TNF-R1 knockout mice.24 Another study showed that
TNF-a released by microglia induces the apoptosis of
NPCs, a process mediated by Bcl-2-associated X (bax)
protein, which functions as an apoptotic activator.25

In contrast, microglia-released growth factors not only
enhance neuronal proliferation but also neuronal sur-
vival. The immunodepletion of transforming growth
factor (TGF), platelet-derived growth factor (PDGF),
epidermal growth factor (EGF), or brain-derived neu-
rotrophic factor (BDNF) from microglial conditioned
medium resulted in a significant reduction in neuronal
survival.26 Furthermore, in the context of the enriched
environment, the expression level of insulin-like
growth factor-1 (IGF-1) was elevated in microglia in
the dentate gyrus,27 which suggested that the effects of
an enriched environment on neurogenesis are partially
mediated by microglia.

Maturation

In addition to proliferation and survival, microglia
have the capacity to guide the differentiation of pre-
cursor cells isolated from the embryonic brain and
adult mouse NPCs toward a neuronal phenotype. An
in vitro study showed that NPC cultures grown in
conditioned media from microglia contain a higher
proportion of neurons. Furthermore, microglia-
released soluble factors, which have not yet been
molecularly identified, direct the migration of NPCs.28

When newborn granule cells are synaptically inte-
grated into pre-existing neural circuits, they need to
compete with mature granule cells to invade and
replace pre-existing synapses29,30 probably in an activ-
ity-dependent manner.31,32 Because adult-born imma-
ture granule cells are more excitable than mature
granule cells,33,34 they are more efficient in generating
action potentials, even with weak glutamatergic
inputs,35 and probably have a greater chance to win
the synaptic sites. Recent studies have demonstrated
that microglia preferentially engulf weak or less active
synapses, contributing to the development of refined
functional neural circuits with strong or more active
synapses.2,3 Thus, the microglial-mediated engulfment
of pre-existing synapses may be involved in the effi-
cient formation of synapses by newborn granule cells.

Together, in the hippocampal neurogenic niche,
microglia are versatile modulators of neurogenesis.
Importantly, microglia can either enhance or suppress
neurogenesis in response to the environmental milieu.

In epileptic conditions

In the healthy CNS, microglia are in a “surveillance
state,” in which they exhibit a highly ramified mor-
phology with thin processes that dynamically move in
the brain parenchyma.36 In contrast, upon a patholog-
ical insult, such as infection or brain injury, microglia
rapidly retract their processes, proliferate and start
releasing neurotoxic factors, such as proinflammatory
cytokines.37-39

It has been shown that epileptic seizures induce
microglial activation in the hippocampus, partly medi-
ated by the activation of Toll-like receptor 9, an innate
immune sensor known to recognize microbial DNA.40

In animal models of temporal lobe epilepsy, status epi-
lepticus (SE) acutely enhances adult neurogenesis,
which results in an increased number of newborn
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granule cells.41,42 However, the functional properties
of these extra granule cells after SE remain to be clari-
fied. Accumulating evidence suggests that many new-
born granule cells exhibit abnormal differentiation
after SE and display hilar basal dendrites and aberrant
axonal sprouting as well as ectopic settling in the den-
tate hilus.43-46 Furthermore, the elimination of new-
born granule cells after SE decreased both the
abnormal sprouting of the granule cell axons and the
ectopic positioning of granule cells,46 attenuating
spontaneous recurrent seizures.47 In contrast, Jakubs
et al. suggested that SE-induced newborn granule cells
are normally incorporated into the dentate circuits,
possibly serving a compensatory role to restore inhibi-
tion.48 Thus, the selective elimination of SE-induced
newborn granule cells is likely critical to homeostasis
of the activity level of the dentate gyrus.

In our recent study published in Glia,4 we found
that microglia selectively engulf extensively proliferat-
ing cells after SE to suppress the number of newborn
cells to control levels to ensure homeostasis of the
dentate circuitry. However, it should be noted that
newborn cells were labeled only at 4 d after SE and
traced until 11 d after SE. In addition, we found that
microglial activation gradually increased after SE,

peaking at 6 d after SE and lasting for 2 weeks. Thus,
we do not exclude the possibility that seizure-induced
newborn cells that were born other than 4 d post-SE
survived microglial engulfment more efficiently.
These survived newborn cells may account for
increased cell numbers after SE in most of long-term
tracing studies, in which newborn cells were labeled
several times after SE.

It has previously been assumed that microglia
engulf dead or dying cells but not living cells49 and
that microglia engulf dead newborn neural progenitor
cells and their cell debris in the SGZ;20 however, recent
studies have indicated that microglia can also engulf
living cells during development,50 inflammation,51

and under neuropathological conditions.52,53 This
type of phagocytosis is referred to as “primary phago-
cytosis” because phagocytosis itself is the primary
cause of cell death. In contrast, “secondary phagocyto-
sis” refers to the phagocytosis of dying and dead cells
(both apoptotic and necrotic) as well as cell debris.

In our study,4 we immunohistochemically analyzed
the expression of the apoptosis marker cleaved (active)
caspase-3 in the DG and found that microglia are rap-
idly activated and engulf caspase-3 negative post-SE-
born viable cells via primary phagocytosis (Fig. 2). In

Figure 2. Microglia in seizure-induced neurogenesis. Epileptic seizures increase neurogenesis as well as microglial activation in the den-
tate gyrus. In the stage of proliferation, activated microglia produce inflammatory cytokines, such as TNFa,40 which suppress the aber-
rant proliferation of neural stem/progenitor cells. In the survival stage, our recent study4 revealed that both apoptotic and viable
newborn cells in the dentate gyrus are phagocytosed and eliminated by microglia after status epilepticus. These studies demonstrate
that microglia play a pivotal role in neurogenesis and in maintaining homeostasis of the dentate circuitry after epileptic seizures.
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addition, we showed that the suppression of microglial
activation by minocycline resulted in an increase of
ectopic newborn cells in the dentate hilus. Although
activation of caspase-3 occurs at the beginning of apo-
ptotic processes, leaving the possibility that the cas-
pase-3 negative cells were also undergoing apoptotic
processes, we confirmed that caspase-3 negative cells
being engulfed by microglia exhibited normal nucleus
morphologies. Consistent with our study, a recent
study by Abiega et al. showed that microglia engulf
viable neurons after SE in the hippocampus.54 Thus,
the activation of microglia might be a promising strat-
egy to eliminate ectopic newborn cells, which could
provide aberrant excitatory networks in the dentate
gyrus after SE, to prevent the resultant epileptogenic
processes.

In addition to their phagocytic capacity, microglia
contribute to homeostasis of neural circuits through
the release of both neurotoxic and neuroprotective
factors. Recently, Matsuda et al. reported that after SE,
activated microglia secrete TNF-a to attenuate the
proliferation of neural progenitor cells in the SGZ.40

Thus, microglia perform a stepwise regulatory mecha-
nism to maintain the number of newly incorporated
cells in the dentate circuitry. However, whether micro-
glia regulate the other processes of neurogenesis,
including the migration and integration of NPCs in
the dentate gyrus, remains to be clarified.

Future studies are necessary to examine whether
and how microglia choose which cells to kill and
which to keep alive. Several ‘don’t-eat-me’ and ‘eat-
me’ signals, such as PS and complement molecules,
have been suggested to modulate the phagocytic
capacity of microglia.2,55,56 Whether these molecules
are involved in triggering the primary phagocytosis of
progenitor cells during the process of neurogenesis
remains to be investigated.
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